Write on board

PID control.
Practical issues

Smith Predictor (NOT PID...)
PID Controller forms
Ziegler-Nichols tuning
Windup
Digital implementation



Actual plant: G,
Model: G

Smith Predictor

y
Delay-free model: Gy -
"Smith predictor”: Gy — G (predicts y when G has delay) —{G,-G [+ K
Conventional feedback controller: K e —
Ky: designed for plant without delay (@)
4
r | ¥

Example, e Cipn
G =k L{G - Lo }—
Delay-free model: Gg = L"Tsl_l —
Go— G = —ZL_(1—e %) )
Then g
K = 1_'_;{0:5«;0(1_6—193} r L Q o G, ¥
which with Ko = %T—f_t—l - T l_.{ -
(SIMC-PI for delay free Gy) Bl
gives " Smith predictor controller” | ©
K = Ts+1

T.5+1—e—0s ) a) Smith predictor control structure; (b) rearranged Smith predictor; (¢) IMQ
(see also SIMC derivation) structure.

SP looks good in theory. BUT: It’s sensitive to time delay error AND we have found that well-tuned PID (with

Ty = 0/3) is more robust and almost always better than Smith predictor controller* FORGET SP!

* Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?" (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018)



http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

PID controller

“Ideal/Standard” t de(t
form: o) = o+ Kelet) 4 [ e +7p 01
X i

e(t) =y, — yn(t)

P- part MV (Au) proportional to error
This is usually the main part of the controller! (except for static process with no dynamics except delay)

. Make sure K_ has the right sign! With negative feedback in the loop, Kc has the same sign as the
process gain k.

. Problem: Gives steady-state offset if used without I-action. Offset= 100%/(1+K_ k)

I-part: To avoid offset, add contribution proportional to integrated error.

. Note: Larger integral time 1, gives |less I-action (turn off by selecting taul=9999)
. Sometimes called “reset time”

Physical interpretation: 1, is essentially the time it takes to “reset” the bias (u,).
. Note: Integral term keeps changing as long as e#0

-> Will eventually make e=0 (no steady-state offset!)

Possible D-part: Add contribution proportional to change in (derivative of) error
. Note: Larger derivative times more D-action (turn off by selecting taud=0).
. Can improve control for high-order (S-shaped) response, but sensitive to measurement noise



Sign of the controller gain

The most common error when tuning a controller is to use the wrong sign of the controller gain.
— One may think that this is easily detected, but | have seen loops that have been oscillating for years because
of the wrong sign (which results in positive rather than negative feedback control).
The rule in a standard negative feedback implementation (with y.-y as the controller input) is that
the sign of the controller gain (K_) and the process gain (k) should be the same. For example, recall
the SIMC-rule: K =(1/k)*(t/(t+0)).

But: Most commercial control systems only allow for positive controller gains and then instead
distinguish between «direct» and «reverse» control action.
— "Reverse acting” is used in the normal case when the process gain (k) is positive

*  because MV (u) should go down when CV (y) goes up (to get negative feedback), for example, when we use heat (u=Q) to control
room temperature (y=T%.

— ”Direct acting” is used when the process gain k is negative

*  Comment: This convention is common in process control, including most vendors such as Emerson, Honeywell, ABB,
Yokogawa and also the Aspen/Hysys simulation software. Here is from the Aspen/Hysys manual:

There are two options for the Action of the controller, which are
described in the table below:

Controller Action | Description Note common process control notation:

Direct When the PV rises above the SP, the OP increases. y = PV (process value)
When the PV falls below the SF, the OP decreases. y,=SP

Reverse When the PV rises above the SP, the OP decreases. = 0P from controller
When the PV falls below the SP, the OP increases. u=0 (OUtPUt om controlle )

*  BUT WARNING: Be careful and read the manual! Some people (maybe electrical engineers) use «direct» and «reverse»
opposite!, e.g., wikipedia on PID control (2023): https:}}en.wikipe ia.org/wiki/PID_controller



Table 7.1 Common PID Controllers

Controller | Other Names
Type Used Controller Equation Transfer Function
.. P'(s) 1
Parallel Ideal, additive, =7 1 ' & de( )) — = K (1 + — 47 s)
ISA fon‘n p(l) P + Kc(e(f) -+ 7 / e(f )d(s + ™™ d E(S) c TS D
Parallel with | Ideal, P'(s) __pS
derivative | realizable, See Exercise 7.10(a) EGs) Kell T s + 1
filter ISA standard
Series Multiplicative, See Exercise 7.11 P'(s) _ o (7 + 1
interacting EGs) Ke\ ™ " (rps + 1)
Series with | Physically ) )
derivative realizable See Exercise 7.10(b) I;(s) = K, Tls.r-: 1)( T,,.D SS ++ 11
filter Q) ! aro
o (‘) P‘(S) = K 51 + K
Expanded Noninteracting | 7 () =P + Ke() + K; / e(r) di* + Kp— = di E(s) ¢ s DS
Parallel, with | Ideal B, v 1 [ dep(r) it
proportional | controller py=p+ Kc(ep(l) i ﬁ e(r) d* + 1p— ) P'(s)= (Ep(s) +—E(s) + 'rpsEo(S))
and
derivative where ep(t) = Byy,(1) ~ Ym(0) where Ep(s) = BYp(s) — Youls)
weighting e(t) = ysp() = yud0) E(s) = Yp(s) = Yiuls)
ep(r) = 'Y)’sp(!) = ym(?) Ep(s) = ‘YY,,,(S) = You(s)
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+ many more (see manual for your control system...)
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Series to ideal form

Series (cascade) PID:

T1s+ 1)(tps + 1 K.
o(s) = AT Vs + ) Ke oo )11
TIS TIS

The settings given in this paper (K., 77, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

1 K] :
Ideal PID : ((s) = K| (l +—+ TLH) = —=< (T;T;,Hz + 118 + ]) (35)
TS TrS
we use the following translation formulas
- - ™D ™D ™D :
K' = Iif.(] +—); o= (1 —); = 36
: . =T {1+ - b= Ty (36)

Derivation: See exercise 6. Problem 3

Note: The reverse transformation (from ideal to series) is not always possible because
the ideal controller may have complex zeros.



Ys

Practical “Ideal” PID

g

¥

Y

Lo

3. Also need to avoid “windup” of the
integral action if u saturates (at umin or

T

umax) so that e = y, — y # 0 at steady

state. See next slide

N

2. To avoid “derivative kick” :

Do not take derivative of setpoint y,

/

1. For smoother control/ less sensitivity to noise: Filter the measurement.
Must require T < 0.5 7,
Typical 1/10 of closed-loop time constant: 7z = at,, a = 0.1



Integral windup

* Problem: Input saturates so e(t) does not go to zero.
* Integrator “winds up” u(t) when actual input has saturated

d
B ey o _}%L:g 1
—— Al

Actual input is m=1i .
m=u if no saturation

w(t) = ug + Kee(t) + f—; | /(;t e(t)dt

Keeps changina when e(t)#0



Anti-windup

Many approaches to avoid windup
1. Simplest: Limit u (=output from the controller) to be within
specified bounds (by updating u,)
 For example, with Sigurd’s discrete controller (later)

2. Better: Make integrator track true input using feedback correction
(see Example, Exercise and Lab)

3. Use discrete controller in velocity form
* BUT requires I-action

4. Stop integration (e.g. set 4,=9999) when saturation in input occurs
(requires logic)

Approaches 1 or 2 are recommended



Anti-windup with tracking (approach 2)

without D-action on the setp

oint N

Actuator

A
.\ Bias b
—)-KC >+ > j :
TI
——
i r
1

The idea is to «back-calculate» a correction so that u’ tracks u. That
is, we want to avoid «wind-up» of the error

u = desired input = output from the controller

e;=1t—u
where
fi=m=ac

tual input.

could be different from u for many reasons:

Selector (so another controller determines u)

i
1. Saturation (u is valve position, as shown in Fig. 3)
2.
3.

Cascade control (e.g., caused by saturation in the inner loop)

In this case u=y,, and i =y,

L )
—| Process

. Saturat ion, max
e=yT—y _ u' v
[ i
Uypin
| 1
Tra+l

Simpler common «external reset» implementation where t =t; See Exercise 11 (Problem 3)

Choice of tracking time: A common choice is 1;=1, (= integral time) or
equivalently Ky = I—_1.

T
. Note: for with t;=t, a simple positive feedback implementation of the I-action («external reset») can
be used (see Exercise 11). This implementation is very common in commercial systems (ABB, etc.).
. However, the above implementation is recommended because it gives an extra tuning pararmeter.

Note that the best the tracking time may differ for each of the three cases (saturation, selector,
cascade control)

. How does it work? At steady-state the input to the intergrator is zero, and we have
. (Kc/taul) e + (1/tauT) eT =0
->  eT=1i-u = (tauT/taul)*(Kc*e) (at steady state)
. Here Kc*e is the contribution from the P-action, so with the choice tauT=tauil, the P-action

will activate u (go out of saturation) if e «jumps» to 0, so just as y crosses its setpoint ysp.
This may be a resasonable choice.

. Choosing tauT smaller will activatate u earlier, which may be an advantage, for example, if we want to
avoid that y overshoots its setpoint. On the other hand, this may make the «anti-windup» a bit
nervous. For example, it may make the input u switch uncessesary out of saturation.

. Example electric heater. In the summer, the heater is off (umin) and y=T > ys=Ts=22C. If it gets cold, then with a
small value of tauT (less than taul), the P-action will turn on the heater before y=T reaches its setpoint (22C), which
may be good if we don't like it cold. However, it may be a danger that the heat is turned on unnecessary (although
it will only be for a short time as the integral action will turn it off again).



Example anti-windup (Approach 2)

d
=T
Step2
I
Step1 +

7|£-~Ig >y

gep —: -—P{Kc L, >§}$

o=

Saturation

u
Sum Gain *
. L
Sum4 Integrator [ >

Sum1
LTI System To Workspace1

Anti  Gai

wincts \ . 2 |:|

@-—> Tid

Clock —>

Scope

To Workspace

u

To Workspace3

Approach 2:
Feedback correction which makes u’ track u.

g=2/(10*s+1)
Pl: Kc=1.25, taui=4

Input saturation: umax=0.1, umin=-0.1
Disturbance (d): Pulse from 0 to 0.2 and back to 0 at t=10 -

Gain2= K; = taui/tauT = tracking constant

Often K= 1 is recommended (corresponds to have
tracking time = integral time)

If K;is too high the P-action may make the system go
out of saturation prematurely

No anti-windup: Set K; = 0.

File: tunepidantiwindup.mdl



0.2 |

Black: With anti-windup (K;=1)
* Much better! y(t) has only small undershoot
*  K;=100: Similar response (but recommend K;=1)

Red: Without anti-windup (K=0):
* Input u remains saturated to t=32
(long after disturbance is gone at t=20).
* y(t) must overshoot on other side
for integral of y(t) to become zero.

y(t)
o1
setpoint —
=01 F P
0.1 \ :
u(t) \
) \ / -
-0.1 ~U_,,=-01 '”:‘ — (W|thout antwindup) =
N U (with antl-wmdq_p‘) L
r
-0.2 | e /
1 - i
LN
-0.3 |-
Note: The dashed lines are the input u-'-
-0.4 | computed by the controller,
the real input ii does not go below -0.1 O
-0.5 ! ! |
0] 10 20 30 40 50

t=10: Disturbance starts
t=20: Disturbance ends

1. Black = with anti-windup (K;=1)
2. Blue = with anti-windup (K;=100)
3. Red = without anti-windup (K;=0)



Anti-windup with cascade control

Outer loop Inner loop

{'Irg
valve

u u (- YI1Y2 (.
D

u tracks 1

Yls

Selector: y,, tracks vy,

e when valve saturates* Tro |
1

TT1

Figure 25: Cascade control with anti windup using the industrial switching approach (Leal

et al.||2021).

* The selector makes sure we use anti windup in the outer loop only when the
inner loop (u) is saturating, and not just because the inner loop is a little slow.




Bumpless transfer

e We want a “soft” transition when the controller is switched
between “manual” and “auto”

— or back from auto to manual
— or when controller is retuned

* Simple solution: reset bias u, as you switch, so that u(t) =
U nual(t)-

1

i

de(t)
dt

]

>

w(t) = ug + Keole(t) + fot e(t)dt + 11

Au




Optimal PID settings

* Can find optimal settings using optimization

e SIMC-rules are close to IAE-optimal for combined setpoints and disturbances
(with given robustness in terms of M,)*

11.3.2 Tuning Relations Based on Integral
Error Criteria

Controller tuning relations have been developed that
optimize the closed-loop response for a simple process
model and a specified disturbance or set-point change.
The optimum settings minimize an integral error crite-
rion. Three popular inlcgml error criteria are

1. Integral of the absolute value of the error (IAE)

l.f\E:f le(t)|dt (11-35)
il

where the error signal e(r) is the difference between
the set point and the measurement.
2. Integral of the squared error (ISE)

X
ISE = f ()t (11-36)
4}

3. Integral of the rime-weighted absolure error
(ITAE)

ITAE =/ tle()|dt (11-37)
J0

*Chriss Grimholt and Sigurd Skogestad, ""Optimal Pl and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules" ,
Published in: J. Process Control, vol. 70 (2018), 36-46.



Methods for online tuning of PID controllers

|. Trial and error

Il. Ziegler Nichols (e exercise 8, problem 1)
— Oscillating P-control
— Relay method to get oscillations
Ill. Closed-loop response with P-control

— Shams method (see Exercise 8, Problem 1)

On-line tuning: Avoids an open-loop experiment, like a step input change.
Advantage on-line: Process is always “under control”
In practice: Both “open-loop” and “closed-loop” (online) methods are used



Tuning of your PID controller

l. “Trial & error” approach (online)

(a) P-part: Increase controller gain (K.) until the process starts oscillating
or the input saturates

(b) Decrease the gain (~ factor 2)

(c) I-part: Reduce the integral time (t,) until the process starts oscillating
(d) Increase a bit (~ factor 2)

(e) Possible D-part: Increase tyand see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended




1. Ziegler-Nichols closed-loop method (1942)

* P-control only: Increase controller gain (K.) until the process cycles with

constant amplitude' oY )

/'\ SN
AR wen

* Write down the corresponding “ultimate” period (P ) and controller gain (K,).
* Based on this “process information” obtain PID settings:

Table 11.4  Controller Settings based on the Continuous
Cyeling Method

Ziegler-Nichols K, ey ™

P (L5K_ s ==

Pl 0. 4‘7.5:'”'_ Pu"ll 2 N . .

PID 0.6K B2 p,8 <— PID is for ideal form
T}'ruuﬁ-l.u}-‘hurl_: K. T iy TTH

Pl 031K, 22P, 9 TL-modification is smoother
PID (ideal) 0.45K,, 22P, P, /63 (smaller K. and larger ¢,).

" Luyben and Luyben (1997).

Main problems ZN:
1. Too aggressive (and has no tuning parameter)
2. Two pieces of information (Pu, Ku) is too little to capture all processes. Because of this
ZN works poorly on static (delay-dominant) processes (the same applies to TL-modification)



-s
Example PI. Integrating process with delay=1, G(s) = =—.

S
Process model: k' = 1,0 = 1, (t; = ).

SIMC-tunings with7, = 6 =1 (“tight tuning”):

1 1 1.1 _
Ke=g—5=1 1737 =05

71 = min(r, 4(7, + 0)) = min(oco, 8) = 8

Ziegler-Nichols:
Experiment: P, = 4,K,, = 1.57 (=n/2) 2

PI-control: K, = 0.45 K;, = 0.71 1.8F

IMC has 1,=00

P
T,=1—’;= 3.33 1.6F
1.4F

1.2pF

o8

Y Ziegler-Nichols is usually

oak aggressive

0.2

O ] ] ] L ] ] ]
5 10 15 0 25 30 35 40
time

Setpoint change at t=0c Input disturbance at t=20



EXAMPLE: Process from Astrom et al. (1998)

2
1 gk ZN-PI
1.6f: :
14 - Astrom-PI SIMC-PI
h1l2- - - - - -
Soskd 1 SIMC-PID
I SIMC—PI 1 ZN-PI: Close to unstable
oall ¢ - ZN-PI 1 ZN-PID: unstable
d - - === Astrom-PI [M3=2}
0.2 == .= SIMC-PID
0 n 5 5 10 12 14 16 18 20
time

Figure 3: Load disturbance of magnitude 2 occurs at ¢ = 10.

| 1
go(s) = (s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1)

Approximate as first-order model with k=1, t, = 1+0.1=1.1, 6=0.1+0.04+0.008 = 0.148
Get SIMC PI-tunings (t.=0): K, =1 * 1.1/(2* 0.148) = 3.71, t,=min(1.1,8* 0.148) = 1.1

Approximate as second-order model with k=1, t, = 1, 1,=0.2+0.02=0.22, 6=0.02+0.008 = 0.028
Get SIMC PID-tunings (t.=0): K, =1 *1/(2*0.028) = 17.9, t,=min(1,8* 0.028) = 0.224, 15=0.22



Astrgm relay method (1984): Alternative
approach to obtain cycling (and K )

* Avoids operating at limit to instability

e Use ON/OFF controller (=relay) were input u(t) varies +-d
(around nominal)

* Switch when output y(t) reaches +- a, (deadband) (around
setpoint; can use a,=0)

Example: Thermostat in your home

Caa a.

Ry 2 4./ _
NEY ae= - . - ~..¢:\ :} {;\* -f
I N SN

g — A o ll__l ;—-‘ - £

* From this obtain P, and

4d <——d: amplitude u(t) (set by user)

_na\

u
a: amplitude y(t) (from experiment)



I1l. Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

0.8 —

0.7

0.6

0.5

Start from steady state and do step P-response
1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:
0.4
dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
Ayu =0.54 b=dyinf/dys % offset parameter
A =1.152*Mo”2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))

0.3

0.2

0.1 2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61%7)]

0 e e tau = theta*r
0.1 1 ) ! I I I 3. CAN THEN USE SIMC Pl-rule
0 2 4 3 8 10 12 T 1) =] ZU
0

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)
See Exercise 8!



Example E2 (Further continued) We want to derive Pl- and PID-settings for the
Process

(—0.35 + 10,085 + 1)
(25 + 1{ls + D045 + 100.25 + 13{0.05s + 1)°

gols) =

using the SIMC tuning rules with the “default™ recommendation = = &. From the
closad-loop setpoint response, we obtained in a previous example a first-order model
with parameters & = 0994, 8 = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with . =8 = 1.67 are

Ply: K.=0.90, =3

From the full-order model gods) and the half rule, we obtained in a previous ex-
ample a first-order mode] with parameters k = 1,8 = 1.47, r; = 2.5. The resulting
SIMC PlI-settings with t. =& = 1.47 are

PIh.n.lF-ruJ-l:: .ﬁ'—,_- ='|].3\5|:|, Tr =2.5.

From the full-order model go(s) and the half rule, we obtained a second-order model
with parameters k = 1,0 =0.77, 1 =2, 7 = 1.2. The resulting SIMC PID-settings
with . =8 =0.77 are

Series PID: K.=1200, 1,=2, tp=1.2

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f =1 4 o /t; = 1.60, and we have

Ideal PID: K. =K. f = 169, =1 f =32, p=1tn/f =0.75.
(5.30)

23



April 4-8, 2004

160 5. Skogestad and C. Grimholt

1.5— L] 1 i
PIIHI’-'L-B

o

e 1

E Pl

=

O 05 PID -
':;‘ i i i ]

Q 5 10 15 20

[MPUT w

lime

Fig. 5.6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with 1, = 8.
Setpoint change at t = 0 and input (load) disturbance at ¢ = 10. For the PID controller, D-action is
only on the feedback signal, i.e., not on the setpoint g

24



Effect of sampling

\swkﬂ sigrel

All real controllers are digital, based on sampling ¢t k=present time
¢ t = sampling time (typical 1 sec. in process control, but could be MUCH faster)

Max sampling time (Shannon): ¢ t < /2, but preferably much smaller (¢, = closed-loop response time)

With continuous methods: Approximate sampling time as effective delay p= ¢ t /2

Strange things can happen if ¢ tis too large:

T Reconstructed signal

U["lg].[ldl signal ¢ t =0.02

BANAAT
U”“\f VAR

\ Sampled values
Figure 6-8: Falsification due to undersampling

Fa
.||'

Figure 6-8 illustrates in a particularly drastic manner the consequences
of a violation of the Shannon theorem. A sinusoidal original signal with
a frequency of 60 Hz is sampled with a frequency of 50 Hz, although the

camnline fremiencvy chinonld bhe hicher than 1270 Hy The coneeanence




Digital (discrete) implementation of first-order filter

Continuous s-domain
Ym () =
TrsY(s) + y(s) = Ym(s)
Continuous time domain
(t) — Ym (t)

y(s) =

dy(t)

TF=g T Y

Trs+1

of measurement*

t-At

~ + -+

k-1

Discrete (digital) approximations :
LWk — Yr—1) + Y = Ym.k

Rearrange

where
@ p—

Yk = QYm.k + (1 — Q)yr_1

1

14+7p /At

T’— .

',J,.F =0 = a =1 (no filtering)

TF:ﬂfTﬂﬂ:U.E}
T =9At=a=0.1

But: T should be selected independent of At

Typical: T = 0.1 T, (normally much larger than At).

*Equivalent to “exponentially moving average” of time series data_

\ 4

Tuning: Select ¢ =0.1

Comment. «Normal» moving
average (not as good) for last 10
measurements is

9
1
Yk = E Z Ymk-n
n=0




“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement; see previous slide)

Discrete (digital) implementation
practical in computer) of PID controller

CODtiIlU.OU_S (IlOt pOSSible n Computer) . e(t)=y,—v,y = filtered measurement

K t <«——Normally: Use -dy/dt rather than de/dt
U(t) = Ug + —_— €(t)dt —|—KC€(t) + KCTD dz(tt) to avoid diffe rentiation of setpoint
TI 0

()
where @(t) = “bias” term with integral action included

t-At t

k-1 k

v

Digital PID implementation:

= ~ ] K. kward Eul N , .
U = U(t) = Up—1 + T—IekAt (Backward Euler) This is Sigurd’s recommendation

\ — — _ _u ”
up = U + K.ep — KcTDykTyfl = “Alt. 3” (see next page)

To avoid windup (and get bumpless transfer between manual and auto):

After implementing uy, adjust the bias @y, (which becomes i at the next sample point) so that vy = m = actual input.

With Pl-control this gives @y =m Koep_q.

Comment: This implementation has the problem that the controller may go prematurely out of saturation if ep crosses () for a short time
(e.g. becanse of measurement noise) or hecanse of derivative action. To avoid this we may instead require that i,_; should not exceed
War OF Umin, Where we may set these limits to be larger than the true lmits for m. For example, if m is limited to be within 0 and 1
we may set ue.=1.5 and w0, = —0.5. There will then be some windup, but not too much, and we avoid that we prematurely go out

of saturation.



Comparison with book: Digital implementation of PID controllers

Alt. 1 (position form)

p(t) = F + K,|e(r) +le L\ e(i*) dr* + 15

de(r)
r ][?—13)

Note: p = output from controller

Finite difference approximation:

! k
£ e(t*) drt == 2 ;AL

1

(7-24)

€ — Cf=|

de
dt At

(7-25)
where

At = the sampling period (the time between successive
measurements of the controlled variable)
e; = error at the kth sampling instant for k= 1,2, . ..

Substituting Egs. 7-24 and 7-25 into (7-13) gives the
position form,

k T
pe=p + Kc['ek + at Eﬂf + _D(Ej; - E',I,;_ﬂ] (7-26) Alt 1
iy i=1 At

e, = present sampled value = e(t)
e, = previous sample = e(t-At)
e, = e(t-2At)

AIE 'th% 1‘2%%!;9 fgj:.:EYIl;feoc%L in controller output

is calculated, The velocity form can be derived by writing
Eq. 7-26 for the (k — 1) sampling instant:

_ Ar &l T
pr-1 = p + K¢ [Ekul T ;§ e + E(ekwl = ex-7)

{7-27)

Note that the summation still begins at j = 1, because it
is assumed that the process is at the desired steady state
for j = 0, and thus ¢; = 0 for j = 0. Subtracting Eq. 7-27
from (7-26) gives the velocity form of the digital P1D
algorithm:

At Velocity form
Apr=pk—Pg1= Kc[(f-’k = e}t o

+ %(“3.&- = 2ey t e;c—z)] (7-28)

Alt. 2

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)
Pk = Pk + Kclex + B (ex — ex—1)]

where we update ("reset” ) the bias: pp = pr_1 + Ifc%tek
To avoid windup and to get bumpless transfer:

Adjust bias p; so that p, only exceeds limits by small amount

The velocity form has three advantages over the posi-
tion form:

1. Tt inherently contains antireset windup, because
the summation of errors is not explicitly calculated.

2, This output is expressed in a form, Apy, that can
be utilized directly by some final control elements,
such as a control valve driven by a pulsed stepping
motor.

3. For the velocity algorithm, transferring the con-
troller from manual to automatic model does
not require any initialization of the output (p in

A niinor disadvantage of the velocity form is that the:
integral mode must be included, When the set point is.
constant, it cancels out in both the proportional and de-.
rivative error terms. Consequently, if the integral mode .
were omitted, the process response to a disturbance
would tend to drift away from the set point. '

=Bumpless
transfer

? This is a major
disadvantage
of Alt. 2



Block diagram symbols
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Figure 9-1: Types of characteristic curves




Should | buy a valve positioner?

e Usually not, if the valve is for automatic control

* But it may be difficult to avoid because most vendors include them
* |f you can measure the flow, then a slave flow controller eliminates the need to

buy a valve positioner.
* Also, the valve positioner is often slow (and tunings cannot be changed) and it
then adds an effective delay which may make feedback control difficult

Control
valve

L7 Air supply
K------ Control signal

™

Positioner




Conclusion PID

Use SIMC-tunings for Kc, taui, taud
— Tuning parameter tauc
— Note that taud is for cascade PID form
Add filter on noisy measurements
— To avoid «nervous» MV (= controller output)

— First-order filter 1/(tauf*s+1).

e Typical tauf=0.1*tauc
T,s+11,5+1

T,S th+1

* Overall controller (cascade form) is then: C(s) = K.
e Usually taud=0 and often tauf=0.
Add anti-windup

— Recommend «input tracking».
* Tracking constant K;. Typical K;=1

May in some cases add filter on setpoint (2-DOF control)
— Less general approach: Use a different P-gain K for the setpoint
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