Modelling and linearization

Seborg: Chapter 2 + 3.4 (lin.)
Skogestad: Ch. 11
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Mathematical Modeling of
Chemical Processes

Mathematical Model (Eykhoff, 1974)

“a representation of the essential aspects of an existing
system (or a system to be constructed) which
represents knowledge of that system in a usable form”

“Everything should be made as simple as possible, but
no simpler.” (A. Einstein)
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General Modeling Principles

The model equations are at best an approximation to the real
process.

“All models are wrong, but some are useful.”

Modeling inherently involves compromise between
* Model accuracy and complexity
+ and: Cost and effort required to develop model

* Process modeling is both an art and a science.
Creativity is required to make simplifying assumptions that
result in an appropriate model.

N
S
(V)
b
(o
©
i
&)

* Dynamic models of chemical processes consist of:
+ ordinary differential equations (ODE)
« and/or partial differential equations (PDE)
* plus related algebraic equations (AE).

11.2 Modeling: Dynamic balances
This gives what is known as “first prmc:p/es model” or “physical model”

or “‘nonlinear state space model” _--- iz

~
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Figure 11.1: The balance principle

Change Inventory = In — Out + Generated — Loss
— - —— ———

accumulated in the system throngh the system’s houndary  internally in the system

=0 for mass-and energy
gY

In this chapter, the terms “change,” “in,” “out,” “generated” and “loss” are always
per unit of time. Mathematically, the general balance equation per unit of time is (see
(2.8) on page 42): =0 f(rr mass and energy

dB kg mol J

E = Biy — Bout +(Bgcnomted i B]ul& E = =l ] (11.2)

A

For reactions [mol]
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Which control volume and which
balance?

In principle, the balance equations are easy to formulate, but we need to decide:

1. Which control volume (where do we draw the boundary for the quantity we are
balancing)?
2. Which balance (which quantity are we considering, for example, mass or energy)?

The answer to the last question is typically:

Interested in mass, volume or pressure: mass balanee

Interested in concentration: component balanee

Interested in temperature: energy balance

Interested in the interaction between flow and pressure: Mechanical energy balance
(= momentum balance = Bernoulli = Newton's second law)

N
S
(V)
b
(o
©
i
&)

* Conservation Laws

Theoretical models of chemical processes are based on
conservation laws.

Conservation of Mass

rate of mass rate of mass rate of mass (2-6)

accumulation n out

The total mass balance per unit of time is

o i — o | [ke/s] (113)

where m [kg] is the system’s mass (“inventory of mass inside the control volume™),
dm/dt [keg/s] is the change in mass inventory per unit of time and w;, — we,, [kg/s] are
the mass flow rates for for the entering and exiting streams (bulk flow). By introducing
the density, we get

v .
%) = Pintin — PoutYout [kglsj

where V' [m®] is the system’s volume, gin [m®/s] and gour [m®/s] are the volumetric
flow rates and p, p;,, and puy, [kg/m?| are the (average) densities.
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Chapter 2

Chapter 2

* Conservation Laws

Conservation of Component i

rate of component i rate of component i

accumulation in

rate of component i rate of component i
- + (2-7)
out produced

The dynamic component balance can, for an arbitrary component A, be written

% = Fain— Faout + Ca| [mol A/g] (11.6)

(we normally use mole basis, but the component balance can also be written on weight
basis [kg A/s]). Here, n4 [mol A] is the inventory (amount) of component A inside
the system’s boundary, Fa i, — Faou [mol A/s| are the molar flow rates of A in the
streams (bulk flow) and G4 [mol A/s] is net generated in the chemical reactions. This

Conservation of Energy
The general law of energy conservation is also called the First
Law of Thermodynamics. It can be expressed as:

{rate of energy}

accumulation

rate of energy in rate of energy out
by convection by convection

net rate of heat addition net rate of work
+<  to the system from + 1 performed on the system (2-8)
the surroundings by the surroundings

The total energy of a thermodynamic system, U=U,,, is the sum of its internal
energy, kinetic energy, and potential energy: Uy =Uy e+ Upg 29

The general energy balance (4.10) over a time period At with AU = Uy — U, gives,
as At — 0, the dynamic energy balance:

dU dv
—H, — W, — P J i
dr Hm Hout +Q+ s Pex at [J/b_[ (]-1 11)

Here, U [J] is the internal energy for the system (inside the control volume), while
Hiy, — Houe is the sum of internal energy in the streams plus the flow work that the
streams perform on the system as they are “pushed” in or out of the system. The term
“Pex ?; is the work supplied to the system when its volume changes; it is negligible for
most systems. @ [J/s] is supplied heat (through the system’s wall), while W, [J/¢] is
supplied useful mechanical work (usually shaft work, for example, from a compressor,
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Can usually neglect kinetic and
potential energy in energy balance

v=0m/s
h=100m

100m

V= m/s

h=0m

v=0m/s
AT= K

Waterfall: (1) potential energy -> (2) kinetic energy -> (3) thermal energy
Thermal energy is included in internal energy (U).

Energy balance (for 1 kg water):
ghy =2 v,* = cp T3 [J/kg]
where
g =10 m/s?
cp = 1 keallkg,K = 4184 J/kg,K

Dynamic modeling. Examples

*  You should do many examples!

*  See my book: CHEMICAL AND ENERGY PROCESS ENGINEERING,
CRC Press (Taylor & Francis Group), 2009, Chapter 11..

+ Chapter 11 on dynamics available on itslearning or here:

http://www.nt.ntnu.no/users/skoge/prosessregulering/course-material/

Example 1. Mixing tank (CSTR)

W [kg/s]

qr [m¥s]

Cag [Mol/m3]
Task: TF [K]

Formulate mass, component and energy balances
to find expressions for dV/dt, dc,/dT, dT/dt
Assume:

+ No reaction

« Constant density

« Constant heat capacity

« Single phase (liquid)

+ Do NOT assume constant volume V
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Example 2. Buffer tank on gas pipeline

(Example 11.10)
P .7 p ) > Pout
[V D>
F. [mol/s] "~ ” n - ’ Fout [mol/s]
Task:

*Find residence time, 7,

*Find time constant 7 for dynamic response

*Hint: Find expression for dp/dt and rearrange to standard form to find time
constant (gives dynamics for effect of changes in p;, on p, F;,, etc.)

n?

Note: Only one mass (mole) balance, so this is a first-order system

Assume:
T constant; Ideal gas, pV = nRT
sLinear valves: F;; = ¢ (pir-p), Fou™ C(P-Pout)

Gas dynamics
are very fast!

Data at steady state:
pin=10.1 bar, p=10 bar, p,,=9.9 bar, V = 10m3, F, =F,, = 100 mol/s, T=300K

Overall dynamic model

» Use of the “balance principles” (resulting in differential equations)
combined with other equations for equilibrium, heat transfer etc.
(resulting in algebraic equations), gives in a “nonlinear state space
model” on the general form:

Balance equations: d’c‘% = f1(z1,z2,u)
Additional algebraic equations: 0 = fa(z1, 22, u)
where

u - independent variables (inputs, disturbances)
x - states (internal model variables) - dependent variables
y = g(x1, 2, u) - output variables (measurements)

» The states x, are usually the balanced quantities. It is possible to
redefine the states, for example, to replace x,=U (internal energy) by
x,=T (temperature), but this requires work (see example), so we often
don’t do it.
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Linearization (Linear model)

* What is a linear system?
— Satisfies the superposition principle, that is, the total response is the sum
of individual responses. Let
o f(u)=y,(H
¢ f(uy)=y (D)
Then
o 1k uptks up) =k y (D) Ky y,()
*  Why linearize?
— Much simpler mathematics (transfer functions)
— All real systems behave linearly for small deviations from steady state
(using control!)

* How?
Linearize nonlinear model (e.g., obtained from balance equations):
dx/dt = f(x,u)
to get a linear state space model in deviation variables:
dAx/dt=A Ax+ B Au
where A and B are constants (matrices).

Linearization = Tangent approximation =

Taylor series expansion
Tangent =

f(x)=f(x"+Ax) ~ f(x") + A-A x f(x)
where A = slope = (of/0x)- / =
f )= .
|
{
|
X' X+AX X

Negligible error for small deviations from point * (small Ax)
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Linearization. How?

Dynamic maodel (e.qg., from balance equations)

%: flz,u)

where = are the (internal, model) states and u
are the independent variables.

RHS: First-order Taylor series expansion of non-

linear term gives linear approximation

Fla,u) = {(a-;u*) + @y au+ ) as
Af

where Au=u—u* and Az =z —z~
are deviations from the nominal trajectory,

dx”* —_— .
— =) =
= f( )=F
If nominal is steady-state, then % = =0

LHS
d_:c: d(Axz+z*) :dA;c_'_f(
dt dt dt
Note: f* on LHS cancels against f* on RHS
Conclusion: Get linear " state-space” model
deviation variables:

988 ap= 0 me 1 (5 o
dt dx Jdu
A B

Summary linearization

1. Nonlinear model: % = fil#,1)

2. Steady-state (find missing parameterx etc.): & = f(z*, u*) =0

di

3. Introduce deviation variables: Ax(t) = z(t) — z*, Au(t) = u(t) — u*

4
at

4. Linear model: 422 — Af — (E)* Al

A

|

)* Au
u
\.—v—/

B

=
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Example 1: Bath tub with no plug

Gout = kVh (turbulent outflow)

= Agou = (LR AR = To= Ak

Example 2: Linearization CSTR
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Example linearization: Flash

Flash tank with two components (zg,y,x: mole fraction light component)
VLE: Assume constant relative volatility a=21:

o g S, — S ..
&= T /ie) Y~ THa-Da vV
Model assumptions: Well mixed, neglect vapor mass Y
. —_
p and M constant (using Q and L)
u=V
d=F, zF F’ zF
y =y (output) M
Nominal data: F*=1 kmol/min, z"=0.5, y*=0.84, M = 1kmol L. x
=3

Task: 1. Derive dynamic model + 2. Find nominal steady-
state + 3. Linearize to find model (in deviation variables)

8/30/2017
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Solution

1. Overall and component balances [kmol/h]:

1M d(Mz

W gy B
dt dt

2. I'ind steady-state: 0 = F* —L* —V*; 0=F%zp — L*z* -V~

Combined with VLE (a = 21) and given data (F* = 1,y* = 0.84):

=Fzp— Lz —Vy

Y

x* =02, V" =0.469; L = 0.531 vy,

3. Linearize model.

Linearize balance equations:

VLE

0=AF - AL - AV —
MUZE — P*Azp + 25AF — L*Az — 2* AL —I-"*\A/yJ—y*AV
AF—AV e
MU22 — _(L* 4 V*)Az — (y* — &*)AV + F*Azp 4 (25 — 2*)AF
. - o dyye 21 212*20  __ Q4
Linearize VLE: ¢ = {E:%) = 000" — T — 0.84
Conclusion.
Get:
% = Ax+ Bu+ Bgd; y=Czx
where

& = il = g
u=AVd= (AF>

AZF
and 7
A= L — - 0.925 [min~!]
B=—¥7% = 0.64 [mol~!]
Bi- (£ £)-(03 1)
== 084
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% Using symbolic toolbox in Matlab

syms y x

f=21 - (y/x) / ((1-y)/(1-x)) % definition relative volatility=21

y=solve(f,y)

fplot(y,[0 1])

dydx(x)=diff(y,x)

dydx(0.2) o e (= 1m

eval(ans) Tie it Ve It Too Dot Wirdow Hel
DEde|hRAN9LEA-8|0E =0

Result: e
v B

F=21 - (y*(x - 1))6x(y - 1) 1/
y =(21*x)/(20*x + 1) w |
dydx(x) =21/(20*x + 1) - (420*x)/(20*x + 1)"2 i/
ans =21/25 |
ans =0.8400 osl

8.1 General

The relationship between the input and outpul variables of dynamic
transfer systems may be described not just in terms of various dif-
ferential equations, generally of a higher order, but also in terms of
systems of first order differential equations. The variables that appear
in addition to the input and output variables in such differential equa-
Lion systems musl conform to certain definite conditions, and are then
generally characterised by the letter x as state variables.

The system of differential equations is then constructed in such a way
that the n derivatives x; of the state variables x; are expressed as func-
Lions of these slate variables and the p input variables u;

X1 = fi1xn, ..., X0, U, Up, E)
(8.1)
Xn = fn(xh---;xﬂ.»ulu--uup-”

The q output variables y; are represented as functions of the state vari-
ables and input variables:

st :gl(xls“-1xnluls'-'|up5t)
(8.2)

Va=4dq(x1, ..., Xn, U1, Up, t)

8/30/2017
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In abbreviated form, the input, output and state variables are combined
as vectors, and one obtains

x = f(x,u,t)

y=4gx,u,t) (6.3)

In case of a linear time-invariant system, equation (8.3) simplifies to:

X=A-x+B-u

y=C-x+D-u 64

where A, B, C, D are matrices with time-independent coefficients.

Solution

t
x(t) = eAMx(0) + J eAU-TIBy(T)dT
0

a_ @Ak 2,
e -Eo—k! Rl AR Seen

8.4 Controllability and observability

From the general solutions of the state space equations (8.49) and (8.54),
some important statements about the described system can be derived.
Among these characteristics are the controllability and the observability
of the system - terms that were introduced by Kalman in 1960.

A system
x=A.x+B-u

.61
y=C:x+D-u oL

is said to be controllable if its state x can be transferred from any ar-
bitrary initial state x(tp) to the final state 0 in finite time by means of
an appropriate input value, the control vector w(t).

Correspondingly, the system (8.61) is said to be observable if from the
known input vector u(t) and from the measurement of y(t) over a
finite time interval, the initial state x(ty) can be determined uniquely.
For observable systems, one can design so-called state observers which
generate estimates of the state variables from the input and output
variables.

8/30/2017
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One can demonstrale, that a system with a single inpul variable u and
a single outpul variable y is controllable , if the veclors

b,A-b,A*-b,..., A" - b (8.62)
are linearly independent . Thus, the (n,n)-controllability matrix
Qs=[b,Ab A b, ..., A" b (8.63)

is nonsingular if and only if the system is controllable. In other words,
controllability is given when

detQs + 0 . (8.64)

A system with a single input variable u, n state variables and a single
output variable y is said to be observable, if the vectors

e, cT-A, ..., cT-A*T (8.65)

are linearly independent . In other words, observability is given if the
(n,n)-observability matrix

cl
cT-A
Qp = ; (8.66)

CT = An—l

is nonsingular.

Minimum realization

« Unobservable states x are unintersting for
us as they have no effect on the outputs (y)

» Uncontrollable states x cannot be effected
by our inputs (u)

* Model from u to y: Eliminate unobsevable
and uncontrollable* states to get model with

fewest number of states («minimal
realization»). Saves computation time.

*But initial value of uncontrollable states will affect outputs, at least temporarily
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