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Process dynamics

• “Things take time”
• Step response (response of output y to a step in input u): 

– k = Δy(∞)/ Δu – process gain
– τ - process time constant (63%)
– θ - process time delay

• Time constant τ: Sometimes equal to residence time = V[m3]/q[m3/s] 

• Dynamic model: Can find τ (and k) from balance equations:

– Then rearrange to match standard form of 1st order linear differential equation:

Processu
input 

y



Response of linear first-order system

Remember for first order response: 
1.Starts increasing immediately 
2.Would reach new steady state after time ¿  if it kepy going with the same slope 
3.Reaches 63% of change after time ¿.
4.Approaches new steady state exponentially (has for practical purposes reached new steady state after about 4¿)

Δy(t=∞) = kΔu

Δu

Block diagram with transfer function 
for first-order process

Δy Deviation variables:
Δ𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦0
Δ𝑢𝑢 = 𝑢𝑢 − 𝑢𝑢0



More about valve equation
z

q [m3/s]

p1 p2

Linear valve: f(z)=z

Derivation: From Bernoulli’s equation for pressure drop (turbulent flow):  Δpf = k ρ v2,   v = q/A



Even more about valve equation*

*From: S. Skogestad, Chemical and Energy Process Engineering, CRC Press, 2009



Example dynamic model: Concentration change in 
mixing tank

– Assume constant V [m3] 
– Assume constant density ρ [kg/m3] 
– Assume, c (in tank) = c (outflow) [mol A/m3]
– Assume no reaction

Balances:
Mass
Component:

c
V

inflow outflow

Mass balance Component balance
Inflow ρqF [kg/s] cF qF [mol A /s]

Outflow ρq [kg/s] c q  [mol A/s]

Inventory
(“state variable”)

ρV [kg] c V [mol A]

q [m3/s]qF [m3/s]

Inventory

cF c



Feedback control
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Measurements
• Pressure is usually the most robust, fast and cheap 

measurement
– So we use it also for

• Level (DP)
• Flow (DP for venturi or orifice)

• Temperature is usually also robust and cheap
– Thermocouple, Thermistors (resistors), infrared, etc….

• Composition is often difficult
– Gas chromotograph (GC) is best for low concentrations but it’s expensive and gives time 

delay (typical 5-10 minutes)



e

ym

Block diagram of negative feedback control

Block diagram

C = Feedback Controller = ?

Process

gm



Feedback controller

Controller
algorithm: 
u = f(ys,ym)

Usually: u=f(e) where 
e=ys-ym

Measurement
         ym

Setpoint
     ys

Input (MV)
        u

Simplest controller algorithm: On/off controller. 
        Example: Common thermostat
        Problem: Always cycles

Industry: Standard algorithm for SISO controllers: PID
Industry: Standard for interactive multivariable control: MPC (model predictive control)

y=T

u=Q (heat)



PID controller

• Proportional control (P)
 

Input change (u-u0) is proportional to control error e.
Kc = proportional gain (tuning parameter)
u0: = «bias» 

Problems proportional control:
1. Get steady-state offset (especially if Kc is small)

2. Oscillates if Kc is too large (can get instability)

k: process gain
Kc: controller gain



P-control of typical process

Kc=1/k

Kc=2/k
Kc=4/k

Kc=8/k

ys (setpoint)

y

50% offset

20%

Initially at steady-state (y=ys=0). Change setpoint to ys=1 at t=1.
Process has theta=0.3min and tau=1.5 min.

min



• Fix: Add Integral action (I)
• Get PI-control:

¿I  = integral time (tuning parameter)
e = ys – y (control error)

Note 1: Integral term will keep changing until 
e=0 ) No steady-state offset

Note 2: Small integral time gives more effect! 
(so set ¿I  = 99999 (large!) to turn off integral 
action)

Note 3: Integral action is also called «reset 
action» since it «resets» the bias.
 

Kc=2/k, τI=1.5 min

Process has theta=0.3 min and tau=1.5 min.

min



• P-part: MV (Δu) proportional to error
• This is usually the main part of the controller!

• I-part: Add contribution proportional to integrated error.
• Integral keeps changing as long as e≠0
• -> Will eventually make e=0 (no steady-state offset!)

• Possible D-part: Add contribution proportional to change in (derivative of) error
• Can improve control for high-order (S-shaped process response) and unstable processes, 

but sensitive to measurement noise

Add also derivative action (D):
Get PID controller

I: PatientP:Normal D: Impatient



Many alternative PID parameterizations

Also other: 
Proportional band = 100/Kc
Reset rate = 1/ τI
Etc…..

NOTE: Always check the manual for your controller! 

Comment 1: Often the D-action is not on the setpoint, so the D-term becomes  - τD dy/dt
Comment 2: This is the «ideal» PID. In this course we also use the series PID (SIMC-rule). For PI they are the same. 



Digital implementation (practical in 
computer) of PID controller 

Integral action = «Reset» of bias:



Want the system to be (TRADE-OFF!)
1. Fast intitially (Kc large, τD large)
2. Fast approach to steady state (τI small)
3. Robust / stable (OPPOSITE: Kc small, τI large)
4. Smooth use of inputs (OPPOSITE: Kc small, τD small)

PID controller tuning



Tuning of your PID controller
I. “Trial & error” approach (online)

(a) P-part: Increase controller gain (Kc) until the process starts oscillating or 
the input saturates

(b) Decrease the gain (~ factor 2)
(c) I-part: Reduce the integral time (τI) until the process starts oscillating
(d) Increase a bit (~ factor 2)
(e) Possible D-part: Increase τD and see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended



II. Model-based tuning (SIMC rule)

• From step response obtain 
– k = Δy(∞)/ Δu – process gain
–  τ - process time constant (63%)
–  θ - process time delay

• Proposed SIMC controller tunings 

k = Δy(∞)/ Δu



Example SIMC rule

• From step response 
– k = Δy(∞)/ Δu = 10C / 1 kW = 10
–  τ = 0.4 min (time constant)
–  θ = 0.3 min (delay)

• Proposed controller tunings



Simulation PID control
• Setpoint change at t=0 and input disturbance at t=5 min 

1. Well tuned (SIMC): Kc=0.07, taui=0.4min
2. Too long integral time (Kc=0.07, taui=1 min) : settles slowly
3. Too large gain (Kc=0.15, taui=0.4 min) – oscillates
4. Too small integral time (Kc=0.07, taui=0.2 min) – oscillates
5. Even more aggressive (Kc=0.12, taui=0.2 min) – unstable (not shown on figure)

–  

2
1

3
4

1
2

3
4

Output (y)

Time [min]

setpoint

Comment: Can avoid the setpoint overshoot for curve 1 by adding derivative action (try taud=0.3/3=0.1 with series PID) but will be more sensitive to noise

Process has k=10, theta=0.3 min and tau=0.4 min.



Comments tuning
1. Delay (θ) is feedback control’s worst enemy!

• Try to reduce it, if possible. Rule: ”Pair close”!

2. Common mistake: Wrong sign of controller!
– Controller gain (Kc) should be such that controller counteracts changes in output 
– Need negative sign around the loop (”negative feedback”) 
– Two ways of achieving this:

• (Most control courses:) Use a negative sign in the feedback loop. Then controller gain (Kc) should 
always have same sign as process gain (k)

• (Most real control systems*:) Always use Kc positive and select between 
– ”Reverse acting” in the normal case when the process gain (k) is positive

» because MV (u) should go down when CV (y) goes up (to get negative feedback), for example, when we use heat (u=Q) to 
control room temperature (y=T).

– ”Direct acting” when k is negative 
– Comment: This convention is common in process control (including Aspen/Hysys simulation software)
– BUT WARNING: Be careful and read manual! Some use «direct» and «reverse» opposite!, e.g., wikipedia on PID control:
– 2021: https://en.wikipedia.org/wiki/PID_controller

* Including Emerson, Honeywell, ABB, Yokogawa.



3. Integrating («slow») process: If the response is 
not settling after approximately 10 times the desired closed-loop time constant (so 
¿/(¿c+θ) >4), then you can stop the experiment and approximate the response as an 
integrating process (with only two parameters, k’ and µ): 

Δy

Δt

Integrating processes require 
mainly P-action and are difficult 
to control manually



4. «Fast» process: If the response is fast compared to the desired 
closed-loop time constant (so ¿/(¿c+θ) < 0.25, approximately), then you dom’t really need so 
much P-action in the controller and you can approximate the response as a delay process 
(with only two parameters, k and µ): 

Δy

Δt

Pure delay processes require 
mainly I-action and are easy to 
control manually

Gain, 
k=Δy/Δu

May use pure I-controller with KI=1/k(¿c+θ).
Same as PI with Kc=¿/k(¿c+θ) and ¿I =¿ for small ¿  (but then 
actual value of  ¿ does not really matter).



Example: Similar to shower process 

u = Q
y = T
d = TF

Simulink model: tunepid1_ex1
Note: level control not  explicitly included in simulation (assume constant level)

Looong pipe
µ=100s

¿=20s



Disturbance response with no control

y = T

Looong pipe
µ=100s

¿=20s

Kc=0; taui=9999; % no control
%start simulation (press green button)
plot(time,u,time,T,time,Tf), axis([0 800 -1.5 1.5])

u = Q

u = Q
y = T
d = TF

d = TF



P-control u = Q
y = T
d = TF

TC

Ts

Offset

Kc=0.5; taui=9999; % P-control
%start simulation (press green button)
plot(time,u,time,T,time,Tf), axis([0 800 -1.5 1.5])



SIMC PI control
u = Q
y = T
d = TF

TC

Ts

No offset

Kc=0.1; taui=20; % SIMC PI-control
%start simulation (press green button)
plot(time,u,time,T,time,Tf), axis([0 800 -1.5 1.5])



Recommend: ¿c=delay µ=100s because it is more robust and gives no overshoot in u

y = T

u = Q

d = TF



TC

T0s TC

T0

Ts

Measure also T0: Cascade control is much better

Inner loop (T0): tauc=10
Outer loop (T): tauc=105

Slave controller
(inner loop)

Master controller
(outer loop)

Kc2=0.1;taui2=1; % inner loop with tauc2=10
Kc=0.119; taui=25; % outer loop with tauc=105
sim('tunepid1_ex1_cascade') %start simulation
plot(time,u,time,T,time,Tf,time,T0), axis([0 800 -1.5 1.5])

d = TF

y = T

u = Q



Lab: The experimental setup

y=T

u=Q

This is the «Whistler»

y=T [C]  (at top)
u=Q [0-1] (at bottom)

First we did a step response experiment 
where u was increased from 0 to 1 (manual 
vontrol). The temperature y=T increased 
from 20C to 54C (new steady state). This 
gives k=68. The dynamics are quite slow 
because it takes time to heat up the glass. , 
θ=5s, τ =120s 

From this we obtained the model 
parameters and SIMC tunings (with 
τc=θ=5s)

We then put it into automatic and increased 
the setpoint to 70C. The input (u=Q) 
increased immediately to max=1, and we 
should then have stopped the integration 
(«anit windup») but we had forgotten to do 
this and this is why you can see that u=Q 
stayed at max=1 even after y=T has passed 
the setpoint…. Not so good…   but 
eventually we see that it was working well. 

Note: Need to use «anti-windup» to avoid 
that the integral action in the controller 
keeps increasing u when it actually has 
saturated. 



The model. Step response: k=68, θ=5s, τ =120s
The controller. SIMC (with τc=θ=5s): Kc=0.2, τI=40s



The closed-loop response

y=T
ys=Ts =70C

u=Q
(The input is a bit noisy 
because of a noisy 
temperature measurement, 
but it works!)

max=1

min=0
Time (s)

Overshoots because of 
WINDUP problem
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