PID control.
Practical issues

Smith Predictor (NOT PID...)
PID Controller forms
Ziegler-Nichols tuning
Windup
Digital implementation

Smith Predictor

Actual plant: G,
Model: G

Delay-free model: Gy
"Smith predictor”: G — G (predicts y when G has delay)
Conventional feedback controller: K

Ky: designed for plant without delay

Example
—0s
G=kigr

il

Ts+1

Delay-free model: Go =k
Go—G= rsk_Ll(l g 88y
Then i

| e

- Ky
= 14 Ko—br (1—2—07) T _.,LQ_ G ,,‘L_‘J.
which with Ko = %E"—] = —

) s G .
(SIMC-PI for delay free Gg) ol

gives "Smith predictor controller”

K= 741 ©
Tiatl—e—0s . . a) Smith predictor control structure; (b) rearranged Smith predictor; (¢) IMQ
(see also SIMC derivation) structure.

SP looks good in theory. BUT: We have found that well-tuned PID (with 1, = 6/3) is more

robust and almost always better than Smith predictor controller =~ FORGET SP!
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PID controller

“Ideal” form:  u(t) = ug + Ke[e(t) + 1 /Ote(t)dt n 7_Dde(t)
T

dt

]

Au
. e(t) =y, — yn(t)

. P-part: MV (Au) proportional to error
. This is is main part of the controller!
. Problem. Gives steady-state offset = 100%/(1+K k)

I-part: To avoid offset, add contribution proportional to integrated error.
. Integral keeps changing as long as ez0
. -> Will eventually make e=0 (no steady-state offset!)

Possible D-part: Add contribution proportional to change in (derivative of) error
. Can improve control for high-order (S-shaped) response, but sensitive to measurement noise

“Ideal” PID (parallel form)

The parallel form of the PID control algorithm (with-
out a derivative filter) is given by

pm=ﬁ+mkm+%£emmw+m%?hma

The corresponding transfer function is

Figure 7.8 Block diagram of the parallel form of PID control -
(7-14) (vithout a derivative filter). :

1. To get realizable controller and less sensitivity to measurement noise: Add filter on
the measurement:

2. To avoid “derivative kick” do not take derivative of setpoint

illustrate the elimination of derivative kick, consider
the parallel form of PID control in Eq. 7-13, Replacing
deldt by —dy,,/dt gives

! d in
o) =p+ Kt[e(r) + Tl! £ el®) di* PT;(I)] (-17)

3. To avoid integral “windup” when input saturates (at max or min), use “anti” windup.
Simplest: Stop integration while input saturates
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Block diagram of practical “ideal” PID

=1 |

(s) 1
" R~ & -

Ys

g

N

2. To avoid “derivative kick” :
Do not take derivative of setpoint y,

1. For smoother control/ less sensitivity to noise:
Filter the measurement

Series (cascade) PID

Commercial versions of the series-form controller
have a derivative filter that is applied to either the
derivative term, as in Eq. 7-12, or to the PD term, as in
Eg. 7-15:

P'(sy _ s+ 1)('15: +1 )

Typical: @=0.1
u
\Z ~ s+l
s K " T =
I8
Tps+1
aTtps+1
1. For smoother control: /[\ y
Replace (7, s+1) by (7 s +1)/(a7p s +1)

2. To avoid “derivative kick”
do not take derivative of setpoint




Series to ideal form

Series (cascade) PID:

(rrs+1)(tps + 1)
TIS

c(s) = K.

K.
= S(rrps*+ (r; +71p)s+1)
T8

The settings given in this paper (K., 7, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form

PID controller

1
Ideal PID : ¢(s) = K, (1 + =+ T},s) =
T8

we use the following translation formulas

I\'I:KC(1+T—D): T}:n(l-\-T—U

I

Derivation: See exercise

<

e (rihs” + 7is + 1) (35)
' D
) ; = (36)
I+

Note: The reverse transformation (from ideal to series) is not always possible because

the ideal controller may have complex zeros.

Table 7.1 Common PID Controllers

Controller | Other Names

Type Used Controller Equation Transfer Function
iti ! def1) P'(s) ( 1 )
Parallel Ideal, additive, Jp— 1 [ e _) L8 gt + Ltags
! ?SA form POy =P K‘(t(") ! 7] L ey dee + =g, E(s) e

eplf) = yyg(t) = ymlr)

Parallel with | Ideal, _ Pis) k(1 + DU )
derivative realizable, See Exercise 7.10(a) E(s) ¢ s atps + 1 i
filter ISA standard «

Series Multiplicative, See Exercise 7.11 P'(s) - KC(L”,TJ.)(TDS + 1)

interacting E(s) s 4

Series with Physically - . P'(s) s + 1Y/ 1ps + 1

derivative realizable See Exercise 7.10(b) s - K‘( s )(ErnT_!

filter

' de(r) i) R B
-5 &y dp+ - s

Expanded Noninteracting p() =P + Ke() + K'£ e(rt)drt + Kp dt E(s) c s

Parallel, with | Ideal B, ¥ 1 [ dep(r) 1

proportional | controller ply=p+ K,(ep(!) = A () di +1p=—p ) P'(s) = K |\ Ep(s) + ™ E(s) +:D,rEr)(s)

and

derivative where ep(r) = By p(f) = ym(r) where Ep(s) = BYgp(s) = Yinls)

weighting e(t) = yep(t) = yulr) E(s) = Yyp(s) = Yiuls)

Epls) = YY) = Yarls) j

+ many more (see manual for your control system...)
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Optimal PID settings
* Can find optimal settings using optimization

11.3.2  Tuning Relations Based on Integral
Error Criteria

Controller tuning relations have been developed that
optimize the closed-loop response for a simple process
model and a specified disturbance or set-point change.
The optimum settings minimize an f al error crite-
rion. Three popular integral error criteria are

1. Integral of the absolute value of the error (TIAE)

=
IAE = j le®)|dt (11-35)
0
where the error signal e(i) is the difference between
the set point and the measurement.

2. Inregral of the squared error (ISE)
ISE :f ()t (11-36)
0

3. Integral of the rtime-weighted absolute error
(ITAE)

co
ITAE :/ tle(o)|di (11-37)
JO

Brescia, Italy, 28-30 March 2012.

e SIMC-rules are close to IAE-optimal for combined setpoints and disturbances*

*Chriss Grimholt and Sigurd “Optimal PI-Control and Verification of the SIMC Tuning Rule". Proceedings IFAC conference on Advances in PID control (PID'12),

Methods for online tuning of PID
controllers

|. Trial and error
Il. Ziegler Nichols
— Oscillating P-control
— Relay method to get oscillations

lll. Closed-loop response with P-control
— Shams method

On-line tuning: Avoids an open-loop experiment, like a step input change.
Advantage on-line: Process is always “under control”
In practice: Both “open-loop” and “closed-loop” (online) methods are used
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Tuning of your PID controller

l. “Trial & error” approach (online)

(a) P-part: Increase controller gain (K.) until the
process starts oscillating or the input saturates

(b) Decrease the gain (~ factor 2)

(c) I-part: Reduce the integral time (t,) until the
process starts oscillating

(d) Increase a bit (~ factor 2)

(e) Possible D-part: Increase t,and see if there is any
improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended

Il. Ziegler-Nichols closed-loop method
(1942)

* P-control only: Increase controller gain (K.) until the
process cycIes with constant amplitude:

g T AN
v \.Z_j > i

Cu (l\u\)

* Write down the corresponding “ultimate” period (P,)
and controller gain (K,).

e Based on this “process information” obtain PID

S ett n gs . Table 114  Controller Settings based on the Continuous
Cycling Method

Ziegler-Nichols K. T T

05K, - &
PI 045K, P12 — <—7ZNis often a bit aggressive.
PID (deal) 06K, B2 P8
Tyre Leylient e T ™ < TlL-modification is smoothe
Pl 031K, 228, 7 (smaller K. and larger 7).
PID 0.45K o 22P, P63

" Luyben and Luyben (1997)
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Example. Integrating process with delay=1. G(s) = e%/s.
MOde| ky=1, 9=1, T1=OO K _ 11 —1. 1 _ 0 5

- i i ith =6=1: k! T.+06
SIMC-tunings with 1, with =6=1: o min(ﬁ,él(Tc +6)) = min(oc, 8) — 8

171 IMC has =00

o.ef Ziegler-Nichols is usually a
bit aggressive

5 10 15 0 25 30 35 40
time

Setpoint change at t=0c Input disturbance at t=20

_ EXAMPLE: Process from Astrom et al. (1998)

SIMC-P1

SIMC-PID

SIMC-PI
---------- ZN-PI
- === Astrom-PI (M =2)
------- SIMC-PID
3 8 10 12 14 16 18 20
time

Figure 3: Load disturbance of magnitude 2 occurs at ¢ = 10.

1
go(s) = (s +1)(0.25 + 1)(0.045 + 1)(0.008s + 1)

1. Approximate as first-order model with k=1, t; = 1+0.1=1.1, 6=0.1+0.04+0.008 = 0.148
Get SIMC PlI-tunings (t,=0): K, =1 - 1.1/(2- 0.148) = 3.71, t,=min(1.1,8- 0.148) = 1.1

2. Approximate as second-order model with k=1, 7, = 1, 1,=0.2+0.02=0.22, §=0.02+0.008 = 0.028
Get SIMC PID-tunings (t,=6): K, = 1 - 1/(2- 0.028) = 17.9, t,=min(1,8- 0.028) = 0.224, 15=0.22
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Astrgm relay method (1984): Alternative
approach to obtain cycling (and K +P )

* Avoids operating at limit to instability

* Use ON/OFF controller (=relay) were input u(t) varies &
d (around nominal)

* Switch when output y(t) reaches + a, (deadband)
(around setpoint)

Example: Thermostat in your home
Par a

4 :—-ﬁ—:’\ ]t./ - <,
R SRR

() a “on
s S s e Y

Wy &

* From this obtain P, and
K — 4 d<——d: amplitude u(t) (set by user)
U= o

Vaa.

a: amplitude y(t) (from experiment)

[1l. Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

0.8 T T T
Kc0=1.5
0.7¢ Ays=1
0.6
Ay.,
0.5r 1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:
0.4F dyinf = 0.45%(dyp + dyu)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys

Ayu=0.54 A=1.152"M0"2 - 1.607"Mo + 1.0

r = 2*A*abs(b/(1-b))

0.3

0.2f
2. OBTAIN FIRST-ORDER MODEL:

k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]

|
tau = theta™r
e
Il \

3. CAN THEN USE SIMC Pl-rule
T T T

P

T
10 12 14 16 18 20

Example 2: Get k=0.99, theta =1.68, tau=3.03

Ref: Shamssuzzoha and Skogestad (JPC, 2010)
+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012)




Example E2 {Further continued) We wanl to derive PI- and PID-settings for the
process

{—0.35 + IW0.08s + 1)
25+ i ls 4 1045 + 14025 + 130055 + 1)

Zols}=

using the SIMC tmning rules with the “default” recommendation =, = &. From the
closed-loop setpoinl response, we obtained in a previous example a first-order model
with parameters k& = 0.994, F = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with 7, =8 = 1.67 are
Ple: K.=0.904, =3

From the full-order model gpis) and the half role, we obtained in a previous ex-
ample a first-order model with parameters & = 1,8 = 1.47, r) = 2.5. The resulting
SIMC Pl-settings with 1. = # = .47 are

Plhorrue: Ko =0.850, =25
From the full-order model gois} and the half rule, we obiained a second-order model
with parameters k= |, 8 = 0.77, . = 2, .2 = 1.2, The resulting SIMC PlD-settings
with r. =8 = 0.77 are

SeriesPID: K. =1200, 1,=2  tp=12

The corresponding seflings with the more common ideal (parallel form) PID con-
troller are oMained by computing © =1 4 o /t1 = 1.60, and we have

Weal PID: K. =K.f =160, <=7 f=32, th=rtp/f=0T5

. {5.30)
April 4-8, 2004 KFUPIVI-UISTIIATION LONTrol Lourse 17
160 5. Skogestad and C. Grimholt
1.8
=
e o4
£
=
o os- PID 1
u L L I
1] -3 10 18 20
b T T T

P Illalmle

Fig. 5.6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with 7, = 6.
Setpoint change at r = 0 and input (Inad) disturbance at + = 10. For the PID controller, D-action is
Apr  only on the feedback signal. i.e., not on the setpoint ¥y 18
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Integral windup

* Problem: Integrator “winds up” u(t) when actual input has
saturated

d
e O, ™ mur m
8 =K

Actual input is m.
m=u if no saturation

w(t) = ug + Kee(t) + Ke /" e(t)dt
1 Jo

Keeps changing when e(1)7#0

0.25 1
op /1 y(t)
0.15
0,
0.05 ~
d P
-0-]\ m(kkt‘) / .
olt | t 0. t=10: Disturbance d starts
-0625 | \  1.t=12: Reach saturation in m (actual input)
055 \\ )la')(t))),,,,,,jﬁf”"”” R 2. oopss! Integration makes u (desired input) “wind up” ...
0 50 100 150 3. ...so when disturbance ends (at t=30)

y(t) has to overshoot on the negative side to bring u(t) back.

Anti-windup

* Approaches to avoid windup

1.

Stop integration (e.g. set 7,=9999) when
saturation in input occurs (requires logic)

Force integrator to follow true input using high-
gain feedback correction (see Example)

Use discrete controller in velocity form

10/16/2017
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Example a

i >

nti-windup

y
Sum Gain To Workspacel

]

Scope

Tid P
u
Clock To Workspace
To Workspace3
Approach 2:

g=0.2/(10*s+1)
tauc=1: Kc=12.5, taui=4

Input: max=1, min=-1

High-gain feedback correction

which makes u follow m.
Gain should be 1 or larger.
(Without anti-windup:
Set this gain to zero)

Disturbance: Pulse from 0 to 2 and back to 0 at t=10

File: tunepidantiwindup.mdl

2.y with anti-windup: Much better!

0.2

01 N

y(t) has only small overshoot

U,i/10=-0.1

u/10 ¥l\
-02¢ 1.y wil

y must overshoot on other side

thout anti-windup:

To “wind input u back”

-0.31
.04} \
u/10"
P
0 5 10 15 20

t=0: Disturbance starts
t=10: Disturbance ends

y = output process

25 30 35 40 45 50

1. Blue = without anti-windup
2. Red = with anti-windup

u= output controller (the real process input cannot go below u/10=-0.1)

m = sat(u) = input process

10/16/2017
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Comparison with no constraint (black line)

0.2

>
01| N
- \
Y \,
s . AN
AN
o =
Y N =
\ S
01 F N ST
-0.2 |
03 |
u/10
04 |
-0.5 L
0 5 10 15 20 25 30 3 40 45 50

Red = with anti-windup
Blue = without
Black = no constraint

Bumpless transfer

* We want a “soft” transition when the
controller is switched between “manual” (1)
and “auto” (2)

— or back from auto to manual
— or when controller is retuned

 Simple solution: reset u, as you switch, so that
u,(t) = uy(t).

de(t)
dt

1 st
w(t) = uo + Kele(t) + — / e()dt 4+ 2]
77 /0

Au

10/16/2017
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Effect of sampling /T

*  Allreal controllers are digital, based on sampling
*  At=sampling time (typical 1 sec. in process control, but could be MUCH faster)
¢ Max sampling time (Shannon): At < 7,/2, but preferably much smaller (7, = closed-loop response time)

¢ With continuous methods: Approximate sampling time as effective delay 6 ~ At /2

*  Strange things can happen if At is too large:

Remnslm(le(l signal

()ugmdl signal At =0.02

A AN
VN

Sampled values

Tigure 6-8: Falsification due to undersampling

Figure 6-8 illustrates in a particularly drastic manner the consequences
of a violation of the Shannon theorem. A sinusoidal original signal with

a [requenu/ of 60 Hz is sampled with a frequency of 50 Hz, although the

hauld ha hichar th 120 12 Th

/’W

w\p\u signak

“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement)

Discrete (digital) implementation
(practical in computer) of PID controller

Continuous (not possible in computer):

(t) ‘—/_(ti Y, —y but use -dy/dt to avoid differentiation of setpoin{]

( ) = Ug ‘I‘ _/ dt ‘l‘K e( ) ‘I‘ K cTD at y = filtered measurement
—_————
u(t)
t-At t
k-1 k

Digital PID implementation]

k

II\/

ﬂ(t) X Ukp—1 + CekAt(Back ard Euler)

This is Sigurd’s
k+K€k_KTDyk Yr—1 g

recommendation

At = “Alt. 3” (see next page)

To avoid windup and to get bumpless transfer:

Adjust bias Uk so that ux = actual input

(Comment: Can "clamp" Uk as we enter saturation (=stop integration), but
may then take a little longer to get out of saturation, because e must return to
value it has as we entered saturation)

10/16/2017
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Comparison with book: Digital implementation of PID controllers
Alt. 2 (velocity form)

Alt. 1 (position form) In the veloeity form, the change in controller output
s 1 de(r) is calculated. The velocity form can be derived by writing
) =P+ K|e(t) + b e{t*) di* + e (7-13) Eq. 7-26 for the (k — 1) sampling instant:
k=1
Note: p = output from controller Pi-1=p+ Kc[EJH + ﬁ—: ZI ¢ + %(Ebl = ek—l)]
- . . P i
Finite difference approximation: 727
1 I3 . . i .
1%) drs N s Note that the summation still begins at j = 1, because it
,g ey ar = E' Ko (12} is assumed that the process is at the desired steady state
_ forj=0,and thus ¢; = 0 for j = 0. Subtracting Eq. 7-27
{;—f 7 = L (7-25) from (7-26) gives the velocity form of the digital P1ID
At

algorithm:

where At Velocity form
3 s Apr=pi— P = Kr[(ﬂk‘ e} ek
At = the sampling period (the time between successive !

Alt. 2
measurements of the jcon_lmlled variable) 2 "'_D(e = 2epy T ""1)] (7-28)
e, = error at the kth sampling instant fork = 1,2,. .. A
: The velocity form has three advantages over the posi-
Substituting Eqs. 7-24 and 7-25 into {7-13) gives the tion form;
position foren, 1. Tt inherently comtains antireset windup, because
Ar & s | the ion of errors is not explici d
_ ) i i i Apy, that
=p+ K e p s (e 7-26 Alt. 1 2. This output is expressed in a form, Apy, that can
Be=E K [ek I Jgiej At (e # ])] ( ) be utilized directly by some final control elements,
such as a control valve driven by a pulsed stepping.
maotor.
e = present sampled value = e(t) 3, For the velocity algorithm, transferring the con- =Bumpless
e, ., = previous sample - e(t At) troller from manual to automatic model does oL
k1= =e(t-

ot require any initialization of the output (5 in
A minor disadvantage of the velocity form is that the! 2 7his is a major
integral mode must be included, When the set point is  disadvantage
constant, it cancels out in both the proportional and de-  ofAlt-2

e, = e(t-2At)

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)

Alternative to Alt. 1: Store integral action in the bias px rivative error terms. Consequently, if the integral mode,
P =Pr + K, lex + ﬁ(f’k = Ek—l)] were omitted, the process response to a dlsturbauw-.

& would tend to drift away from the set point.
where we update ("reset”) the bias: Jx = Pr—1 + Ixcr—fek

To avoid windup and to get bumpless transfer:
Adjust bias §; so that p; = actual input

Digital implementation of first-order
filter of measurement*
Ym y
Tuning: Select 7,< 7,/10
Continuous s-domain
y(s) = ﬁym(s) =
TrsY(s) +y(s) = yYm(s)
Contir}iuous time domain
mp B 4y (t) = y()
Discrete (digital) approximations :
TE (Y — Yi—1) + Uk = Uk
Rearrange
Yk = aYmk + (1 — @)yr_1
where 7r = 0= a =1 (no filtering)
o= 1 </TF:Af:>Q:{].5
— 14+7r/At 7 =9At=a=0.1
*Equivalent to exponential moving average of time series data

14



Block diagram symbols

I unambiguous ambiguous
v
; v
z ’ / ’
S £
E u
= 7 u u
[l
Q
= threshold
saturation {dead zone) hysteresis
¥
v » v
: _E
=] I
E u
= u u
: _ ol
c
]
& three position element
o two position element three position element with hysteresis

Figure 9-1: Types of characteristic curves
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