PID control.
Practical issues

Smith Predictor (NOT PID...)
PID Controller forms
Ziegler-Nichols tuning
Windup
Digital implementation

PID controller

t
“Ideal” form: wu(t) = ug + Kcle(t) + l/ e(t)dt + TDde(t)]
. 71 /0 _
Au

e(t) =y, — ym(t)

P- part MV (Au) proportional to error
This is usually the main part of the controller!

. Make sure K_ has the right sign! With negative feedback in the loop, Kc has the same sign as the
process gain k.

. Problem: Gives steady-state offset if used without I-action. Offset= 100%/(1+K k)

I-part: To avoid offset, add contribution proportional to integrated error.

. Note: Larger integral time 1, gives less I-action (turn off by selecting taul=9999)
. Sometimes called “reset time”

Physical interpretation: 7, is essentially the time it takes to “reset” the bias (ug).
. Note: Integral term keeps changing as long as e#0

-> Will eventually make e=0 (no steady-state offset!)

Possible D-part: Add contribution proportional to change in (derivative of) error
. Note: Larger derivative times more D-action (turn off by selecting taud=0).
. Can improve control for high-order (S-shaped) response, but sensitive to measurement noise

Actual plant: G,

Smith Predictor

Model: G ;
~ —= Ko 71" CGe o
Delay-free model: Gy —:T 3
"Smith predictor”: Go — G (predicts y when G has delay) | “—{g,-G} K
Conventional feedback controller: K S
Kg: designed for plant without delay (@)
4
1 P

Example r 1X Gp
G= kp_‘f‘e" 1 =

= ke o+ La—
Delay-free model: Go = A—3

i T k —fsn b
CT(]—CT— | (1—1‘? Sazl ()
Then d

I I{n |
K =]+I{'0:&_—1[1—e_63} r L Q o G, ¥
which with Ko = %TTS_';—I - L —
(SIMC-PI for delay free Gy) L9
gives " Smith predictor controller” | ©
K = Ts+1 ;

Test1—e—0s , . a) Smith predictor control structure; (b) rearranged Smith predictor; (¢) IMC

(see also SIMC derivation) structure.

SP looks good in theory. BUT: It’s sensitive to time delay error AND we have found that well-tuned PID (with
Ty = 0/3) is more robust and almost always better than Smith predictor controller*) FORGET SP!

* Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018)

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

Table 7.1 Common PID Controllers

A “e.
AT
A

i \ ‘!,:‘_.-
2O

USRI

S

I

e(t) = .Vsp(’) = ymlt)
ep(r) = 'Y)'sp({) = ym(1)

Controller | Other Names
Type Used Controller Equation Transfer Function
< . P'(s) 1
Parallel Ideal, additive, o 1 e g s fﬂQ) - K(l 4 ks don s)
ISA form PO)=p+ Kc(e(r) T A K)o + 5o E(s) ¢ s 0

Paralle]l with | Ideal, P'(s) 1 TpSs 3

derivative realizable, See Exercise 7.10(a) EGs) K. (1 s i aTps + 1)

filter ISA standard
Series Multiplicative, See Exercise 7.11 P'(s) 7s + 1

interacting EGs) Ke\=as)05 + D
Series with | Physicall) 2,
derivative ry:aliza)tl)lc See Exercise 7.10(b) P k(™ i 1)(s * 1) 13
filter E(s) N s Narps + 1) o
_ ' de(1) Pe) _ Ki

Expanded | Noninteracting p() =P + Ke) + K; A e(t*) dr* + Kp—, E(s) Ky g e
Parallel, with | Ideal B, v 1 [dep(r) 1 :
proportional | controller pt)=p+ Kc(er(l) L= A e(rt) de* + tp—) P'(s) = Kc(Ep(s) *os E(s) + :DsEg(s))
and
derivative where ep(t) = Byy(*) = ym(r) where Ep(s) = BYp(s) = Yiuls)
weighting

E(s) = Y:p(s) — Yyu(S)
Ep(s) = 'YY:p(S) = Yu(s)

+ many more (see manual for your control system...)

.:vi’i Ll

20

g

¢
2

R

=S e iy
K"

'~'~~‘»‘-'.-5'/ AR PN P
RS PR SN AR AT

x
ot

AL

SIS AL IR LI

AR B

AR DA

P L AV
R A

Series to ideal form

Series (cascade) PID:

T1s+ 1)(tps+ 1 K.
o(s) = kX VD T) _ Ke 0ot)s 4 1)
TIS TIS

The settings given in this paper (K., 77, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

i 1 K] :
Ideal PID : ((s) = K., (l -+ —— + TLH) = — (r_f’rf,s‘g + 775 + l) (35)
s TrS
we use the following translation formulas
. - D ™D D :
h',:fi.(]+—); T’=T(]+—): T = 36
e c 7 I I T D 1 + _Trf' (36)

Derivation: See exercise

Note: The reverse transformation (from ideal to series) is not always possible because
the ideal controller may have complex zeros.

I {} III

Practical “Ideal” PID (parallel form)

The parallel form of the PID control algorithm (with- 1
out a derivative filter) is given by

. L[o2 @ x
P =7+ Kfe + L [e e + 20 113 ”
The corresponding transfer function is ”
P.r Iy Figure 7.8 Block diagram of the parallel form of PID mnlrol
EE{)} - K,,;-Ii] + L + Tj}?] (?_1 4} (without a derivative filter).]

1. To get realizable controller and less sensitivity to measurement noise: Add filter on

2. To avoid “derivative kick” do not take derivative of setpoint

illustrate the elimination of derivative kick, consider
the parallel form of PID control in Eq. 7-13. Replacing
deldt by —dy,,/dr gives

! d¥m
plfy=p+ KE[E{I} + Tl! L e(r®) di* — tp err(ﬂ] {7-17)

3. To avoid integral “windup” when input saturates (at max or min), use “anti” windup.
Simplest: Stop integration while input saturates

Block diagram of practical “ideal” PID

¥

ys L} u

JE(s) | 3
> | R & -

NS

Y —
2. To avoid “derivative kick” :
Do not take derivative of setpoint y,

/

1. For smoother control/ less sensitivity to noise:
Filter the measurement.
Typical: tp = atp, a = 0.1

Series (cascade) PID

Commercial versions of the series-form controller
have a derivative filter that is applied to either the
derivative term, as in Eq. 7-12, or to the PD term, as in

Eq. 7-15:
P'(s) _ TS + 1)(755 + 1)
- (ferr) 9

Typical: «=0.1
u
Y. - 11541 -
A "RC T[S -
Tpns+1
atps+1
1. For smoother control: %
Replace (7, s+1) by (17, s +1)/(a7, s +1)

2. To avoid “derivative kick”
do not take derivative of setpoint

Integral windup

* Problem: Integrator “winds up” u(t) when actual input has

saturated

d
i

Actual i

nput is m.

m=u if no saturation

u(t) = ug + Kee(t) + I:_IC /Ot e(t)d

t

Keeps changinvg when e(t)#0

Anti-windup

e Approaches to avoid windup

1.

Stop integration (e.g. set 7,=9999) when
saturation in input occurs (requires logic)

Make integrator track true input using feedback
correction (see Example and Exercise)

Use discrete controller in velocity form

Use Sigurd’s discrete controller with bias
adjustment

Example anti-windup (Approach 2)

" -——}{Kc ’
Step ign I-_>

Sum Gain

Sum4

Integrator
1 g

+
> 5‘ f + 9 > y
m
_ 1 Saturation - SumlL-“ Sysem To Workspacel
s
0

=N

Step2

]

Stepl +

Anti GaiP? I:I
vvilldup \ ._r'>

@-—> Tid

Clock

g=2/(10*s+1)
tauc=1: Kc=1.25, taui=4

Input saturation: umax=0.1, umin=-0.1

To Workspace

Disturbance (d): Pulse from 0 to 0.2 and back to 0 at t=10

Scope

u

To Workspace3

Approach 2:

Feedback correction which makes u track m.

* Often Gain2 =1 is recommended (corresponds to
have tracking time = integral time)

* If Gain2 is too high the P-action may make the
system jump out of saturation prematurely

* No anti-windup: Set Gain2 = 0.

File: tunepidantiwindup.mdl

0.2

2. With anti-windup: Much better!
/ * _y(t) has only small undershoot

0.1r

=-0.1 -0t

* Response

> with Gain2=1 is quite similar

min

U (with anti-windup)

\ |

02F
1. Without anti-windup:
031 * Input remains saturated to t=22
(long after disturbance is gone at t=10).
047 * y(t) must overshaot on other side
to “wind input u|back”.
0% 5 10 15 20 25 30 3 40 45 50

t=0: Disturbance starts
t=10: Disturbance ends

y = output process
u = output controller
m = sat(u) = input process

1. Blue = without anti-windup
2. Red = with anti-windup

Bumpless transfer

e \We want a “soft” transition when the
controller is switched between “manua
”autO”

IH

and

— or back from auto to manual
— or when controller is retuned

* Simple solution: reset bias u, as you switch, so
that u(t) = u,,,,.a(t)-

u(®) = uo + Kele(®) + [e(t + 7p ™3

N -

Au

Methods for online tuning of PID
controllers

|. Trial and error
Il. Ziegler Nichols

— Oscillating P-control
— Relay method to get oscillations

Ill. Closed-loop response with P-control
— Shams method

On-line tuning: Avoids an open-loop experiment, like a step input change.
Advantage on-line: Process is always “under control”
In practice: Both “open-loop” and “closed-loop” (online) methods are used

Optimal PID settings

* Can find optimal settings using optimization
e SIMC-rules are close to IAE-optimal for combined setpoints and disturbances*

11.3.2 Tuning Relations Based on Integral
Error Criteria

Controller tuning relations have been developed that
optimize the closed-loop response for a simple process
model and a specified disturbance or set-point change.
The optimum settings minimize an integral error crite-
rion. Three popular integral error criteria are

1. Integral of the absolute value of the error (IAE)

p OO0
1)

where the error signal e(r) is the difference between
the set point and the measurement.

e(t)|dt (11-35)

2. Integral of the squared error (ISE)

ISE :/ ()t (11-36)
0
3. Integral of rhe rtime-weighted absolute error
(ITAE)
ITAE =/ tle(r)|dt (11-37)
Jo

*Chriss Grimholt and Sigurd Skogestad, ""Optimal Pl and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules" ,
Published in: J. Process Control, vol. 70 (2018), 36-46.

Tuning of your PID controller

l. “Trial & error” approach (online)

(a) P-part: Increase controller gain (K.) until the
process starts oscillating or the input saturates

(b) Decrease the gain (~ factor 2)

(c) I-part: Reduce the integral time (7)) until the
process starts oscillating

(d) Increase a bit (~ factor 2)

(e) Possible D-part: Increase tyand see if there is any
Improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended

Main problems ZN:

1. Ziegler-Nichols closed-loop method
(1942)

P-control only: Increase controller gain (K.) until the process cycles with
constant amplitude: \) -
M&Vf\/\/ Nl i

Cu (ain>
Write down the corresponding “ultimate” period (P,) and controller gain (K,).

Based on this “process information” obtain PID settings:

Table 11.4 Controller Settings based on the Continuous
Cycling Method

Ziegler-Nichols K. T ™

P “'SKH(. e

PI 0.45K, P12 = _ _

PID 0.6K,,, P2 p,8 <— PID is for ideal form
Tyreus-Luyben® K. T £ 0

= 031K, 5P _ | TL-modification is smoothe
PID (ideal) 0.45K,, 2.2P, P63 (smaller K. and larger 7).

" Luyben and Luyben (1997).

1. Too aggressive (and has no tuning parameter)
2. Two pieces of information (Pu, Ku) is too little to capture all processes.
Works poorly on delay-dominant processes

Example. Integrating process with delay=1. G(s) = e™/s.
Model: k'=1, 6=1, 1,=1

SIMC-tunings with T, with =0=1.

2

KC 1 1

77 = min(7y, 4(

1.8p

0.2p

Ziegler-Nichols is usually a
bit aggressive

0
Setpoint chan

5

ge at t=0c

10

15 0 25
time
Input disturbance at t=20

30

35

40

IMC has 1,=1

_ EXAMPLE: Process from Astrom et al. (1998)

2
18k ZN-PI
1.6F: -
= Astrom-PI SIMC-PI
1.4F: ¥ S
R] S o)
a 1pf- : e U e
a k""" smcrD
0.8 - -
osPf: L SIMC—PI
| . ZN-PI
0.4k
== == Astrom-PI [M8=2}
0.2 ‘—.m.—. SIMC-PID
o ; ; , , ; ; ; ,
4 6 8 10 12 14 16 18 20

time

Figure 3: Load disturbance of magnitude 2 occurs at £ = 10.

1
%) = (7 1)(0.25 + 1)(0.04s + 1)(0.0085 + 1

1. Approximate as first-order model with k=1, t, = 1+0.1=1.1, 6=0.1+0.04+0.008 = 0.148
Get SIMC PI-tunings (t.=0): K, =1 ¢ 1.1/(2¢ 0.148) = 3.71, t=min(1.1,8¢ 0.148) = 1.1

2. Approximate as second-order model with k=1, 7, = 1, 1,=0.2+0.02=0.22, 6=0.02+0.008 = 0.028
Get SIMC PID-tunings (t.=0): K, =1 ¢ 1/(2¢ 0.028) = 17.9, t,=min(1,8¢ 0.028) = 0.224, 1,=0.22

Astrgm relay method (1984): Alternative
approach to obtain cycling (and K)

* Avoids operating at limit to instability

* Use ON/OFF controller (=relay) were input u(t) varies +-d
(around nominal)

* Switch when output y(t) reaches +- a, (deadband) (around
setpoint; can use a,=0)

Example: Thermostat in your home

VICD) ao—~/£_——‘;\:}'/— — =
AT N

a
A.\U'\ _d—-. l‘i'—'-t 3 &

\(A_U(

* From this obtain P, and

4d <——d: amplitude u(t) (set by user)
u =

ma <

a: amplitude y(t) (from experiment)

I1l. Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

08 I e I I !
Kc0=1.5
0.7 Ays=1 |
0.6
Ay,

0.5

Start from steady state and do step P-response
1. OBTAIN DATA IN RED (first overshoot
and undershoot), and then:

0.4

Ayp=0.79

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
Ayu =0.54 b=dyinf/dys % offset parameter

A =1.152*Mo”2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

0.3

0.2

2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/KcO) * abs(b/(1-b))

NS vy v theta = tp*[0.309 + 0.209*exp(-0.61*r)]
0 tau = theta*r

dq=-———— == _ == - =

d-=——=—=—— === ==

| | | | 3. CAN THEN USE SIMC Pl-rule
10 12 = S 1] ZU

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)
See Exercise!

Example E2 (Further continued) We want to derive PI- and PID-settings for the
process

{—0.35 + 10085 + 1)
(25 + 115 4+ 10{04s + 100.25 + 1W0.05s + 1P

gols) =

using the SIMC tuning rules with the “default” recommendation - = &. From the
closed-loop setpoint response, we obtained in a previous example a first-order model
with parameters & = 0994, 8 = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with 1. =& = 1.67 are

Ply: K.=0.90M, =3

From the full-order model gods) and the half rule, we obtained in a previous ex-
ample a first-order mode] with parameters k = 1,8 = 1.47, r; = 2.5. The resulting
SIMC Pl-settings with . =0 = 1.47 are

PIh.n.lF-ruJ-l:: .ﬁ'—,_- ='|].3\5|:|, Tr =2.5.

From the full-order model go(s) and the half rule, we obtained a second-order model
with parameters k = 1,0 =0.77, 11 =2, 2 = 1.2. The resulting SIMC PID-settings
with . =8 =0.77 are

Series PID: K. —=1200, 1, =2 tp=12

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f = 1 4+ o /oy = 1.60, and we have

Ideal PID: K. =K. f = 1L.69, =17 =32, ip=1n/f =0.75.
(3.30)

22

Apr

160 5. Skogestad and C. Grimholt

1.5— L] 1 i
PII':HI'—'LH
:l-..
e 1
E Pl
=
O 05 PID -
':;‘ i i i]
Q 5 10 15 20
=
=
3
u
=
'ﬂ.ﬂ i i L
1] 5 10 15 20

lime

Fig. 5.6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with 1, = 8.
Setpoint change at t =0 and input (load) disturbance at ¢ = 10. For the PID controller, D-action is
only on the feedback signal, 1.e., not on the setpoint g

23

Effect of sampling

\swm{skﬁ signal

All real controllers are digital, based on sampling At k=present time
At = sampling time (typical 1 sec. in process control, but could be MUCH faster)

Max sampling time (Shannon): At < 7./2, but preferably much smaller (7, = closed-loop response time)

With continuous methods: Approximate sampling time as effective delay 6 = At /2

Strange things can happen if At is too large:

T Reconstructed signal

Urlgmdl signal At =0.02

AN AAT
V”{”\f VAR

\ Sampled values
Figure 6-8: Falsification due to undersampling

Figure 6-8 illustrates in a particularly drastic manner the consequences
of a violation of the Shannon theorem. A sinusoidal original signal with
a frequency of 60 Hz is sampled with a frequency of 50 Hz, although the

camnline fremmiencvy chonld he hicher than 1270 Hy The coneeanence

Digital implementation of first-order
filter of measurement*

Ym

Tuning: Select 7,< 7,/10

Continuous s-domain

y(s) = TF;+1ym(S) =

TrsY(s) +y(s) = Ym(s)
Continuous time domain

dy (t

TF% +y(t) = ym(t) t-At ¢
Discrete (digital) approximations : : , S

Uk — Yk—1) + Y& = Ym .k k-1 k
Rearrange

Yk = WYmk + (1 — @)yr—1
where 77 = 0= a =1 (no filtering)

o = 1 r=A=a=05

T+7r /At T |rr=0At=a=01

*Equivalent to “exponentially moving average” of time series data_

“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement)

Discrete (digital) implementation
(practical in computer) of PID controller

Continuous (not possible in computer): e =y,-y,y= fitered measurement

de(t) <«——Usually we use -dy/dt rather than de/dt

K t
u(t) = Ug + - / e(t)dt —|—Kc€(t) -+ KC’TD di to avoid differentiation of setpoint
TI 0

N -

u(t)

where u(t) = “bias” term with integral action included
t-At t
k-1 k

Digital PID implementation:

k ’E‘,(t) ~ ”l_j,k_l —|— &ekAt (Backward Euler)

TI . , _
_ _ This is Sigurd’s recommendation
U _|_ K Cl — KCTD Ye —Yk—1

At = “Alt. 3” (see next page)

II\/

To avoid windup and to get «kbumpless» transfer between manual and auto:

Adjust bias uy so that we always have u, = actual input.

Comment: We can «clamp» @, as we enter saturation (=stop integration), but it may then take a little time
to get out of saturation, that is, we get some «windup».

Comparison with book: Digital implementation of PID controllers

Alt. 1 (position form)

PO =B+ Kol + L ﬁ Y di* + 1

de(r)] 713
dt { - J
Note: p = output from controller

Finite difference approximation:

i Is
£ e(t¥) drt = > et

1

(7-24)

€ — Cf=|

< (7-25)

de
it
where

At = the sampling period (the time between successive
measurements of the controlled variable)
¢; = error at the kth sampling instant for k= 1,2, . ..

Substituting Egs. 7-24 and 7-25 into (7-13) gives the
position form,

K T
pe =P+ Kleg + % e+ ﬁ{e;,, - eﬁ_ﬂ] (726) | Alt. 1
j=1

e, = present sampled value = e(t)
e,.; = previous sample = e(t-At)
e, = e(t-2At)

Alt. 2 (velocity form)

In the velocity form, the change in controller output
is calculated, The velocity form can be derived by writing
Eq. 7-26 for the (k — 1) sampling instant:

oy

Ery = Cpu
g ekt .&2:]']

=
Pe-1=p + Kcl:ek“l + [T ZI g +
J-

(7-27)

Note that the summation still begins at j = 1, because it
is assumed that the process is at the desired steady state
for j = 0, and thus ¢; = 0 for j =< 0. Subtracting Eq. 7-27
from (7-26) gives the velocity form of the digital PID
algorithm:

t
Apr=pr—Pr-1= K.:[(f-’k = e}t .r_j'-‘f.t

+ %(“3.&- = 2epy + efc—z)] (7-28)

Velocity form

Alt. 2

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)
Pr = Pk + Kclex + B (ex — ex—1)]

where we update ("reset”) the bias: pp = pr_1 + Ifc%tek
To avoid windup and to get bumpless transfer:

Adjust bias P, so that pp = actual input

The velocity form has three advantages over the posi-
tion form:

1. Tt inherently contains antireset windup, because
the summation of errors is not explicitly calculated.

2. This output is expressed in a form, Apy, that can
be utilized directly by some final control elements,
such as a control valve driven by a pulsed stepping
motor.

3. For the velocity algorithm, transferring the con-
troller from manual to automatic model does
not require any initialization of the output (p in

A minor disadvantage of the velocity form is that the
integral mode must be included, When the set point is
constant, it cancels out in both the proportional and de-.
rivative error terms. Consequently, if the integral mode .
were omitted, the process response to a disturbance

would tend to drift away from the set point.

=Bumpless
transfer

? This is a major
disadvantage
of Alt. 2

Block diagram symbols

unambiguous ambiguous
Y
% }’ [1 / :V i
o . 5
: &= I f -
E " A u
et
=
o
~ threshold
saturation [dead zone) hysteresis
¥
g _"I-’ I }’ A
: P
c -
E - = 2]
= u ¥
E ——
c —
]
w three position element
g two position element three position element with hysteresis

Figure 9-1: Types ol characteristic curves

