
Ch 11.4
Stability

NOTE: Stability of a linear system is a SYSTEM property, that is, 
independent of the input signal (sine or step, etc.) and of where it  
enters the system (input or disturbance, etc.)

Stability is a very important issue for control systems



Linear system. Is g(s) stable?
• g(s) = n(s)/d(s).    Poles are solutions s=pi to d(s)=0.

• Example:   G(s) = 1/(s-1)(s+2), p1=1, p2=-2

• So time response contains term ept

• Example:   G(s) = 1/(s-1), p=1
– Step response is: y(t) = -1(1-et) = et – 1 

• From this we see that for linear a polynomial system g(s)=n(s)/d(s) (no time delay): 
Stability , Re(pi)<0   (all poles have negative real part)

, All poles in left half plane (LHP)

– Applies also to the linear system dx/dt = Ax + Bu, but here the poles (pi) are the eigenvalues of A 
(see proof below)



Poles = Eigenvalue of A-matrix
Linear system in deviation variables (state space form)

dx/dt = A x + B u
y = C x + D u

Laplace. Get transfer function  from u to y

G(s) = C (sI-A)-1 B + D = n(s)/d(s)

From mathematics: (sI-A)-1  = adj(sI-A)/det(sI-A), so

d(s) = det(sI-A) = pole polynomial

But det(sI-A)=0 is also the formula for finding the eigenvalues of A

Conclusion: Solutions to d(s)=0 are the poles which are identical to the 
eigenvalues of A

pi = eig(A)



Pole in right half plane (RHP): UNSTABLE
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G(s) = n(s)/d(s) where
d(s) = (s-p1)(s-p2)

Real pole p: Get term ept .

For Re(p)>0 (RHP-pole):
Unstable since  ept! 1  (as t! 1 )

Complex pole pair (p12 = p § jω)
Gives oscillations:
c1 ep1t + c2ep2t = c ept sin(ωt + Á)
Which are unstable if Re(p)>0
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Stability of closed-loop systems

• Closed-loop transfer functions, T(s) = n(s)/d(s)
– n(s) = direct path
– d(s) = 1 + loop(s) 

• where loop(s) =  g(s) gm(s) c(s)

• Same d(s) for any input/output!
– Makes sense because stability is a system property

• Conclusion: Closed-loop poles are given by 
solutions to “closed-loop characteristic equation” 

• d(s) = 1 + loop(s) = 0



What about time delay?

• Can use Pade approximation, for example, n first-
order in series:

• Also other Pade approximations exist (with complex poles and 
zeros)

• Comment: More exact for stability of closed-loop system with delay: Frequency
response and Bode criterion (later)



How do we test for stability? 
T(s) = n(s)/d(s)

Method 1. Compute poles p (roots of d(s)=0) = eigenvalues  o  
A-matrix for system T(s), p=λ(A).

• Stable if and only if all poles are in left half plane, Re(p)<0
• OK numerically, but difficult to find poles/eigenvalues p analytically

Method 2. Look at coefficients ai in d(s), 
d(s)= a0 + a1s + … + ansn

Good for analytical results. Don’t need to find poles p
Test 1. All a’s must have same sign* for stability (necessary condition)
Test 2. Routh array (Routh-Hurwitz condition): Necessary and sufficient**

Method 3. Closed-loop system. Frequency analysis (see later)
• Consider loop transfer function, L = GC
• Bode stability test for stability: |L| < 1 at frequency ω180
• Easy to include time delay

* Necessary and sufficient for 2nd order system
** The detailed formulas are no longer in the book by Seborg, but it remains part of your syllabus. 
See also Exercise 9. You will get the formulas if you need it on the exam.



Example 1

• Unstable plant  (reactor): g(s) =1/(s-1)
• P-controller: c(s)=Kc
• Method 1 (poles), 
• Method 2 (sign coefficients), 
• Root locus (location of closed-loop poles as function of Kc)



Method 1. Analytic solution using poles. 
A lot of work*!

Matlab commands: 
syms s Kc
g=1/(6*s+1)
gm=(-s+1)/(s+1)
clpoles=solve(1+Kc*g*gm==0)
solve(real(clpoles(1))==0)
solve(real(clpoles(2))==0)

Solution:
g =1/(6*s + 1)
gm =-(s - 1)/(s + 1)
clpoles =
Kc/12 + (Kc^2 - 38*Kc + 25)^(1/2)/12 - 7/12

Kc/12 - (Kc^2 - 38*Kc + 25)^(1/2)/12 - 7/12
ans =-1.0
ans =7.0

Method 2. Coefficients
Test 1. Check signs of Char. Eq..: 

d(s) = 1 + loop = 1 + Kc*(-s+1)/[(s+1)(6s+1)]=0
6s^2 + (7-Kc)s + (1+Kc) = 0

Stable -> all coefficients positive ->
Kc>-1 (lower limit for positive feedback)
Kc<7   (upper limit because of RHP-zero)

(necessary and sufficient for 2nd order system)

* Almost impossible for systems of order
4 or higher

EXAMPLE 2



Complete Routh array
b1 = (17*8-10*(1+Kc)) / 17
b2 = 0
c1 = (1+Kc)
Stability: Elements in first column > 0.
Conclusion: 
b1>0 -> Kc<12.6
c1>0 -> Kc>-1

Test 2. ROUTH array: Find location (RHP/LHP) of poles without actually having to find them
“Advanced version of looking at sign of coefficients in pole polynomial d(s)” 

Example 3. g(s) = 1
(5s+ 1) (2s+ 1) ; gm = 1

s+ 1 , P-cont ro

Kc
-1 12.6

STABLEUNSTABLE UNSTABLE

From old edition of Seborg book:

s=tf('s')
Kc=12.6  % limit to instability
g = 1/[(5*s+1)*(2*s+1)*(s+1)
loop =  Kc*g
T = loop/(1+loop)
step(T)
sisotool(g) %  root locus



Root locus: How do the 
closed-loop poles depend 
on the controller gain Kc?

Kc=0

Example 4
c(s) = K c

g(s) = 4
(s+ 1)(s+ 2)(s+ 3) = 4=6

(s+ 1)(0:5s+ 1)(0:33s+ 1)

Kc=0.1: Starts oscillating
Kc=15: Goes unstable
Step response for Kc=1.62:
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s=tf('s')
Kc=1.62
g = 4/[(s+1)*(s+2)*(s+3)]
loop =  Kc*g
T = loop/(1+loop)
step(T)
sisotool(g) %  root locus
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