
10/16/2017

1

PID control.Practical issues
Smith Predictor (NOT PID…)PID Controller formsZiegler-Nichols tuningWindupDigital implementation

Actual plant : GpModel: G
Delay-free model: G0" Smith predictor" : G0 ¡ G (predicts y when G has delay)
Convent ional feedback controller: K
K 0: designed for plant without delay

Smith Predictor

Example
G = k e¡ µs

¿s+ 1Delay-free model: G0 = k 1¿s+ 1G0 ¡ G = k¿s+ 1 (1 ¡ e¡ µs)
Then
K = K 01+ K 0 k¿ s + 1 (1¡ e¡ µs)
which with K 0 = 1k ¿s+ 1¿c s(SIMC-PI for delay free G0)
gives " Smith predictor controller"
K = ¿s+ 1¿c s+ 1¡ e¡ µs
(see also SIMC derivat ion)

SP looks good in theory. BUT: We have found that well-tuned PID (with τD = θ/3) is more robust and almost always better than Smith predictor controller) FORGET SP!

10/16/2017

2

• e(t) = ys – ym(t)
• P-part: MV (Δu) proportional to error

• This is is main part of the controller!
• Problem. Gives steady-state offset = 100%/(1+Kck)

• I-part: To avoid offset, add contribution proportional to integrated error.
• Integral keeps changing as long as e≠0
• -> Will eventually make e=0 (no steady-state offset!)

• Possible D-part: Add contribution proportional to change in (derivative of) error
• Can improve control for high-order (S-shaped) response, but sensitive to measurement noise

“Ideal” form:
PID controller

“Ideal” PID (parallel form)

2. To avoid “derivative kick” do not take derivative of setpoint

1. To get realizable controller and less sensitivity to measurement noise: Add filter on the measurement:

3. To avoid integral “windup” when input saturates (at max or min), use “anti” windup.Simplest: Stop integration while input saturates

10/16/2017

3

Block diagram of practical “ideal” PID

ys

y

2. To avoid “derivative kick” : Do not take derivative of setpoint ys

u

1. For smoother control/ less sensitivity to noise: Filter the measurement

1®¿D s+ 1

Series (cascade) PID

Typical: ®=0.1

ys

y

u

2. To avoid “derivative kick” do not take derivative of setpoint

1. For smoother control: Replace (¿D s+1) by (¿D s +1)/(α¿D s +1)

10/16/2017

4

Series to ideal form

Derivation: See exercise
Note: The reverse transformation (from ideal to series) is not always possible because the ideal controller may have complex zeros.

+ many more (see manual for your control system…)

10/16/2017

5

Optimal PID settings
• Can find optimal settings using optimization
• SIMC-rules are close to IAE-optimal for combined setpoints and disturbances*

*Chriss Grimholt and Sigurd Skogestad. "Optimal PI-Control and Verification of the SIMC Tuning Rule". Proceedings IFAC conference on Advances in PID control (PID'12), Brescia, Italy, 28-30 March 2012.

Methods for online tuning of PID controllers
I. Trial and error
II. Ziegler Nichols

– Oscillating P-control
– Relay method to get oscillations

III. Closed-loop response with P-control
– Shams method

On-line tuning: Avoids an open-loop experiment, like a step input change.Advantage on-line: Process is always “under control”In practice: Both “open-loop” and “closed-loop” (online) methods are used

10/16/2017

6

Tuning of your PID controllerI. “Trial & error” approach (online)
(a) P-part: Increase controller gain (Kc) until the process starts oscillating or the input saturates
(b) Decrease the gain (~ factor 2)
(c) I-part: Reduce the integral time (I) until the process starts oscillating
(d) Increase a bit (~ factor 2)
(e) Possible D-part: Increase D and see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended

II. Ziegler-Nichols closed-loop method (1942)
• P-control only: Increase controller gain (Kc) until the process cycles with constant amplitude:

• Write down the corresponding “ultimate” period (Pu) and controller gain (Ku).
• Based on this “process information” obtain PID settings:

(ideal) ZN is often a bit aggressive.
TL-modification is smoother(smaller Kc and larger ¿I).

10/16/2017

7

Example. Integrating process with delay=1. G(s) = e-s/s.
Model: k’=1, =1, 1=1SIMC-tunings with c with ==1:

IMC has I=1

Ziegler-Nichols is usually a
bit aggressive

Setpoint change at t=0c Input disturbance at t=20

TIGHT CONTROL

1. Approximate as first-order model with k=1, 1 = 1+0.1=1.1, =0.1+0.04+0.008 = 0.148
Get SIMC PI-tunings (c=): Kc = 1 ¢ 1.1/(2¢ 0.148) = 3.71, I=min(1.1,8¢ 0.148) = 1.1

2. Approximate as second-order model with k=1, 1 = 1, 2=0.2+0.02=0.22, =0.02+0.008 = 0.028
Get SIMC PID-tunings (c=): Kc = 1 ¢ 1/(2¢ 0.028) = 17.9, I=min(1,8¢ 0.028) = 0.224, D=0.22

TIGHT CONTROL

10/16/2017

8

Åstrøm relay method (1984): Alternative approach to obtain cycling (and Ku+Pu)
• Avoids operating at limit to instability
• Use ON/OFF controller (=relay) were input u(t) varies §d (around nominal)
• Switch when output y(t) reaches § a0 (deadband) (around setpoint)
• Example: Thermostat in your home

• From this obtain Pu and
K u = 4¼ da

d: amplitude u(t) (set by user)
a: amplitude y(t) (from experiment)

III. Shams’ method: Closed-loop setpoint response with P-controller with about 20-40% overshoot
Kc0=1.5
Δys=1

Δyu=0.54
Δyp=0.79

tp=4.4

1. OBTAIN DATA IN RED (first overshoot
and undershoot), and then:

dyinf = 0.45*(dyp + dyu)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys
A = 1.152*Mo^2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))
2. OBTAIN FIRST-ORDER MODEL:
k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]
tau = theta*r
3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010)

+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012)

Δy∞

Alternative to Ziegler-Nichols closed-loop experiment that avoids cycling.

10/16/2017

9

April 4-8, 2004 KFUPM-Distillation Control Course 17

April 4-8, 2004 KFUPM-Distillation Control Course 18

10/16/2017

10

Integral windup
• Problem: Integrator “winds up” u(t) when actual input has saturated

Actual input is m.m=u if no saturation

0 50 100 150
-0.25-0.2
-0.15
-0.1

-0.050
0.05
0.10.15
0.2

0.25

0. t=10: Disturbance d starts1. t≈12: Reach saturation in m (actual input) 2. oopss! Integration makes u (desired input) “wind up” …3. …so when disturbance ends (at t=30)y(t) has to overshoot on the negative side to bring u(t) back.

y(t)

m(t)
u(t)

0 50 100 150-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

d

Anti-windup
• Approaches to avoid windup

1. Stop integration (e.g. set ¿I=9999) when saturation in input occurs (requires logic)
2. Force integrator to follow true input using high-gain feedback correction (see Example)
3. Use discrete controller in velocity form

10/16/2017

11

u
To Workspace3

y
To Workspace1

Tid
To Workspace

Sum4

Sum1Sum

Step2

Step1

Step

Scope

Saturation
g

LTI System1
s

Integrator 100
Gain2

1/taui

Gain1

Kc
Gain

Clock

Anti
windup

g= 0.2/(10*s+1)tauc=1: Kc=12.5, taui=4
Input: max=1, min=-1Disturbance: Pulse from 0 to 2 and back to 0 at t=10

Example anti-windup

Approach 2:High-gain feedback correction which makes u follow m.Gain should be 1 or larger.(Without anti-windup:Set this gain to zero)

d

File: tunepidantiwindup.mdl

u m

1. Blue = without anti-windup2. Red = with anti-windup

0 5 10 15 20 25 30 35 40 45 50-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

y

u/10

2. y with anti-windup: Much better!y(t) has only small overshoot

1. y without anti-windup:y must overshoot on other sideTo “wind input u back”

Umin/10 = -0.1

t=0: Disturbance startst=10: Disturbance ends
y = output processu = output controller (the real process input cannot go below u/10=-0.1)m = sat(u) = input process

u/10

10/16/2017

12

0 5 10 15 20 25 30 35 40 45 50-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Red = with anti-windupBlue = withoutBlack = no constraint

y

u/10

Comparison with no constraint (black line)

Bumpless transfer
• We want a “soft” transition when the controller is switched between “manual” (1) and “auto” (2)

– or back from auto to manual
– or when controller is retuned

• Simple solution: reset u0 as you switch, so that u1(t) = u2(t).

10/16/2017

13

Effect of sampling
• All real controllers are digital, based on sampling
• ¢t = sampling time (typical 1 sec. in process control, but could be MUCH faster)
• Max sampling time (Shannon): ¢t < ¿c/2, but preferably much smaller (¿c = closed-loop response time)
• With continuous methods: Approximate sampling time as effective delay µ ¼¢t /2
• Strange things can happen if ¢t is too large:

¢t =0.02

¢t

Discrete (digital) implementation (practical in computer) of PID controller

This is Sigurd’s recommendation = “Alt. 3” (see next page)
(Backward Euler)

To avoid windup and to get bumpless t ransfer:
Adjust bias ¹uk so that uk = actual input
(Comment : Can "clamp" ¹uk as we enter saturat ion (= stop integrat ion), but
may then take a lit t le longer to get out of saturat ion, because e must return to
value it has as we entered saturat ion.)

e(t) = ys – y but use -dy/dt to avoid differentiation of setpointy = filtered measurement

“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement)

t
k

t-Δt
k-1

10/16/2017

14

Comparison with book: Digital implementation of PID controllers

Finite difference approximation:

?

ek = present sampled value = e(t)ek-1 = previous sample = e(t-Δt)ek-2 = e(t-2Δt)

Velocity form

=Bumplesstransfer

Note: p = output from controller

Alt. 1

Alt. 2

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)Alternat ive to Alt . 1: Store integral act ion in the bias ¹pk

? This is a major disadvantageof Alt. 2

Alt. 1 (position form) Alt. 2 (velocity form)

Digital implementation of first-order filter of measurement*
ym y

*Equivalent to exponential moving average of time series data

Tuning: Select ¿F < ¿c/10

10/16/2017

15

Block diagram symbols

