
Ch. 14 
Frequency analysis
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Mathematics. Complex numbers, j2=-1

Re(G)

Im(G)
G(jω)=R+jI

R

I
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Polar form
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Multiply complex numbers: 
Multiply magnitudes and add phases 

Polar form



Force linear system with sinusoidal input: u(t) =  u0 sin t 
Output has same frequency: y(t) =  y0 sin (t + ϕ)
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14.1

u0=
y0=

Frequency:  [rad/s]
Period: P[s] = 2π / 

Phase shift: ϕ [rad] 
Time shift Δt [s] = - ϕ / 

Amplitude ratio (gain): AR = y0/u0



Example: Ground temperature phase shift

Surface temperature:  
u(t) =  uavg + u0 sin ((t-t0)) 

Ground temperature at X=5ft:
y(t) =  yavg + y0 sin ((t-t0) + ϕ)

Note: 
• Average: uavg = yavg = 62F

(Usually deviation variables, so average=0)

• t0 =  120 d (where u crosses zero 
from below). Usually, t0 = 0.

Problem:
• Find u0, y0, P,  , ϕ and gain

Solution for X=5ft.
• u0 = 62-40=22 F, y0 = 62-50=12 F,  Gain = AR = 12/22 = 0.55 
• P = 365d,  =2π/P = 2π/365 = 0.017 rad/d, 
Phase shift: 
• Summer: Δt = 35 days from Aug. 6 (hottest day) to Sep. 10 (hottest in ground) 
• Winter: Δt = 35 days from Feb. 4 (coldest day) to Mar. 11 (coldest in ground), 
• ϕ = - Δt  = -35d * 0.017 rad/d= - 0.602 rad = -34.5o

0oC

33oC

u(t)

y(t)



u y

As t →∞:
y(t) = AR *A*sin(ωt+φ)

u(t) = A sin(ωt)

General (VERY SIMPLE).
Set s=jω in G(s). Then
AR = |G(jω)|
φ = Å G(jω)

(5-22)

Note: A is the same as u0



General: Simple method to find sinusoidal response of system G(s)

1. Input signal to linear system: u = u0 sin(ωt)
2. Steady-state (“persistent”, t→∞) output signal: y = y0 sin(ωt + φ)
3. What is AR = y0/u0 and φ?

Solution (extremely simple!)
1. Find system transfer function, G(s)
2. Let s=jω (imaginary number, j2=-1) and evaluate G(jω) = R + j I (complex number)
3. Then (“believe it or not!”)

AR = |G(jω)| (magnitude of the complex number)
φ = Å G(jω)  (phase of the complex number)

Re(G)

Im(G)
G(jω)=R+jI

R

I

Å G

|G|



Example 14.1:
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Gain and phase shift
of sinusoidal  response!

1.

2.

3.

SIMPLER: Use polar form of complex numbers! G=G1/G2, where G1=1, G2=tau*s+1. 
set s=jw. Get |G|=1/|G2|=1/sqrt((w*tau)^2+1), angle(G)=0-angle(G2) = –arctg(w*tau)

This method is 
not really
recommended
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! = 0.3 rad/ s, P = 20.9 s

AR = 0.958

Á = -0.291 rad = -16.7 o

¢ t = 0.972 s

! = 1 rad/ s, P = 6.28 s

AR = 0.707

Á = -0.785 rad = -45 o

¢ t= 0.785 s

! = 0.1 rad/ s, P = 62.8 s

AR = 0.995

Á = -0.1 rad = -5.7 o

¢ t = 0.997 s

! = 10 rad/ s, P = 0.628 s

AR = 0.0995

Á = -1.47 rad = -84.3 o

¢ t= 0.147 s
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! = 30 rad/ s, P = 0.209 s

AR = 0.033

Á = -1.54 rad = -88.1 o

¢ t= 0.051 s

SINUSOIDAL RESPONSE OF FIRST-ORDER SYSTEM
k = 1, τ = 1 [s]

! = 3 rad/ s, P = 2.09 s

AR = 0.316

Á = -1.24 rad = -71.6 o

¢ t = 0.416s

1
s+ 1

u(t) = sin(ωt) y(t) = AR sin(ωt + φ )

w=0.3; tau=1; t = linspace(0,20,1000);
u = sin(w*t);
AR = 1/sqrt((w*tau)^2+1)
phi = - atan(w*tau), phig=phi*180/pi, dt=-phi/w
y = AR*sin(w*t+phi);
plot(t,y,t,u)

6 Plots: Increase ω from 0.1 to 30 rad/s
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1/√2 = 0.707

-arctg(10)=-84.3◦

-arctg(1)=-45◦

-arctg(0.1)=-5.7◦



Misprint: Should start from 1.0

Note: Nyquist plot is not included in last edition



Example: Ground temperature phase shift.

What is τ if assume a first-order response from u to y? g(s) = k/(τs+1)

Data: u0 = A= 22, y0 = 12, =0.017 rad/d, ϕ = – 35o

Solution:

• We know from physics that the gain k=1. So g(s) = 1/(τs+1)

1. From amplitude data: AR = y0/u0 = 0.545.  

Get:  

2. From phase shift data. ϕ = – 35o

Get:

Conclusion: This system is more complex than first order (no big surprise!)
It’s described by partial differential equations and can be approximated by a high-order system with many poles and zeros.

For example, g(s) = (τ2s+1) / (τ1s+1) (τ3s+1)  where τ1 > τ2 > τ3



Frequenc response of time delay

g=e-θs

Gain = |g(jω)| = 1

Phase shift = ϕ = angle(g(jω)) = - ωθ [rad]

Alternative proof: Time domain

u(t)

y(t)









OK!





Oops! Phase drops for RHP zero

Phase increases for LHP zero

Peak goes to infinity when ξ=0



Figure 14.4  Bode diagram for a time delay, e-θs.
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-1 rad = -57o at ωθ = 1

=-ωθ

Bide plot of time delay. 

G = exp(-θs)

|G(jω)| = 1

∠𝐺 𝑗𝜔 = −𝜔𝜃



L(s) = 20s+ 1
s(100s+ 1)(2s+ 1)

EXAMPLE

L(s)=G(s)C(S): 
Loop transfer function for
SIMC PI-control with τc=4 for 
G(s) = 1/(100s+1)(2s+1)

Example



ASYMPTOTES
Frequency response of term (Ts+1): set s=jω.
Asymptotes:

(jωT + 1) ~ 1     for ωT << 1 (slope n=0, phase=0)
(jωT + 1) ~ jωT for ωT >> 1 (slope n=1, phase=90o)

Gain slope n: |G|~ωn

Rule for asymptotic Bode-plot, L = k(Ts+1)/(τs+1)….. : 
1. Start with low-frequency asymptote (s→0)

(a) If constant (L(0)=k): 
Gain=k (slope=0) 
Phase=0o

(b) If integrator (L=k’/s): 
Gain slope= -1 (on log-log plot). Need one fixed point, for example, gain=1 at ω=k’
Phase: -90o. 

2. Break frequencies (order from large T to small T):

3. Time delay, e-θs.  Gain: no effect, Phase contribution: -ωθ [rad] (-1 rad = -57o at ω=1/θ)

Change in gain slope Change in phase

ω=1/T (zero) +1 +90o (-90o if T negative)

ω=1/τ (pole) -1 -90o (+90o if τ negative)



Slope=-1

-90o

-180o

-2

L(s) = 20s+ 1
s(100s+ 1)(2s+ 1)

-1

-2

-90o
ω=0.01 ω=0.05 ω=0.5

-180o

L(s): SIMC PI-control with τc=4 for g(s) = 1/(100s+1)(2s+1)

Slope
Help lines

-2

-1

SOLUTION

Asymptotes: Start at low frequency, ω→0:

|L(jω)| = 1/ω. So: |L|=103 at ω=10-3
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=2

Gc(s) = 210s+ 1
10s

PI-controller:



Figure 14.6 Bode 

plots of ideal parallel 

PID controller and 

series PID controller 

with derivative filter 

(α = 0.1).

Ideal parallel:

Series with 

Derivative Filter:            
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Electrical engineers (and Matlab) use decibel for gain

• |G| [dB] =  20 log10|G|

|G| |G| [dB]

0.1 -20 dB

1 0 dB

2 6 dB

10 20 dB

100 40 dB

1000 60 dB

s=tf('s')
g = 10*(100*s+1)/[(10*s+1)*(s+1)]
bode(g) % gives AR in dB*
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Bode Diagram

Frequency  (rad/s)

GM=2 is same as GM = 6dB

Other way: |G| = 10|G|(dB)/20

*To change magnitude from dB to abs: Right click + properties + units (absolute, log scale)

*



• L = gcgm = loop  transfer function with negative feedback

• Bode’s stability condition: |L(ω180)|<1|
– Limitations

• Open-loop stable (L(s) stable)

• Phase of L crosses -180o only once

• The same but more general: Nyquist stability condition:

Locus of L(jω) should encircle  the

(-1)-point P times in the anti-clockwise

direction (where P = no. of unstable 

poles in L).

CLOSED-LOOP STABILITY

Stable plant (P=0): Closed-loop stable if  L has no encirclements  of -1
(=Bode’s stability condition)



Proof of Bode stability condition
– Starting point: Stability is a system property for 

linear systems, so if the system is stable for one
signal it’s stable for all signals.

– Consider a particular signal: Sinusoid with
frequency ω180. 

– With negative feedback, the total phase shift
around the loop is -360o, so this sinusoid comes
«back in phase»

– If the gain around the loop is less than 1, the
sinusoid will die out.

– Conclusion: The closed-loop system is stable if and 
only if |L(jw)|<1 at frequency ω180



• Example 1. P-control of delay process, 
g(s)=ke-θs. For what Kc is system stable?

• Example 2. I-control of delay process. For 
what KI is system stable? compare with 
SIMC. Is SIMC robust?

Solution. Stable if and only if
1. P-control: kKc < 1

2. I-control: kKI < 
π

2

1

θ

Note: SIMC with τc=θ gives I-control with kKI = 
1

2θ
, 

1. So Gain Margin (GM) =π = 3.14     (worst is 1 = 0dB), 
2. Unstable if we increase delay from θ to πθ, so Time Delay Margin (DM)= (π-1) θ (worst is 0)
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c

c

180

180

Sigurd’s preferred notation in red ☺

|L(jω)| =

Å L(jω)=

Time delay margin (DM), Δθ= PM[rad]/ωc

GM = 1/L(jω180)
ω180 = frequency where phase shift around

the loop is -180o = - π rad.

Å L(jω180) = -180o = - π rad

PM = Å L(jωc) + 180o 

= Å L(jωc) + π [rad]
ωc = frequency where loop gain is  1.

|L(jωc)| = 1

GM (dB)



L(s) = 20s+ 1
s(100s+ 1)(2s+ 1)

EXAMPLE 3

L(s): SIMC PI-control with τc=4 for 
g(s) = 1/(100s+1)(2s+1)



-180o

L(s) = 20s+ 1
s(100s+ 1)(2s+ 1)

L(s): SIMC PI-control with τc=4 for g(s) = 1/(100s+1)(2s+1)

PM=57o

GM=1/0 = ∞

ωc = 0.19 rad/s ω180 =  ∞

SOLUTION

1



With added delay, e-θs with θ=2
No change in gain

With added delay, e-θs with θ=2.
Contribution to phase is:
-5.7o at ω=0.1/θ = 0.05
-57o at ω=1/µ = 0.5
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10
0

10
1

-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

-180o

GM=1/0,4=2.5

PM=35o

= 0.61 rad

ωc = 0.19 ω180 = 0.4

EXAMPLE3’: ADD 2 UNITS OF DELAY

Now phase crosses -180o so
GM is no longer infinity

Phase addition from delay = -ωθ
At ωc:  - -ωcθ= 0.19*2 = - 0.38 rad (-22o)
So new PM = 57o (old) – 22o = 35o 



Example 4. PI-control of integrating process 
with delay. Compare ZN and SIMC*

• g(s) =k’e-θs/s
• ZN: Use P-control and increase Kc until instability. Find:

• Pu = 4θ and Ku = (π/2)/(k’θ)

• PI-controller, c(s) = Kc (1+1/(τIs))
Kc τI

Ziegler-Nichols 0.45Ku = 0.707/(k’ θ) Pu/1.2=3.33θ

SIMC  (τc=θ) 0.5/(k’ θ) 8θ

*Task: Compare Bode-plot (L=gc), robustness and simulations (use k’=1, θ=1).
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Bode Diagram

Gm = 2.96  (at 1.49 rad/s) ,  Pm = 46.9 deg (at 0.515 rad/s)

Frequency  (rad/s)

GM PM Delay margin, Δθ

Ziegler-Nichols 1.87 24.9o 0.57 s

SIMC  (τc=θ) 2.97 46.9o 1.88 s

Ziegler-Nichols PI SIMC-PI

Δθ= PM[rad]/ωc
ZN: Δθ = 24.9*(3.14/180)/0.76 = 0.572s
SIMC: Δθ = 46.9*(3.14/180)/0.515 = 1.882s

SIMC is a lot more robust:

s=tf('s')
g = exp(-s)/s
Kc=0.707, taui=3.33
c = Kc*(1+1/(taui*s))
L1 = g*c
figure(1), margin(L1) % Bode-plot with margins
% To change magnitude from dB to abs: Right click + properties + units
Kc=0.5, taui=8
c = Kc*(1+1/(taui*s))
L2 = g*c
figure(2), margin(L2)
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Bode Diagram

Gm = 1.87  (at 1.35 rad/s) ,  Pm = 24.9 deg (at 0.76 rad/s)

PM PM

GM GM



Delay = 1
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SIMC

ZN

OUTPUT, y

INPUT, u

Conclusion: Ziegler-Nichols (ZN) responds faster to the input disturbance,
but is much less robust. 
• ZN goes unstable if we increase delay from 1s to 1.57s.
• SIMC goes unstable if we increase delay from 1s to 2.88s.

t=0: setpoint change,   t=20: input disturbance

Simulink file: tunepid4
s=tf('s')
g = exp(-s)/s
Kc=0.707, taui=3.33, taud=0 % ZN
sim('tunepid4')
plot(Tid,y,'red',Tid,u,'red')
Kc=0.5, taui=8, taud=0 % SIMC
sim('tunepid4')
hold
plot(Tid,y,'blue',Tid,u,'blue')
hold off
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ZN is almost unstable when the delay is increased from 1s to 1.5s.
SIMC does not change very much

SIMC

ZN

t=0: setpoint change,   t=20: input disturbance

OUTPUT, y

INPUT, u



Back to Example 2.
I-control of delay process

• Find GM, PM and DM for SIMC-controller 
(analytical)



• Example 2. I-control of delay process. & 
what is ωc, ω180, GM, PM and DM & give for 
SIMC (analytical)

Solution
wc=k’ KI, w180=(pi/2)(1/theta). 
GM = w180/k’KI = (pi/2)/(k’KI theta),
PM=(pi/2)- k’KI*theta, 
DM = PM/wc = (pi/2)/k’KI - theta 

SIMC:

SIMC with τc=θ gives kKI = 
1

2θ
, so 

GM =π = 3.14. 
PM = (pi-1)/2 = 1.07 rad = 61.5o

DM = (pi-1)*theta = 2.14 theta



Bode stability condition.
Why may D-action help in some cases?
• Some unstable processes, for example a double integrating process, may 

need D-action for stabilization. The reason is to add positive phase and 
therefore stabilize the system. Why does this help?
– Recall the Bode stability condition. It says that the loop gain should be less 

than 1 at the frequency where the phase shift around the loop -180 degrees.
– Another statement is that phase shift should be less than -180o at the 

frequency where the loop gain is 1. 
– So for stability and robustness we want as little phase shift as possible (to 

improve the phase margin). The things that add negative phase shift are time 
delay (the worst), poles and RHP-zeros.

– LHP-zeros (D-action, (Td*s +1)) have the opposite (positive) effect on the 
phase, and this is why they may be added for stabilization in difficult cases, for 
example, an unstable process. Of course, zeros will also affect the loop gain, 
but at frequencies up to the break frequency, 1/Td, the positive effect on the 
phase is most important.

– So why don’t we always add D-action? One reason is that it increases the 
controller gain and therefore the input usage. However, the main reason is 
probably that it does not help very much in most cases and it makes the 
controller design more complicated (and easier to do mistakes).



Closed-loop frequency response
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ZN
SIMC

w = logspace(-2,1,1000);
[mag1,phase]=bode(1/(1+L1),w);
[mag2,phase]=bode(1/(1+L2),w);
figure(1), loglog(w,mag1(:),'red',w,mag2(:),'blue',w,1,'-.') 
axis([0.01,10,0.001,10])

!

SIMC: Ms=1.70
ZN:     Ms = 2.93

Control:    GOOD BAD NO EFFECT

e

|S|



Example Ziegler Nichols
Task: Find ZN-settings for integrating+ delay process 

analytically

• First need to find Pu and Ku


