Ch 10.4
Stability

Definition of Stability. An unconstrained linear
system is said to be stable if the owiput response is
hounded for all bounded inputs. Otherwise it is said
10 be unstable.

NOTE: Stability of a linear system is a SYSTEM property, that is,
independent of the input signal (sine or step, etc.) and of where it
enters the system (input or disturbance, etc.)

Linear system. Is g(s) stable?

g(s) = n(s)/d(s). Poles are solutions s=p;, to d(s)=0.
n(s)
g(s) = sy Where
d(5) = ans™ + -+ @15+ o = anls — p1)(s —p2) -~ (s — pn)
Step response. Partial fraction explansion:
uls) =gle)g = 58 5 F i =
Inverse Laplace:
y(t) = Ag + A ePrt 4+ AjeP2t 4 ...

So time response contains term ePt
* Example: G(s)=1/(s-1), p=1
— Step response is: y(t) =-1(1-ef) = et -1

Conclusion:
Stability < Re(pi)<o (all poles have negative real part)
< All poles in left half plane (LHP),
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Pole in right half plane (RHP): UNSTABLE

G(s) = n(s)/d(s) where
d(s) = (s-py)(s-py)-+-

Real pole p: Get term et
For Re(p)>0 (RHP-pole):
Unstable since eP*— oo (as t— o0)

Complex pole pair (p;, = p & jw)
Gives oscillations:

¢, ePlt + c,eP?t = ¢ ePt sin(wt + ¢)
Which are unstable if Re(p)>0
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Figure 10.26 Contributions of characleristic equation roots
1o closed-laop response.
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Poles = Eigenvalue of A-matrix

Linear system in deviation variables (state space form)

dx/dt=Ax+Bu
y=Cx+Du

Laplace. Get transfer function fromutoy
G(s) = C (sl-A)1B + D =n(s)/d(s)
From mathematics: (sI-A)? = adj(sl-A)/det(sl-A), so
d(s) = det(sl-A) = pole polynomial
But det(sl-A)=0 is also the formula for finding the eigenvalues of A

Conclusion: Solutions to d(s)=0 are the poles which are identical to the
eigenvalues of A
p; = eig(A)

Stability of closed-loop systems

* Closed-loop transfer functions, G (s) = n(s)/d(s)
— n(s) = direct path
—d(s) =1 + loop(s)
* where loop(s) = g(s) g,(s) c(s)
* Same d(s) for any input/output!
— Makes sense because stability is a system property
* Conclusion: Closed-loop poles are given by

solutions to “closed-loop characteristic equation’
* d(s)=1+loop(s)=0

’
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How do we test for stability?
T(s) =n(s)/d(s)

Method 1. Compute poles (eigenvalues) p=A(A) and check if
Re(p)<0

* OK numerically, but difficult to find poles p analytically
Method 2. Look at coefficients a; in d(s),
d(s)j=ay+a;s+..+a,s"
Good for analytical results. Don’t need to find poles p

Test 1. All a’s must have same sign* for stability (necessary condition)
Test 2. Routh array: Necessary and sufficient

Method 3. Closed-loop system. Frequency analysis (see later)
. Consider loop transfer function, L = GC
. Bode stability test for stability: |L| < 1 at frequency w,g,
. Easy to include time delay

* Necessary and sufficient for 2" order system

EXAMPLE 2

For which K. is
the closed-loop system stable?

1
g(s) = Gs+1
_ —s+l
gm (S) - sil
c(s) = K,
Method 1. Analytic solution using poles. Method 2. Coefficients
Much more work*! .
Wiotioh commane Test 1. Check signs of Char. Eq..:
syms s Kc d(s) =1+ loop =1 + Kc*(-s+1)/[(s+1)(6s+1)]=0
g=1_/((6’;51+)}() ) 6572 + (7-Kc)s + (1+Kc) = 0
Elr:(;lei:solvse(1+Kc*g*gm==0) Stable -> all coefficients positive ->
solve(real(clpoles(1))==0) Ke>-1 (lower limit for positive feedback)
solve(real(clpoles(2))==0) Kc<7 (upper limit because of RHP-zero)
Solution: (necessary and sufficient for 2" order system)

g=1/(6*s + 1)
gm=-(s-1)/(s +1)

clpoles =

Kc/12 + (Kch2 - 38*Ke + 25)A(1/2)/12 - 7/12
Kc/12 - (KeA2 - 38*Ke + 25)7(1/2)/12 - 7/12
ans =-1.0

ans =7.0

* Almost impossible for systems of order
4 or higher
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Test 2. ROUTH array: Find location (RHP/LHP) of poles without actually having to find thg

“Advanced version of looking for negative 5|gn in d(s)- polynomlal”

10.4.2 Routh Stability Criterion F

Routh (1905) published an analytical technique for detep.
mining whether any roots of a polynomial have positiye
real parts. According to their general stability criterign,
a closed-loap system will be stable only if all of th
roots of the characteristic equation have negative reg|
parts. Thus, by applying Routh’s technique to analyze
the coefficients of the characteristic equation, we can
determine whether the closed-loop system is stable,
This approach is referred to as the Routh stability
criterion. 1t can be applied only to systems whose char
acteristic equations are po ynommls in 5. Thus, the
Routh stability criterion is not directly applicable to
systems containing time delays, because an e™" term’
appears in the characteristic equation where @ is the
time delay. However, if ¢~ % is replaced by a Padé ap-

proximation (see Section 5.2). then an approximare sta-
bility analysis can be performed (cf. Example 10.11),
An exact stability analysis of systems containing time
delays can be performed by direct root-finding or by
using a frequency response analysis and the Bode or
Nyquist stability criterion presented in Chapter 13.

The Routh stability criterion is based on a character-
istic equation that has the form

5" F s oy = 0 (10-93)
We arbitrarily assume that a, = 0. If a, < 0, simply
Eq. 10-93 by —1 to generate a new equation
es this condition. A necessary (but not suffi-

Example 3. g(s

The Routh array has n + 1 rows, where n is the
of the characteristic equation, Eq. 10-93. The Routh
array has a Toughly triangular structure with only a sin-
glc clement in the last row. The first two rows are
merely the coefficients in the characteristic equation,
arranged according to odd and even powers of s. The
elements in the remaining rows are calculated from the
formulas

P L

W’Qm = QH, P-control

EXAMPLE 10.10

Find the values of controller gain K that make the feedback
control system of Example 10.4 stable.

SOLUTION

From Eq. 10-76, the characteristic equation is

by (10-94) 109 +177 + 85+ 1+ K, =0 (10-99)
[
i v All coefficients are positive provided that 1 + K, =D or K, >
by = Bt _Sufrs (1095)  —1.The Routh array is
2 @
10 8
17 1+ K,
by —ay1by b b
= 2 (10-96) ¢
To have a stable system, each element in the left column of the
(10-97)  Routh array must be positive. Element by will be positive i
K. < 126. Similarly, ¢; will be positive if K, > —1. Thus, we
conclude that the system will be stable if
Note that the in the of S ) {19-100)

Egs. 10-94 to 10-97 are similar to the calculation of
a determinant for a 2 X 2 matrix except that the
order of subtraction is reversed. Having constructed
the Routh array, we can now state the Routh stability
criterion:

Routh Stability Criterion. A necessary and sufficient
condition for all roots of the chareceristic equation in
Eq. 10-93 io have negative real parts is that all of the

This example illustrates that stability limits for con-
troller parameters can be derived analytically using the
Routh array: in other words, it is not necessary 10 spec-
ify a numerical value for K, before performing the sta-
bility analysis.

C!‘;“:’ condition for Sfm’t’:”y }'15 F]“a" f‘."[‘m “"'f”T’ elements in the left column of the Routh array are Complete Routh array
cients (ag. g a,) in the characteristic equation be positive. b1 = (17*8-10*(1+Kc)) / 17
positive. If any coefficient is negative or zero, then at b2=0
least one root of the characteristic equation lies to the|  Nex! we present three examples that show how the 1= (1+Ke)
right of, or on, the imaginary axis, and the system is OUilSEABINY Erlferion canl ugapphed. Stability: Elements in first column > 0.
unstable. If all of the coefficients are positive, we next Conclusion:
construct the following Routh array: EXAMPLEN)S b1>0 ->Kc<12.6
Determine the stability of a system that has the characteristic 120> Ke>-1
Row cquation
1 [ s 58°+32+1 =0 10-98)
2 o { UNSTABLE | STABLE | UNSTABLE
-5 i
3 by SOLUTION [ [ C
4 e Because the s term is missing, its coefficient is zero, Thus, the 12.6
system is unstable. Recall that a necessary condition for sta- - 1 .
bility is that all of the coefficients in the characteristic equa-
gt " tion must be positive.

How do the closed-
loop poles depend on

the controller gain K_?
Example 4

Imaginary

K=15: Goes unstable
Step response for Kc=1.62:
Real

os) =
4=6

_ 4 _
9S) = T - 00T

10.5 ROOT LOCUS DIAGRAMS

In the previous section we have seen that the roots of the
characteristic equation play a crucial role in determining
system stability and the nature of the closed-loop re-
sponses. In the design and analysis of control systems, it
is instructive to know how the roots of the characteristic
equation change when a particular system parameter
such as a controller gain changes. A root locus diagram

] ; SOLUTION
provides a convenient graphical display of this informa-

Figure 10,27 Root locus diagram for third-order system.  ge162

T2 Timé (s6eofids)

s=tf('s)

8= 4/[(s+1)*(s+2)*(s+3)
loop = Ke*g

= loop/(1+l00p)
step(T)

sisotool(g) % root locu

tion, as indicated in the following example.

EXAMPLE 10.13

Consider a feedback control system that has (he open-loop

transfer function,

4K,

Gorls) = G+ s +2)s + 3)

Plot the root locus diagram for 0 = K, = 20.

(10-108)

Comment:

Half rule: g(s) = 375 5s+1)(0 33=+1)
SIMC with 7. 058 : K, =323 =1.62,7, =1.25
BUT here we use only P-control

The characteristic equation is 1 + G = Oor
s+ D +2)s+3)+4K,=0 (10-109)

The root locus diagram in Fig. 10.27 shows how the three
roots of this characteristic equation vary with K. When
K. = 0, the roots are merely the poles of the open-loop
transfer function, =1, =2, and —3. These are designated by
an X symbol in Fig. 10.27. As K, increases, the root at =3
decreases monotonically. The other two roots converge and
then form a complex conjugate pair when K, = 0.1. When
K. = K,y = 15, the complex roots cross the imaginary axis
and enter the unstable region. This illustrates why the sub-
stitution of 5 = jw (Section 10.3) determines the unstable
controller gain. Thus, the root locus diagram indicates that
the closed-loop system is unstable for K. > 15. It also indi-
cates that the closed-loop response will be nonoscillatory
for K. < 0.1
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