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PID Tuning
using the SIMC rules

Sigurd Skogestad

NTNU, Trondheim, Norway

PID controller ,

Time domain (“ideal” PID)
u(t) = o + KL (e(t) + & [y e(t)dt™ + 75,251
Laplace domain (“ideal”/”parallel” form)
c(s) = Kc(1+ 75 + 7ps)
For our purposes. Slmpler with cascade form
C(S) — KC (TIS+1)(TDS+1)

T1S . .
Usually 1,=0. Then the two forms are identical.

Only two parameters left (K, and 1))
How difficult can it be to tune???
a Surprisingly difficult without systematic approach!
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Let’s start with the CONCLUSION

Tuning of PID controllers

SIMC tuning rules (“Skogestad IMC”)™)
Main message: Can usually do much better by taking a
systematic approach
Key: Look at initial part of step response
Initial slope: k> =k/t,
One tuning rule! PI-control:
Ke = k' (9-&%)
71 = min(7y, 4(7. + 0))

* 1, > -0: desired closed-loop response time (tuning parameter)
» Forrobustness select: 1, > 6

Reference: S. Sko%les(ad “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
&Also reprinted in
) “Probably the best 5|mple PID tuning rules in the world”

MODEL

Need a model for tuning

Model: Dynamic effect of change in input u (MV) on
output y (CV)
First-order + delay model for PI-control

G(s)=rmFr e ”

Second-order model for PID-control

—93

G(8) = Gty (s D) ©

o Recommend: Use second-order model (PID control) only if 7,>0
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1. Step response experiment

= Make step change in one u (MV) at a time
= Record the output (s) y (CV)
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Step response integrating process

v(V
A
Slope, k' = —At-zu

2. Model reduction of more complicated model

Start with complicated stable model on the form

_ (Tigs+1)(Togs+1)- 9
Go(s) = ko (Tios-i-l)(ngos-l-l)--- e™"0°

Want to get a simplified model on the form

i p— k —0s
G = D et ©

Most important parameter is the “effective” delay 0

Use second-order model only if 7,>6
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OBTAINING THE EFFECTIVE DELAY ¢
Basis (Taylor approximation):
1 1

~
~

e’s 1+ 0s

e 105 and e 9=

Effective delay =
“true” delay
+ inverse reponse time constant(s)

+|half|of the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7
(or to 7 if use second-order model).

Example :

Ampliuce

The second-order process

1
1s +1)(0.6s + 1)

90(8) = (

with

k=1, 7 =1+06/2=13; 60=0.6/2=0.3;




Example 2 1/

(—0.3s+1)(0.08s + 1) -

25 + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3
half rule

is approximated asa first-order delay process with
n=2%1/2=25
0=1/2+04+02+3-0.05+0.3—0.08=1.47
r as a second-order delay process with
T = 2
T9=14+04/2=1.2
6 =04/2402+3-0.05+0.3—0.08=0.77

go(s) =k

o

SIMC-tunings

Derivation of SIMC-PID tuning rules

= Pl-controller (based on first-order model)

c(s) = K.(1+ %) = [, Tl

C 715

= For second-order model add D-action.
For our purposes, simplest with the “series” (cascade) PID-form:

C(S) _ Kc (trs+1)(tps+1) (1)

TS

9/25/2017
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SIMC-tunings

Basis: Direct synthesis (IMC)

4

EX

Yo e I |« ] I Xt 4
—1c 1.7
Closed-loop response to setpoint change
_ . _ c
y="Tys; T(s) =,

Idea: Specify desired response: (y/ys)desired =T

and from this get the controller. ....... Algebra: | ¢ =

SIMC-tunings

Desired step response

Y,
[oX=] o3 a
-1 o v
[l o 1 9

BI% _ _ —fs
- T = (%) T o1.s4+1 €

w8 Ys / desired e
o5k -
e . -
o4 o -
02k -
(RN o -

] T, —n

; i y ; ; : ) ;
(o] 2 4 G 8 10 12 14 16 18 20

time (sec)

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!




SIMC-tunings
IMC Tuning = Direct Synthesis

Algebra:
o Controller:  ¢(s) = ﬁ : 11—71
: (/Us) desired
o~

¢ Consider second-order with delay plant:  g(s) = km

e Desired first-order setpoint response: (*"’—) o=t et
Ys/ desired Tes+l
e Gives a “Smith Predictor” controller:  ¢(s) = (”S“)IETZSH)(T gﬂl T
s tle

e To get a PID-controller use ¢ ¥ ~ 1 — fs and derive

(ms+1)(ms+1) 1

ola) = k (r.+0)s
which is a cascade form PID-controller with
= 1 7
== s TE= T Th— T
kr,+0 1T b P

® 7, is the sole tuning parameter

SIMC-tunings

Integral time

= Found: Integral time = dominant time constant (t, = 1,)
= Works well for setpoint changes
= Needs to be modified (reduced) for integrating disturbances

d

ol y

Example. “Almost-integrating process” with disturbance at input:
G(s) =e’/(30s+1)
Original integral time t; = 30 gives poor disturbance response
Try reducing it!

9/25/2017



SIMC-tunings
Integral Time

! : / T|=T1
22 '

Reduce 1, to this value:
T,=4(1,+0) =80

. /0 10 ZD\ .30 40 50 60

Setpoint change at t=0 Input d#8furbance at t=20
Figure 2: Effect of changing the integral time 7; for Pl-control of “slow” process g(s) = ¢~ */(30s + 1) with K. = 15.
Load disturbance of magnitude 10 occurs at £ = 20,

Too large integral time: Poor disturbance rejection
Too small integral time: Slow oscillations

SIMC-tunings
Integral time

Want to reduce the integral time for “integrating”

processes, but to avoid “slow oscillations” we must require:

1 > 4(10 + 0)

Derivation:
cfﬁsr
G(s) = kg
Closed-loop poles:
L4+GO=0= 1+ KK, (14 2) =02 75 + K Kerps + K K. =0

~2 kT, where k' = %; C(s) =K. (1 + L)

TIs

TIS
To avoid oscillations we must not have complex poles:

B? —4AC > 0= K?K?r} —4KK.11 > 0= K K11 2 4= 71 > o
Inserted SIMC-rule for K, = %ﬁ then gives

71 > A1+ 0)

9/25/2017



SIMC-tunings

Conclusion: SIMC-PID Tuning Rules

For cascade form PID controller:
111

p—; ] 1
T kto+8 K m+0 1)
4
77 = min{ry, k’—K} = min{ry, 4(7¢ + 6)} (2)
C
D =T (3)

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis”)

2. Reduce integral time to get better disturbance rejection for slow or
integrating process (but avoid slow cycling = 7 > P“lT)
i

One tuning parameter: t,,

SIMC-tunings

Some special cases

Process g(s) K, Tr T,[_-;l ]
First-order k% . min{ry, 4(r. + 0)} | -
Second-order, eq.(4) k{ﬂ-ﬂ'ﬂl—)% %r‘:_e min{r, 4(r. +0)} | 72

Pure time delayt!) ke~fs 0 0 -
Integrating(® k’# 5 (n-:-&) A1, + 6) -
Integrating with lag ’5_(:;:_:1} - (f.:}H?) 41, +0) T2
Double integrating'® e o m 4 (. +6) 4 (e +8)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7. as a tuning parameter).

(1) The pure time delay process is a special case of a first-order process with 7y = (.

(2) The integrating process is a special case of a first-order process with 7 — o0.

(3) For the double integrating process, integral action has been added according to eq.(27).
(4) The derivative time is for the series form PID controller in eq.(1).

(*) Pure integral controller ¢(s) = %L with K < % = m.

One tuning parameter: t,

9/25/2017
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SIMC-tunings

6.3 Ideal PID controller

The settings given in this paper (K, 7;,7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

<

1 A ;
Ideal PID : d(s) = K| (l Fph Tb.&‘) il (T;Tbb‘z + 15+ l) (35)
1

TIS

we use the following translation formulas

= - ™ ™
I\'.=Kc(l —): 1= (l —); b=
X + = T =T] + i n

(36)

The SIMC-PID series settt
settings (1. = 0):

s in (29)-(31) then correspond e following SIMC' ideal-PID

37)

(38)
‘e see that the rules are much more complicated when we use the ideal form.
Example. Consider the second-order process g/s) = e *{(s+1)? (E9) with the k=1,0=1,7, =1
and 75 = 1. The series-form SIMC settings are K, = 0.5, 77 = 1 and 7p = 1. The corresponding

settings for the ideal PI1D controller in (35) are K. =1, 77 = 2 and 7}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.

*

SIMC-tunings

Selection of tuning parameter T,

Two main cases

. NN Vo0t “fostest possible
control” subject to having good robustness
Want tight control of active constraints (“squeeze and shift”)

>, SMOOTH CONTROL (7, large):  Want “slowest possible

control” subject to acceptable disturbance rejection

- Want smooth control if fast setpoint tracking is not required, for
example, levels and unconstrained (“self-optimizing”™) variables

9/25/2017
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TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC: 7.=8 (4)

Gives:
e 057 05 1

7= e 2
kO K 0
77 = min{7y, 80} (6)

D =T (7)

Try to memorize!
Gain margin about 3

Process g(s) e
Controller gain, I, rar
Integral time, 7/ Tl 88
Gain margin (GM) 3.14 296
Phase margin (PM) 61.47 46.9°
Allowed time delay error, A#/8 214 159
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M, | 1.00 1.30
Phase crossover frequency, wig -6 || 1.57 1.49
Gain crossover frequency, w, + # 050 051

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (7. = #). The same margins apply to
second-order processes if we choose 7p = 73

Typical closed-loop SIMC responses with the choice 1.=6

s 4
= L -
>3
g
5 2 15 i, 37
= P et Rt
Vi[rs - =

- 4
0 L L L . . . . a
0 5 10 15 20 25 30 35 40

= case 1 (pure delay)
== case 2 (Integrating)
-1 »=1= case 3 (int.+lag)

—— case 4 (double int.
----- case 5 (first-order) | ) . ) )

0 5 10 15 20 25 30 35 40
time

Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7, = #).
Unit setpoint change at ¢ = 0; Unit load disturbance at ¢ = 20.

Simulations are without derivative action on the setpoint.

Parameter values: f# =1, k=1k'=1,k"=1.
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Example E2 {Further continued) We wanl to derive PI- and PID-settings for the
process

{—0.35 + IW0.08s + 1)
25+ i ls 4 1045 + 14025 + 130055 + 1)

Zols}=

using the SIMC tmning rules with the “default” recommendation =, = &. From the
closed-loop setpoinl response, we obtained in a previous example a first-order model
with parameters k& = 0.994, F = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with 7, =8 = 1.67 are
Ple: K.=0.904, =3

From the full-order model gpis) and the half role, we obtained in a previous ex-
ample a first-order model with parameters & = 1,8 = 1.47, r) = 2.5. The resulting
SIMC Pl-settings with 1. = # = .47 are

Plhorrue: Ko =0.850, =25
From the full-order model gois} and the half rule, we obiained a second-order model
with parameters k= |, 8 = 0.77, . = 2, .2 = 1.2, The resulting SIMC PlD-settings
with r. =8 = 0.77 are

SeriesPID: K, =1.200, 1, =2  tp=12

The corresponding seflings with the more common ideal (parallel form) PID con-
troller are oMained by computing © =1 4 o /t1 = 1.60, and we have

Weal PID: K. =K.f =160, <=7 f=32, th=rtp/f=0T5

(5.30)
25
160 8. Skogestad and C. Grimholt
1.5}
i
=5
i
o os- PID 1
u L L I
1] -3 10 18 20
b T T T
Plarcie
a5 L . L
5 ki) 15 20
tima
Fig. 5.6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with 7, = 6.
Setpoint change at r = 0 and input (Inad) disturbance at + = 10. For the PID controller, D-action is
only on the feedback signal. i.e., not on the setpoint vy 2%

9/25/2017
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SIMC: Tuning parameter (7,) correlates nicely with
robustness measures

A

<

1 1

g B 3 £

- s 5
Closed loop tun constant, 7./6 (‘!()76\001) tuning constant, 7./f
Tc /0 c

(%Jrl)—I:GM—l

25

SMOOTH CONTROL

Tuning for smooth control

= Tuning parameter: t, = desired closed-loop response time
= Selecting t1,.=0 if we need “tight control” of'y.

= Other cases: “Smooth control” of y is sufficient, so select t, > 6 for
o slower control
o smoother input usage
= less disturbing effect on rest of the plant
o less sensitivity to measurement noise
better robustness

= Question: Given that we require some disturbance rejection.
o What is the largest possible value for t, ?
o Or equivalently: What is the smallest possible value for K ?
o ANSWER: _
Kc,min - ud/ymaX'
uy = input change to reject disturbance (steady-state)

* May obtain uy from historical data!
Ymax = Maximum desired output deviation

From K, we can get 1, and then corresponding T, using SIMC tuning rule

«Proof»: Imagine using P-control only. Then we get at steady-state u = K, y,, where y,, is the steady-state offset. With I-action we have no offset but the peak value of y will be close to yy,
More detailed proof: S. Skogestad, *Tuning for smooth PID control with acceptable disturbance rejection”, Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).

9/25/2017
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SIMC-tunings

DERIVATIVE ACTION ?
First order with delay plant (2 = 0) with 7. = 6:

05 K,=(05/k) (5, 19)

0.4 5y

20 25 30 35 40
e

Figure 5: Setpoint change at ¢ = 0. Load disturbance of magnitude 0.5 occurs at ¢ = 20
o Observe: Derivative action (solid line) has only a minor effect.

o Conclusion: Use second-order model (and derivative action) only when
7 > 6 (approximately)

Note: Derivative action is commonly used for temperature control loops.
Select 1y equal to T, = time constant of temperature sensor

Conclusion PID tuning

SIMC tuning rules
=1, 1
Ko =1 @iy

71 = min(7y,4(7. + 0))

1._ Select 1.=0 corresponding to

__ 051
Kc,max = % 0

()

|u0 ‘ u0= input change required to reject disturbance
|ymax | ymax = largest allowed output change

2. Smooth control. Select K, , K i, =

Note: Having selected K; (or t.), the integral time t, should be
selected as given above

3. Derivative time: Only for dominant second-order processes

9/25/2017
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Level control

Level control often causes problems
Typical story:

o Level loop starts oscillating

a Operator detunes by decreasing controller gain
o Level loop oscillates even more

Explanation: Level is by itself unstable and
requires control.

[LEVEL coNTROL-
Level control: Can have both
fast and slow oscillations

= Slow oscillations (K, too low): P > 37
= Fast oscillations (K, too high): P <37,

Here: Consider the less common slow oscillations

16



How avoid oscillating levels?

+ Simplest: Use P-control only (no integral action)

* If you insist on integral action, then make sure
the controller gain is sufficiently large

+ |f you have a level loop that is oscillating then
use Sigurds rule (can be derived):

To avoid oscillations, increase K, - 1, by factor
=0.1- (Py/1,0)?

where
P, = period of oscillations [s]
70 = original integral time [s]
012 1z

Case study oscillating level

= We were called upon to solve a problem with
oscillations in a distillation column

= Closer analysis: Problem was oscillating reboiler
level in upstream column

= Use of Sigurd’s rule solved the problem

9/25/2017
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APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f &~ 0.1(Py/779)°.

Real Plant data:
Period of oscillations Py = 0.85h = 51min = f = 0.1- (51/1)> = 260

BEFORE S (Ker- 05, tonis Tmia)
3

IRV N
- (vadve pos.)

g ;
S dhogh b bh W o adn

AFTER & (Ke=-485, toui= Limin)
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