Multivariable control using single loops

» Interactions
* Choice of pairings (RGA)

Multivariable process

Distillation column

“Increasing reflux L from 1.0 to 1.1 changes y,
from 0.95 to 0.97, and xg from 0.02 to 0.03”
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“Increasing boilup V from 1.5 to 1.6 changes y,
from 0.95 to 0.94, and xg from 0.02 to 0.01”

Steady-State Gain Matrix
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Effect of input 1(AL )on output 2 (Ax )

Can also include dynamics
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Analysis of Multivariable processes

Process Model 2x2

"Open — loop"
i (S): &n (‘Y)"1(5)+ &2 (‘Y)uz (Y)
¥2(5)= g0 ($)u () g, (5)us (5)

INTERACTIONS: Caused by nonzero g,, and/or g,,
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RGA: Consider effect of u; on y,

u, —+ .

2 | .‘ =

1) “Open-loop” (C, = 0): Yi=gul®)y
2) “Closed-loop” (close loop 2, C,#0):  ¥1=|9u(s)

Y1

1+4g,-C,

Derivation. Change caused by

Close loop 2: up = —cp(y2 — yos) “interactions”

Here: yo = goyu1 + gopuo and assume yp, = 0:

= up = —ca(g21u1 + gaoup) = up = 7202wy

Effect of u1 on y1 with loop 2 closed is then:
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Limiting Case C,—« (perfect control of y,) (steady state)
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Yi= 911(5) uy =g, (1/ Ay )0y

How much has “gain” from u, to y, changed by
closing loop 2 with perfect control?

lu def
Relative Gain = (¥4l 1), = 9 = 1 = AT
(y1/U1)CL gu— 912 921 4 _ Y12 92

922 911 922

The relative Gain Array (RGA) is the matrix
formed by considering all the relative gains

Ay Aszl (yi"ul).:L [Vl"uz)CL |

(Yﬂ'us)m (y1"u2)m

RGA=A=

No: sz (Vz/lh)m (YJ“:)DLE
(yz/u|).:L (yi"ui )CL i
Example from before
0.2 -0.1 1
G{m —0.1} ’ )‘“_1_0.1 04 2
0.2 0.1
=
0.5
2 -1
RGA =
-1 2
Only acceptable pairings :
=Y,
i, =y, . .
- 0l Withintegral action :
Notrecommended : Negative RGA = individual
R loop unstable OR overall system unstable

EEN when individual loops saturates




Property of RGA:
+ Columns and rows always sum to 1
+ RGA independent of scaling (units) for u and y.

RGA for general case:

[RGA]i; = (9i5)o1/(gi5)cr = [Gli[GT i

= element-by-element multiplication of G' and a7,
Matlab: RGA = G.*pinv(G) .’

Example
G=[5101;20-100;1802]
G= >> rga=G.*pinv(G).'
5 10 1 rga =

20 -10 0 0.3125 -0.5625
18 0 2 [ 12500 02500 0

-0.5625 0

Conclusion: of the 6 possible pairings only one has positive RGA’s

Use of RGA:

(1) Interactions

*  RGA-element (A)> 1: Smaller gain by closing other loops (“fighting
loops” gives slower control)

*  RGA-element (A) <1: Larger gain by closing other loops (can be
dangerous)

*  RGA-element (A) negative: Gain reversal by closing other loops
(Oops!)

Rule 1. Avoid pairing on negative steady-state relative gain —
otherwise you get instability if one of the loops become inactive
(e.g. because of saturation)

Rule 2. Choose pairings corresponding to RGA-elements close to 1

Traditional: Consider Steady-state

Better (improved Rule 2): Consider frequency
corresponding to closed-loop time constant




Example

16.8 30.5 4.30 1.50 0.99 —1.48
G=| -16.7 31.0 —-141 ), RGA(G)= [ —0.41 0.97 0.45

1.27 541 540 —-0.08 —-0.95 2.03

Only diagonal pairings give positive steady-state RGA’s!

Distillation

~ (yp (L
o=(0): v=(v)

_ (878 —864 (3 -3
G(O)*(m&z —109.6)’ RGA(O)*(—:M 35)




Distillation

() - ()

_ (878 —864 (3 -3
G(O)*(m&z —109.6)’ RGA(O)*(—::M 35)

Can break interactions with cascade:
Frequency-dependent RGA with TC

10 o

351 K0 -~ Ke=0.1
< Ke=1.0

10 AN =+ Ke=5.53

0.1 , — Ke=100

1
Frequency (rad/min)

Sometimes useful: [terative RGA

For large processes, lots of pairing alternatives
RGA evaluated iteratively is helpful for quick screening

RGA(G) = A(Q) = G x (G~ DT
N2(G) = AN(A(Q))

A® = limy_, ., A*(@)

* Converges to “Permuted Identity” matrix (correct pairings) for
generalized diagonally dominant processes.

» Can converge to incorrect pairings, when no alternatives are dominant.
e Usually converges in 5-6 iterations




Example of Iterative RGA
1 2
=10

A {0.33 0.67] A2 — [—0.33 1.33]

0.67 0.33 1.33 —0.33
A3 _ [-0.07 1.07 A4 — (0.00
1.07 —0.07 0.00]

Correct pairing

Exercise. Blending process

sugar u,=F,

ba y, = F (given flowrate)
b4 water u,=F, y, = X (given sugar fraction)

Mass balances (no dynamics)

— Total: F,+F,=F

—  Sugar: F,=xF
(a) Linearize balances and introduce: u;=dF, u,=dF,, y,=F,, y,=x,
(b) Obtain gain matrix G (y=Gu)
(c) Nominal values are x=0.2 [kg/kg] and F=2 [kg/s]. Find G
(d) Compute RGA and suggest pairings
(e) Does the pairing choice agree with “common sense”?
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(a) The balances “mass in = mass out” for total mass and sugar mass are

olution.

Fy + Fy = F; F| = aF
Note that the mixing process itself has no dynamics. Linearization yields
dF| + dFy = dF : dF] = 2*dF + F*dx

With u; = dFy, ug = dFy,y3 = dF and yp = dz we then get the model

Y1 = uy + ug
B

Yy — 1= z*
Y2 = —pwoUl — W U2
where * = 0.2 is the nominal steady-state sugar fraction and F* = 2 kg/s is the nominal amount.

(b,c) The transfer matrix then becomes

1 1
1 1
Gls) = | l—z* _a* | = (0.4 70.1>

(d) The corresponding RGA matrix is (at all frequencies)

A= x* 1—x*) _ (0.2 0.8
ST\ -2 z* ~—\o0s8 0.2

For decentralized control, it then follows from pairing rule 1 (“prefer pairing on RGA elements close to 17) that we
should pair on the off-diagonal elements; that is, use uj to control y5 and use ugy to control yj.

(e) This corresponds to using the largest stream (water, ug) to control the amount (y7; = F), which is reasonable
from a physical point of view. Also note that the RGA-elements are always between 0 and 1 for this process, and
the RGA-elements are all 0.5, corrresponding to "switching” the pairings, when @* = 0.5, which is when the two
feed streams are equal.




