Dynamics and PID control

(part 2 of crash course)

Sigurd Skogestad
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input

Process dynamics

u(®)

* “Things take time” gl )"

¢ Step response (response of output y to a step in input u):
— k = Ay(«~)/ Au — process gain
— 1 - process time constant (63%)
— 0O - process time delay

« Time constant t: Sometimes equal to residence time = V[m3]/q[m3/s]

« Dynamic model: Can find t (and k) from balance equations:

I\-[as;s/ energy |kg/s; J/s|: % Inventory = Inflow - Outflow

Component [mol/s|: % Inventory = Inflow - Outflow + Gen. by reaction

— Then rearrange to match standard form of 1st order linear differential equation: ’T% — =Y T ku




Response of linear first-order system

Standard form¥*: T% = —y + ku,. A A o |

Initially at rest (steady state):  y(0) = yo, Bl G(s) = Bl Deviaytlinyva_“;?e&
’ 7541

Make step inu att=0: Au Au=u —uo

Block diagram with transfer function
for first-order process

Solution: y(t) =wo+ (1 —e7/7) kA

Ay(t=o00)
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Remember for first order response:

1.Starts increasing immediately

2.Would reach new steady state after time ¢, if it kepy going with the same slope

3.Reaches 63% of change after time ¢,

4.Approaches new steady state exponentially (has for practical purposes reached new steady state after about 4;)

A more general standard form for lincar systems is the state space form (in|
deviation variables): % =Ar+ Bu, y=Cz+Du, z(0)=0
Our casc: A =—-1/r,B=k/7,C=1,D=0




More about valve equation

P1 > i > 'Fﬁ E 3\.‘?;5"-'

q [m3/s

Valve equation: ¢[m?/s] = C, f(2)\/DP/p

Linear valve: f(z)=z

€ |0, 1] - valve opening (adjustable), z = 0: closed. z = 1: fully open.

[m?/s] - volumetric flowrate
P = p; — py [N/m?] - pressure drop over valve (Typical value: DP = 0.1 bar)

b»& 1S

Cy[m?] = C4A - valve coeffisient

C'y - dimensionless valve constant (Typical value: Cy = 1)

A[m?] = valve cross-sectional area

f(z) € [0,1] - valve characteristic (Linear valve has f(z) = z)

p [kg/m?] - fluid density (e.g., 1000 kg/m? for water; 1.19 kg/m? for air at 1
bar/25C)

Derivation: From Bernoulli’s equation for pressure drop (turbulent flow): Ap,=k pv?, v=g/A

Comment. Mass flowrate: wlkg/s| = pq= C,f(z)\/p- DP




Even more about valve equation®

Valve (Figure 1.7b). A valve is a device that regulates the flow of substances (gases,

liquids, slurries) by partially obstructing its passageways, resulting in a pressure
drop. In a control valve, the low can be adjusted by changing the valve position
(z). The valve equation gives the dependency of flow on valve position and
pressure drop. A typical valve equation for liquid flow is

q=Caf(2)AAp/p (1.8)
Cy

where ¢ [m®/s] is the volumetrie flowrate, Cy (dimensionless in SI units) is the

ralve constant (relative capacity coefficient), 2 is the relative valve position (0 is
fully closed and 1 is fully open), f(2) is the valve characteristic (e.g., f(z) = z
for a linear valve), A [m?] is the cross sectional area of the valve (at its inlet or
outlet), Ap = p1 — p2 [N/m?] is the pressure drop over the valve, and p [kg/m”]
is the fluid density. The mass flowrate is m [kg/s] = pg and the flow velocity
is v [m/s] = g/A (at the valve inlet or outlet). A typical value for a control
alve is Cq = 1 (see Example 9.2, page 244). C, = C4qf(z)A [m?] is the valve
coefficient (capacity coefficient), which depends on the valve opening. Note
that the valve coefficient 7, provided by the valve manufacturer, usually is the
flow in gallons per minute (gpm) of cold water when the valve pressure drop is
1 psi, and to convert to SI units this value needs to be divided by 41625.

Exercise 1.6* Prove that the ecpression for converting the manufacturer’s wvalve
coefficient Cy, to SI units is Cy[m Q] = (' (manufacturer) /41625,

A choke (throttle) valve is a valve where the primary objective is to reduce
the pressure rather than to regulate flow.

A Joule-Thompson valve is a valve where the primary objective is to reduce
the temperature of a non-ideal gas, by making use of the fact it requires energy
to lower the pressure because of the attractive forces between the gas molecules
(except at very high pressures).

Py Po< Py

—_—

Exercise 1.6, page 26. Prove that the expression for converting the manufacturer’s valve

coefficient to SI units is C'y = ), /41625.

Solution

Cv’: manufacturer’s valve capacity coefficient,
Cv’ = flow [gpm] cold water when dp=ipsi
Valve equation (SI units)
q [m3/s] = Cv # sqrt(dp/rho) = Cv * sqrt(e5/14.5+e3)
where
dp = 1 psi = (1/14.5) bar = (e5/14.5) N/m2
rho = 1000 kg/m3
Convert to gpm

Cv’ = q [gpm] = q [m3/s] / 63.09 e-6 = Cv * (1/63.09 e-6) * sqrt(100/14.5) = Cv * 41625

Conclusion: ¢, = '), - 63.09e — 6/T4.5e — 2 = (', /11625

Comment :

The KV-value used by valve manufacturers in Europe needs to be divided by 36000. Proof:

Kv = flow [m3/h] cold water when dp=1bar
dp = 1 bar = &5 N/m2
Valve equation gives under these conditions:
q [m3/s] = Cv * sqrt(dp/rho) = Cv * sqrt(e5/e3)
Convert to m3/h
Kv = q [m3/h] = q [m3/s] * 3600 = Cv * 3600 * sqrt(100) = Cv *x 36000

Reference: B.L.Liptak (Editor), Instrument Engineers’ Handbook,
4th Edition, CRC Taylor & Francis and ISA,
Volume II (Process control and optimization), p. 1051 (2006)

*From: S. Skogestad, Chemical and Energy Process Engineering, CRC Press, 2009



Example dynamic model: Concentration change in
mixing tank

Inventon

Ty

inflow outflow
— Assume constant V [m?] 7 c _[.3/ |
m-/s
— Assume constant density p [kg/m3] C(‘;FF[”‘ ] \Y i

— Assume, c (in tank) = ¢ (outflow) [mol A/m3]
— Assume no reaction

Mass balance n Component balance

Inflow Pk [kg/s] C- Qg [mol A/s]
Outflow pq [kg/s] c g [mol A/s]
Inventory pV [kg] c V [mol A]
(“state variable”)

Balances:

Mass 20 = pgr —pg  [ke/s|.  pV constant = ¢ = gr

. d CI"" / T C -
Component: {T&l —cpqr —cq |mol A/s] = V/q % = —cC +\_\l/_/-r::F
'\_\/._/ k



Feedback control

Control systems elements:

N/

Valve l

Hot water I/)i\l .= Card in computer
! Sianal A/D Measument signal
! gv (convert [bits]
i Thermo- \e—-IMV___ analogto  Jp========== "
| couple digital Y
: signal
[bar / psi/ i Sensor Computer Setpoint, etc.
Ampere] | € (controller T
|
1

algorithm)

Motor/
Amplifier/
Relay

(convert '\ ¢Input signal _y

digital to [bits]

Actuator

Card in computer



Measurements

* Pressure is usually the most robust, fast and cheap
measurement

— S0 we use it also for
* Level (DP)
* Flow (DP for venturi or orifice)

 Temperature is usually also robust and cheap
— Thermocouple, Thermistors (resistors), infrared, etc....

« Composition is often difficult

— Gas chromotograph (GC) is best for low concentrations but it's expensive and gives time
delay (typical 5-10 minutes)



Block diagram

orocecs d Lines are signals (" information” ):
! y = controlled variable (CV)
9d ym = measured CV
e ys = setpoint (SP)
Ys 4 . u [ g yt Y e=yYs—ym = control error
- ¥ w = manipulated variable (MV)

Ym

Im

Block diagram of negative feedback control

C = Feedback Controller = ?



Feedback controller

Measurement

Ym

Setpoint

Ys

Simplest controller algorithm: On/off controller.

1 Controller

algorithm:
u = f(Ys,Ym)
Usually: u=f(e) where
€=YsYm

Example: Common thermostat

Problem: Always cycles

Input (MV) s
u
FIGURE 5
OB-OFF ACTION
ME.ASLJ&/ET!-EI-HT

100 =

u=Q &heat)

% SIGNAL TO
YALVE

Industry: Standard algorithm for SISO controllers: PID
Industry: Standard for interactive multivariable control: MPC (model predictive control)

0=

_Mj —— SET POINT
1 I | ! [

I

|

Ul




PID controller

» Proportional control (P)

o
u=1ug+ K. (ys — y)

Input change (u-u,) is proportional to control error e.
K. = proportional gain (tuning parameter)
Uy = «bias»

Problems proportional control:
1. Get steady-state offset (especially if K. is small)

Offset (%) — 1 . 100% k: process gain

1+ Kk K.: controller gain
2. Oscillates if K, is too large (can get instability)




P-control of typical process

1.8
16| I."I II y
|I |
sl | II il Offset (70)
. K =8/k T+ 100%
12} || |I ! | C ,".I I"-,
| [
ys (sptpoint) | | [ | |
1F | III.-' [lt\ II' 'III III| "-.I_I II'H ‘\\H A
|| |'II | . I| I+ - _JI ~ I"'-_\ JI.-’II 2 O %
08} ¥ |I \Il__ ] Ko=4/K
| |I | — I I ! I". T —
I| II ] K —2/ k .
06F I| .' ,/TI |'I b c V50% offset
5 /o K =1/
A ||' [ I|I
||II ."II A /;'. "I
02t i/ v
/
0 ! 1 1 1 1 !
/ 1 2 3 4 5 g 10
min

Inltlally at steady-state (y=y.=0). Change setpoint to y,;=1 at t=1.

s has theta=0.3min and tau=1.5 min



* Fix: Add Integral action (I)

 Get Pl-control:

t

e(t)dt

u(t) = ug + Kee(t) + K. Ja

¢, = integral time (tuning parameter)
e =y, — Y (control error)

Note 1: Integral term will keep changing until
e=0 ) No steady-state offset

Note 2: Small integral time gives more effect!
(so set 4, = 99999 (large!) to turn off integral
action)

Note 3: Integral action is also called «reset
action» since it «resets» the bias.

1t

0.8r

06

0.4r

0.2r

0

TI

K.=2/k, 1=1.5 min

0

2

4

6 8

Process has theta=0.3 min and tau=1.5 min.

10
min



Add also derivative action (D):

Get PID controller
M

b
m
D: Impatlent

U(t) = uQ + Kc[e(t) + = / e(t)dt—l— TDde(t)
71 /0

P-part: MV (Au) proportional to error

This is usually the main part of the controller!

|-part: Add contribution proportional to integrated error.
Integral keeps changing as long as e#0
-> Will eventually make e=0 (no steady-state offset!)

Possible D-part: Add contribution proportional to change in (derivative of) error

Can improve control for high-order (S-shaped process response) and unstable processes,
but sensitive to measurement noise



Many alternative PID parameterizations

T his course:
u(t) = ug + Kele(t) + L [§e(t)dt + mpPe]

Alternative form :
u(t) = ug + Pe(t) + T fEe(t)dt + DI
P=K. I=K:r, D=Kp

Also other:
Proportional band = 100/K,
Reset rate = 1/ 1,

NOTE: Always check the manual for your controller!

Comment 1: Often the D-action is not on the setpoint, so the D-term becomes - 1, dy/dt
Comment 2: This is the «ideal» PID. In this course we also use the series PID (SIMC-rule). For PI they are the same.



Digital implementation (practical in
computer) of PID controller

Continuous (not p0881ble in computer):

_u0+—/ dt+K€ —|—KC Ddz(tt)

u(t)
where (t) = bias term with integral action included

Introduce:
At= sampling time
k=current value (at time t)
k — 1=previous value (at time ¢ — At)

Discrete (digital) approximations :
de(t) ~ Ek—€k—1
dat At

Integral action = «Reset» of bias:
Ur = U(t) = Up_ 1+
Conclusion: Digital PID 1mplementation

— €L —€CL __
up = Uy, + Keep + K.mp——Fx7—




PID controller tuning

de(t)
]

>y

1

T

fote(t)dt + 7

Vo

Au

u(t) = ug + Kele(t) +

3 tuning parameters:

1. (Proportional) Controller Gain: K.
2. Integral time: 7; [s]

3. Derivative time: 7p [s]

Want the system to be (TRADE-OFF!)

1. Fast intitially (K, large, tp large)

2. Fast approach to steady state (t, small)

3. Robust / stable (OPPOSITE: K, small, 1, large)

4. Smooth use of inputs (OPPOSITE: K. small, t5 small)



Tuning of your PID controller
l. “Trial & error” approach (online)

(a) P-part: Increase controller gain (K.) until the process starts oscillating or
the input saturates

(b) Decrease the gain (~ factor 2)

(c) I-part: Reduce the integral time (t,) until the process starts oscillating
(d) Increase a bit (~ factor 2)

(e) Possible D-part: Increase 1y and see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended




Il. Model-based tuning (SIMC rule)
J/

* From step response obtain
— k = Ay(«~)/ Au — process gain
— 1 - process time constant (63%)
— 0O - process time delay

kK = Ay(~)/ Au

Ay()

* Proposed SIMC controller tunings

e = KD
= min(7,4(Q+ 6))
= desired response time with control (tuning parameter!).

. Choose 7. = 6 (delay) for "tight” control
. Choose 7. > # for smoother control (but K. > 27;)

Tmax

o - normally 0 (may try 7p = m»= 2nd order time constant (e.qg.
response time measurement), but should then get new 71 and 6
based on 2nd order response)




Example SIMC rule

* From step response
— k =Ay(«)/ Au=10C /1 kW =10
— 1 =0.4 min (time constant)
— 06 =0.3 min (delay)

* Proposed controller tunings

Select 7. = 6 = 0.3 min (" tight” control):
__ 1 _ 1 04 _
¢ = %749 = 1003+03 — 0.067
7 =min(7_,4 (7« + 0)) = min(0.4,2.4) = 0.4min

0.4 03403




Simulation PID control

. Setpoint change at t=0 and input disturbance at t=5 min

1. Well tuned (SIMC): Kc=0.07, taui=0.4min
2. Too long integral time (Kc=0.07, taui=1 min) : settles slowly
3. Too large gain (Kc=0.15, taui=0.4 min) — oscillates
4, Too small integral time (Kc=0.07, taui=0.2 min) — oscillates
5. Even more aggressive (Kc=0.12, taui=0.2 min) — unstable (not shown on figure)
- 1.8 T T T T T T T T T
16}
Output (y)
12}
setpoint_ i} -
oal
061
04}
02}
Process has k=10, theta=0.3 min and tau=0.4 min.
0 1 ] 1 1 ] ] 1 ] Time [min]
0 1 2 3 4 5 6 7 8 g 10

Comment: Can avoid the setpoint overshoot for curve 1 by adding derivative action (try taud=0.3/3=0.1 with series PID) but will be more sensitive to noise



Comments tuning

Delay (0) is feedback control’'s worst enemy!

« Try to reduce it, if possible. Rule: "Pair close”

Common mistake: Wrong sign of controller!

Controller gain (K.) should be such that controller counteracts changes in output
Need negative sign around the loop ("negative feedback”)
Two ways of achieving this:

* (Most control courses:) Use a negative sign in the feedback loop. Then controller gain (K.) should
always have same sign as process gain (k)

* (Most real control systems*:) Always use K_ positive and select between

— "Reverse acting” in the normal case when the process gain (k) is positive
» because MV (u) should go down when CV (y) goes up (to get negative feedback), for example, when we use heat (u=Q) to
control room temperature (y=T).

— "Direct acting” when K is negative

— Comment: This convention is common in process control (including Aspen/Hysys simulation software)
— BUT WARNING: Be careful and read manual! Some use «direct» and «reverse» opposite!, e.g., wikipedia on PID control:
2021: https://en.wikipedia.org/wiki/PID_controller

* Including Emerson, Honeywell, ABB, Yokogawa.



3. Integrating (((SIOW») prOceSSZ If the response is

not settling after approximately 10 times the desired closed-loop time constant (so
¢/(¢.+0) >4), then you can stop the experiment and approximate the response as an
integrating process (with only two parameters, k’ and p):

/N
y(t)
Ay — Ay
Slope, k N
u(t)
Au
Ll AN
At
0

SIMC-settings (using k' = k/7): Integrating processes require
K, = %%—i—@ mainly P-action and are difficult

71 = 4(10 + 0) to control manually



4 . « FaSt» prOCeSS If the response is fast compared to the desired

closed-loop time constant (so ¢/(¢;+0) < 0.25, approximately), then you dom'’t really need so
much P-action in the controller and you can approximate the response as a delay process

(with only two parameters, k and ):

/N\

u(t) Gain,

Au

k=Ay/Au

v
== L 4

At

|

May use pure I-controller with K=1/k(¢.+9).
Same as Pl with K_=¢/k(¢.+0) and ¢4, =¢ for small ¢, (but then
actual value of ¢ does not really matter).

™~
-

Pure delay processes require
mainly I-action and are easy to
control manually



Example: Similar to shower process

Tr

F o,

Looong pipe

7V {=100s
Q

u/'_
o

V
:=20s

o<

Step
setpoint

T_ref <

d

Step disturbance (d)

To Workspace4

To ce2
> T

To Workspace

) num(s) 1 > L DQ [ 1
- taui.s J» s+1 g W 20s+1
Sumf Transport
Sum P! Tank
Pl Controller Heater Delay (pipe)
P u
To Workspace3
T
Dy .
S /-—F time
Clock

To Workspace1

I
-0

Simulink model: tunepid1_ex1
Note: level control not explicitly included in simulation (assume constant level)



Disturbance response with no control

d=T¢
F T
Tr = ° ° |ooong pipe
[V 1=100s 1
Q

oo )
u= Y T [
Q ¢:=20s

Open-loop
1.5 .

0.5¢ !

[
~ O

o< C
I

I
—]
-

Temperature
o

0.5+

—u
At |— T

— T

|

A |
T
o
|

|

|

|

|

|

|

|

|

|

-1.5

0 200 400 600 800
Time, [s]
Kc=0; taui=9999; % no control

Y%start simulation (press green button)
plot(time,u,time, T time, Tf), axis([0 800 -1.5 1.5])



[
o

P-control

and error we find it to be K, = 1.13.

o
in
— —

F
P Controller Ke=0.5 P Controller with critical gain
15 . 1.5 . .
1 E 1t
;N .
! \\. - B T — -
0.5} Dt i
/ Offset| ¢ 95
g / g
O 0 a o
a \ g 0
£ \ £
© JW o
-0.5 1 F 05
— u
-1 —T| - 1
Tf
1.5 ! ' -
1.5 l ' :
0 200 400 600 80( 0 200 400 600 800
Time, [s] Time, [s]
= F T
A A -
A I
C’LD _._|\LC /J
WV T DQ:

Kc=0.5; taui=9999; % P-control
Ystart simulation (press green button)
plot(time,u,time, T ,time, Tf), axis([0 800 -1.5 1.5]) T



Kc=0.1; taui=20; % SIMC PI-control
Ystart simulation (press green button)
plot(time,u,time, T time, Tf), axis([0 800 -1.5 1.5])

SIMC Pl control

) SIMC PI tuning rule with 7. = § = 100.

K.= (1/k)m /(e + 0) = 20/200 = 0.1; 77 = min(7q,4(7. + ¢) = 20

Pl Controller
15 :
1t
|"f( .\\
o 0.5} / )
3 ; .
[ I T
e 0O — ——+  No offset
= N
R -] S p— Ny |
T \—/A
AT,
15 l : :
200 400 600 800
= F T
A A -
A 17
L LC ]
v T [ \DL}—---*”

o

1|
—4 -9



SIMC Pl with smaller T

1 .5 T T T
o d=Te
.-'frf w%
/ Ny =T
0.5+ / N € 1= 100 -

Temperature
o

15 l RIS -
0 200 400 500 800

Time, [s]

Recommend: ;=delay p=100s because it is more robust and gives no overshoot in u



Measure also T,

d=T:

F T,

u:

Slave controller
(inner loop)

Torvionmpsee

Kc2=0.1;taui2=1; % inner loop with tauc2=10

Kc=0.119; taui=25; % outer loop with tauc=105
sim('tunepid1_ex1_cascade') %start simulation
plot(time,u,time, T time, Tf,time, T0), axis([0 800 -1.5 1.5])

/nvn\ -

: Cascade control is much better

oo

Ty T,

S

S

Master controller
(outer loop)

Cascade Controller

1.5 . . .
u
1r T -
Tf
o 0.5+ —TD i
=
D
5
= o5t Inner loop (TO): tauc=10
Outer loop (T): tauc=105
-1+r
-1.5 : : '
0 200 400 600 800
Time, [s]



Lab: The experimental setup

This is the «Whistler»

y=T[C] (attop)
u=Q [0-1] (at bottom)

First we did a step response experiment
where u was increased from 0 to 1 (manual
vontrol). The temperature y=T increased
from 20C to 54C (new steady state). This
gives k=68. The dynamics are quite slow
because it takes time to heat up the glass. ,
6=>5s, 1=120s

From this we obtained the model
parameters and SIMC tunings (with
1,=0=58)

We then put it into automatic and increased
the setpoint to 70C. The input (u=Q)
increased immediately to max=1, and we
should then have stopped the integration
(«anit windup») but we had forgotten to do
this and this is why you can see that u=Q
stayed at max=1 even after y=T has passed
the setpoint.... Not so good... but
eventually we see that it was working well.

Note: Need to use «anti-windup» to avoid
that the integral action in the controller
keeps increasing u when it actually has
saturated.




The model. Step response: k=68, 0=5s, t =120s
The controller. SIMC (with 1.=6=5s): K.=0.2, 1,=40s

’ _ L2 :f.:) =[20s

Ge=fn| C, ) LN TR T ANIBHC= Y

\

/

(R‘Y - 2 o PIOAUS?




The closed-loop response
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