
PID control.
Practical issues

Smith Predictor (NOT PID…)
PID Controller forms

Ziegler-Nichols tuning
Windup

Digital implementation

• e(t) = ys – ym(t)

• P-part: MV (Δu) proportional to error
• This is usually the main part of the controller!
• Make sure Kc has the right sign! With negative feedback in the loop, Kc has the same sign as the

process gain k.
• Problem: Gives steady-state offset if used without I-action. Offset= 100%/(1+Kck)

• I-part: To avoid offset, add contribution proportional to integrated error.
• Note: Larger integral time τI gives less I-action (turn off by selecting tauI=9999)
• Sometimes called “reset time”

Physical interpretation: τI is essentially the time it takes to “reset” the bias (u0).

• Note: Integral term keeps changing as long as e≠0
-> Will eventually make e=0 (no steady-state offset!)

• Possible D-part: Add contribution proportional to change in (derivative of) error
• Note: Larger derivative times more D-action (turn off by selecting taud=0).
• Can improve control for high-order (S-shaped) response, but sensitive to measurement noise

“Ideal” form:

PID controller

Smith Predictor

SP looks good in theory. BUT: It’s sensitive to time delay error AND we have found that well-tuned PID (with

τD = θ/3) is more robust and almost always better than Smith predictor controller*) FORGET SP!

* Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018)

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

+ many more (see manual for your control system…)

Series to ideal form

Derivation: See exercise

Note: The reverse transformation (from ideal to series) is not always possible because
the ideal controller may have complex zeros.

Practical “Ideal” PID (parallel form)

2. To avoid “derivative kick” do not take derivative of setpoint

1. To get realizable controller and less sensitivity to measurement noise: Add filter on
the measurement:

3. To avoid integral “windup” when input saturates (at max or min), use “anti” windup.
Simplest: Stop integration while input saturates

Block diagram of practical “ideal” PID

ys

y

2. To avoid “derivative kick” :
Do not take derivative of setpoint ys

u

1. For smoother control/ less sensitivity to noise:
Filter the measurement.

Typical: 𝜏𝐹 = 𝛼𝜏𝐷 , 𝛼 ≈ 0.1

1
®¿D s+ 1

Series (cascade) PID

Typical: ®=0.1

ys

y

u

2. To avoid “derivative kick”
do not take derivative of setpoint

1. For smoother control:
Replace (¿D s+1) by (¿D s +1)/(α¿D s +1)

Integral windup

• Problem: Integrator “winds up” u(t) when actual input has
saturated

Actual input is m.
m=u if no saturation

d

Anti-windup

• Approaches to avoid windup

1. Stop integration (e.g. set ¿I=9999) when
saturation in input occurs (requires logic)

2. Make integrator track true input using feedback
correction (see Example and Exercise)

3. Use discrete controller in velocity form

4. Use Sigurd’s discrete controller with bias
adjustment

u

To Workspace3

y

To Workspace1

Tid

To Workspace

Sum4

Sum1Sum

Step2

Step1

Step

Scope

Saturation

g

LTI System1

s

Integrator
100

Gain2

1/taui

Gain1

Kc

Gain

Clock

Anti

windup

g= 2/(10*s+1)
tauc=1: Kc=1.25, taui=4

Input saturation: umax=0.1, umin=-0.1
Disturbance (d): Pulse from 0 to 0.2 and back to 0 at t=10

Example anti-windup (Approach 2)

Approach 2:
Feedback correction which makes u track m.
• Often Gain2 = 1 is recommended (corresponds to

have tracking time = integral time)
• If Gain2 is too high the P-action may make the

system jump out of saturation prematurely
• No anti-windup: Set Gain2 = 0.

d

File: tunepidantiwindup.mdl

u
m

1. Blue = without anti-windup
2. Red = with anti-windup

0 5 10 15 20 25 30 35 40 45 50
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

y

u (without anti-windup)

2. With anti-windup: Much better!
• y(t) has only small undershoot
• Response with Gain2=1 is quite similar

1. Without anti-windup:
• Input remains saturated to t=22

(long after disturbance is gone at t=10).
• y(t) must overshoot on other side

to “wind input u back”.

Umin= -0.1

t=0: Disturbance starts
t=10: Disturbance ends

y = output process
u = output controller
m = sat(u) = input process

u (with anti-windup)

y

Bumpless transfer

• We want a “soft” transition when the
controller is switched between “manual” and
“auto”

– or back from auto to manual

– or when controller is retuned

• Simple solution: reset bias u0 as you switch, so
that u(t) = umanual(t).

Methods for online tuning of PID
controllers

I. Trial and error

II. Ziegler Nichols

– Oscillating P-control

– Relay method to get oscillations

III. Closed-loop response with P-control

– Shams method

On-line tuning: Avoids an open-loop experiment, like a step input change.
Advantage on-line: Process is always “under control”
In practice: Both “open-loop” and “closed-loop” (online) methods are used

Optimal PID settings

• Can find optimal settings using optimization

• SIMC-rules are close to IAE-optimal for combined setpoints and disturbances*

*Chriss Grimholt and Sigurd Skogestad, ''Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules'' ,
Published in: J. Process Control, vol. 70 (2018), 36-46.

Tuning of your PID controller

I. “Trial & error” approach (online)

(a) P-part: Increase controller gain (Kc) until the
process starts oscillating or the input saturates

(b) Decrease the gain (~ factor 2)

(c) I-part: Reduce the integral time (I) until the
process starts oscillating

(d) Increase a bit (~ factor 2)

(e) Possible D-part: Increase D and see if there is any
improvement

Very common approach,

BUT: Time consuming and does not give good tunings: NOT recommended

II. Ziegler-Nichols closed-loop method
(1942)

• P-control only: Increase controller gain (Kc) until the process cycles with
constant amplitude:

• Write down the corresponding “ultimate” period (Pu) and controller gain (Ku).

• Based on this “process information” obtain PID settings:

(ideal)

PID is for ideal form

TL-modification is smoother
(smaller Kc and larger ¿I).

Main problems ZN:
1. Too aggressive (and has no tuning parameter)
2. Two pieces of information (Pu, Ku) is too little to capture all processes.

Works poorly on delay-dominant processes

Example. Integrating process with delay=1. G(s) = e-s/s.

Model: k’=1, =1, 1=1

SIMC-tunings with c with ==1:

IMC has I=1

Ziegler-Nichols is usually a

bit aggressive

Setpoint change at t=0c Input disturbance at t=20

TIGHT CONTROL

1. Approximate as first-order model with k=1, 1 = 1+0.1=1.1, =0.1+0.04+0.008 = 0.148

Get SIMC PI-tunings (c=): Kc = 1 ¢ 1.1/(2¢ 0.148) = 3.71, I=min(1.1,8¢ 0.148) = 1.1

2. Approximate as second-order model with k=1, 1 = 1, 2=0.2+0.02=0.22, =0.02+0.008 = 0.028

Get SIMC PID-tunings (c=): Kc = 1 ¢ 1/(2¢ 0.028) = 17.9, I=min(1,8¢ 0.028) = 0.224, D=0.22

TIGHT CONTROL

Åstrøm relay method (1984): Alternative
approach to obtain cycling (and Ku)

• Avoids operating at limit to instability
• Use ON/OFF controller (=relay) were input u(t) varies +-d

(around nominal)
• Switch when output y(t) reaches +- a0 (deadband) (around

setpoint; can use a0=0)
• Example: Thermostat in your home

• From this obtain Pu and
d: amplitude u(t) (set by user)

a: amplitude y(t) (from experiment)

𝐾𝑢 =
4𝑑

𝜋𝑎

III. Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

Kc0=1.5

Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

Start from steady state and do step P-response

1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)

b=dyinf/dys % offset parameter

A = 1.152*Mo^2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/Kc0) * abs(b/(1-b))

theta = tp*[0.309 + 0.209*exp(-0.61*r)]

tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)

See Exercise!

Δy∞

Alternative to Ziegler-Nichols closed-loop experiment: Obtains more information and avoids cycling.

22

April 4-8, 2004 KFUPM-Distillation Control Course 23

Effect of sampling

• All real controllers are digital, based on sampling

• ¢t = sampling time (typical 1 sec. in process control, but could be MUCH faster)

• Max sampling time (Shannon): ¢t < ¿c/2, but preferably much smaller (¿c = closed-loop response time)

• With continuous methods: Approximate sampling time as effective delay µ = ¢t /2

• Strange things can happen if ¢t is too large:

¢t =0.02

¢t

yk
Yk-1

Yk+1

k=present time

Digital implementation of first-order
filter of measurement*

ym y

*Equivalent to “exponentially moving average” of time series data. See Exercise

Tuning: Select ¿F < ¿c/10

t

k

t-Δt

k-1

Discrete (digital) implementation
(practical in computer) of PID controller

This is Sigurd’s recommendation
= “Alt. 3” (see next page)

(Backward Euler)

e(t) = ys – y, y = filtered measurement

“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement)

t

k

t-Δt

k-1

Usually we use -dy/dt rather than de/dt
to avoid differentiation of setpoint

To avoid windup and to get «bumpless» transfer between manual and auto:
Adjust bias so that we always have uk = actual input.
Comment: We can «clamp» as we enter saturation (=stop integration), but it may then take a little time
to get out of saturation, that is, we get some «windup».

Comparison with book: Digital implementation of PID controllers

Finite difference approximation:

?

ek = present sampled value = e(t)
ek-1 = previous sample = e(t-Δt)
ek-2 = e(t-2Δt)

Velocity form

=Bumpless
transfer

Note: p = output from controller

Alt. 1

Alt. 2

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)

? This is a major
disadvantage
of Alt. 2

Alt. 1 (position form)
Alt. 2 (velocity form)

Block diagram symbols

