
PID control.
Practical issues

Smith Predictor (NOT PID…)
PID Controller forms

Ziegler-Nichols tuning
Windup

Digital implementation

Write on board

Smith Predictor

SP looks good in theory. BUT: It’s sensitive to time delay error AND we have found that well-tuned PID (with

τD = θ/3) is more robust and almost always better than Smith predictor controller* FORGET SP!
* Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018)

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

• e(t) = ys – ym(t)

• P-part: MV (Δu) proportional to error
• This is usually the main part of the controller! (except for static process with no dynamics except delay)
• Make sure Kc has the right sign! With negative feedback in the loop, Kc has the same sign as the

process gain k.
• Problem: Gives steady-state offset if used without I-action. Offset= 100%/(1+Kck)

• I-part: To avoid offset, add contribution proportional to integrated error.
• Note: Larger integral time τI gives less I-action (turn off by selecting tauI=9999)
• Sometimes called “reset time”

Physical interpretation: τI is essentially the time it takes to “reset” the bias (u0).

• Note: Integral term keeps changing as long as e≠0
-> Will eventually make e=0 (no steady-state offset!)

• Possible D-part: Add contribution proportional to change in (derivative of) error
• Note: Larger derivative times more D-action (turn off by selecting taud=0).
• Can improve control for high-order (S-shaped) response, but sensitive to measurement noise

“Ideal/Standard”
form:

PID controller

Sign of the controller gain
• The most common error when tuning a controller is to use the wrong sign of the controller gain.

– One may think that this is easily detected, but I have seen loops that have been oscillating for years because
of the wrong sign (which results in positive rather than negative feedback control).

• The rule in a standard negative feedback implementation (with ys-y as the controller input) is that
the sign of the controller gain (Kc) and the process gain (k) should be the same. For example, recall
the SIMC-rule: Kc=(1/k)*(τ/(τc+θ)).

• But: Most commercial control systems only allow for positive controller gains and then instead
distinguish between «direct» and «reverse» control action.

– ”Reverse acting” is used in the normal case when the process gain (k) is positive
• because MV (u) should go down when CV (y) goes up (to get negative feedback), for example, when we use heat (u=Q) to control

room temperature (y=T).

– ”Direct acting” is used when the process gain k is negative

• Comment: This convention is common in process control, including most vendors such as Emerson, Honeywell, ABB,
Yokogawa and also the Aspen/Hysys simulation software. Here is from the Aspen/Hysys manual:

• BUT WARNING: Be careful and read the manual! Some people (maybe electrical engineers) use «direct» and «reverse»
opposite!, e.g., wikipedia on PID control (2023): https://en.wikipedia.org/wiki/PID_controller

Note common process control notation:
y = PV (process value)
ys = SP
u = OP (output from controller)

+ many more (see manual for your control system…)

Series to ideal form

Derivation: See exercise 6. Problem 3

Note: The reverse transformation (from ideal to series) is not always possible because
the ideal controller may have complex zeros.

ys

y

2. To avoid “derivative kick” :
Do not take derivative of setpoint ys

u

1. For smoother control/ less sensitivity to noise: Filter the measurement.
Must require 𝜏𝜏𝐹𝐹 ≤ 0.5 𝜏𝜏𝑐𝑐
Typical 1/10 of closed-loop time constant : 𝜏𝜏𝐹𝐹 = 𝛼𝛼𝜏𝜏𝑐𝑐 , 𝛼𝛼 ≈ 0.1

1
®¿D s+ 1

Practical “Ideal” PID

3. Also need to avoid “windup” of the
integral action if u saturates (at umin or
umax) so that 𝑒𝑒 = 𝑦𝑦𝑠𝑠 − 𝑦𝑦 ≠ 0 at steady
state. See next slide

Integral windup
• Problem: Input saturates so e(t) does not go to zero.
• Integrator “winds up” u(t) when actual input has saturated

Actual input is m= �𝑢𝑢 .
m=u if no saturation

d

Anti-windup

Many approaches to avoid windup
1. Simplest: Limit u (=output from the controller) to be within

specified bounds (by updating u0)
• For example, with Sigurd’s discrete controller (later)

2. Better: Make integrator track true input using feedback correction
(see Example, Exercise and Lab)

3. Use discrete controller in velocity form
• BUT requires I-action

4. Stop integration (e.g. set ¿I =9999) when saturation in input occurs
(requires logic)

Approaches 1 or 2 are recommended

Anti-windup with tracking (approach 2)

The idea is to «back-calculate» a correction so that u’ tracks u. That
is, we want to avoid «wind-up» of the error
 eT = �𝑢𝑢 – u
where
 u = desired input = output from the controller
 �𝑢𝑢 = m = actual input.

�𝑢𝑢 could be different from u for many reasons:
1. Saturation (u is valve position, as shown in Fig. 3)
2. Selector (so another controller determines u)
3. Cascade control (e.g., caused by saturation in the inner loop)

• In this case u=y2s and �𝑢𝑢 =y2

Choice of tracking time: A common choice is τT=τI (= integral time) or
equivalently 𝑲𝑲𝑻𝑻 ≡

𝝉𝝉𝑰𝑰
𝝉𝝉𝑻𝑻

= 𝟏𝟏.
• Note: for with τT=τ, a simple positive feedback implementation of the I-action («external reset») can

be used (see Exercise 11). This implementation is very common in commercial systems (ABB, etc.).
• However, the above implementation is recommended because it gives an extra tuning pararmeter.

Note that the best the tracking time may differ for each of the three cases (saturation, selector,
cascade control)

• How does it work? At steady-state the input to the intergrator is zero, and we have
• (Kc/tauI) e + (1/tauT) eT = 0
 -> eT= �𝑢𝑢 -u = (tauT/tauI)*(Kc*e) (at steady state)
• Here Kc*e is the contribution from the P-action, so with the choice tauT=tauiI, the P-action

will activate u (go out of saturation) if e «jumps» to 0, so just as y crosses its setpoint ysp.
This may be a resasonable choice.

• Choosing tauT smaller will activatate u earlier, which may be an advantage, for example, if we want to
avoid that y overshoots its setpoint. On the other hand, this may make the «anti-windup» a bit
nervous. For example, it may make the input u switch uncessesary out of saturation.

• Example electric heater. In the summer, the heater is off (umin) and y=T > ys=Ts=22C. If it gets cold, then with a
small value of tauT (less than tauI), the P-action will turn on the heater before y=T reaches its setpoint (22C), which
may be good if we don’t like it cold. However, it may be a danger that the heat is turned on unnecessary (although
it will only be for a short time as the integral action will turn it off again).

Simpler common «external reset» implementation where τT =τI . See Exercise 11 (Problem 3)

u

To Workspace3

y

To Workspace1

Tid

To Workspace

Sum4

Sum1Sum

Step2

Step1

Step

Scope

Saturation

g

LTI System1
s

Integrator
100

Gain2

1/taui

Gain1

Kc

Gain

Clock

Anti
windup

g= 2/(10*s+1)
PI: Kc=1.25, taui=4

Input saturation: umax=0.1, umin=-0.1
Disturbance (d): Pulse from 0 to 0.2 and back to 0 at t=10

Example anti-windup (Approach 2)

Approach 2:
Feedback correction which makes u’ track u.
• Gain2= KT = taui/tauT = tracking constant
• Often KT= 1 is recommended (corresponds to have

tracking time = integral time)
• If KT is too high the P-action may make the system go

out of saturation prematurely
• No anti-windup: Set KT = 0.

d

File: tunepidantiwindup.mdl

u
�𝑢𝑢

1. Black = with anti-windup (KT=1)
2. Blue = with anti-windup (KT=100)
3. Red = without anti-windup (KT=0)

u (with anti-windup)
Umin= -0.1

t=10: Disturbance starts
t=20: Disturbance ends

u (without anti-windup)

Note: The dashed lines are the input u
computed by the controller,
the real input �𝑢𝑢 does not go below -0.1 0

y(t)

setpoint

Black: With anti-windup (KT=1)
• Much better! y(t) has only small undershoot
• KT=100: Similar response (but recommend KT=1)

Red: Without anti-windup (KT=0):
• Input u remains saturated to t=32

(long after disturbance is gone at t=20).
• y(t) must overshoot on other side

for integral of y(t) to become zero.

u(t)

Anti-windup with cascade control

Inner loopOuter loop valve

Selector: y2s tracks y2
when valve saturates*

u tracks �𝑢𝑢

|.|

* The selector makes sure we use anti windup in the outer loop only when the
inner loop (u) is saturating, and not just because the inner loop is a little slow.

Bumpless transfer

• We want a “soft” transition when the controller is switched
between “manual” and “auto”
– or back from auto to manual
– or when controller is retuned

• Simple solution: reset bias u0 as you switch, so that u(t) =
umanual(t).

Optimal PID settings
• Can find optimal settings using optimization
• SIMC-rules are close to IAE-optimal for combined setpoints and disturbances

(with given robustness in terms of Ms)*

*Chriss Grimholt and Sigurd Skogestad, ''Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules'' ,
Published in: J. Process Control, vol. 70 (2018), 36-46.

Methods for online tuning of PID controllers

I. Trial and error
II. Ziegler Nichols (see Exercise 8, Problem 1)

– Oscillating P-control
– Relay method to get oscillations

III. Closed-loop response with P-control
– Shams method (see Exercise 8, Problem 1)

On-line tuning: Avoids an open-loop experiment, like a step input change.
Advantage on-line: Process is always “under control”
In practice: Both “open-loop” and “closed-loop” (online) methods are used

Tuning of your PID controller

I. “Trial & error” approach (online)
(a) P-part: Increase controller gain (Kc) until the process starts oscillating

or the input saturates
(b) Decrease the gain (~ factor 2)
(c) I-part: Reduce the integral time (τI) until the process starts oscillating
(d) Increase a bit (~ factor 2)
(e) Possible D-part: Increase τD and see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended

II. Ziegler-Nichols closed-loop method (1942)
• P-control only: Increase controller gain (Kc) until the process cycles with

constant amplitude:

• Write down the corresponding “ultimate” period (Pu) and controller gain (Ku).
• Based on this “process information” obtain PID settings:

(ideal)

PID is for ideal form

TL-modification is smoother
(smaller Kc and larger ¿I).

Main problems ZN:
1. Too aggressive (and has no tuning parameter)
2. Two pieces of information (Pu, Ku) is too little to capture all processes. Because of this
 ZN works poorly on static (delay-dominant) processes (the same applies to TL-modification)

IMC has τI=∞

Ziegler-Nichols is usually
aggressive

Setpoint change at t=0c Input disturbance at t=20

Example PI. Integrating process with delay=1, 𝐺𝐺 𝑠𝑠 = 𝑒𝑒−𝑠𝑠

𝑠𝑠
.

Process model: 𝑘𝑘′ = 1,𝜃𝜃 = 1, (𝜏𝜏1= ∞).
SIMC-tunings with 𝜏𝜏𝑐𝑐 = 𝜃𝜃 = 1 (“tight tuning”):

Ziegler-Nichols:
Experiment: 𝑃𝑃𝑢𝑢 = 4,𝐾𝐾𝑢𝑢 = 1.57 (=π/2)
PI-control: 𝐾𝐾𝑐𝑐 = 0.45 𝐾𝐾𝑢𝑢 = 0.71

 𝜏𝜏𝐼𝐼=
𝑃𝑃𝑢𝑢
1.2

= 3.33

1. Approximate as first-order model with k=1, τ1 = 1+0.1=1.1, θ=0.1+0.04+0.008 = 0.148
Get SIMC PI-tunings (τc=θ): Kc = 1 * 1.1/(2* 0.148) = 3.71, τI=min(1.1,8* 0.148) = 1.1

2. Approximate as second-order model with k=1, τ1 = 1, τ2=0.2+0.02=0.22, θ=0.02+0.008 = 0.028
Get SIMC PID-tunings (τc=θ): Kc = 1 * 1/(2* 0.028) = 17.9, τI=min(1,8* 0.028) = 0.224, τD=0.22

ZN-PI: Close to unstable
ZN-PID: unstable

Åstrøm relay method (1984): Alternative
approach to obtain cycling (and Ku)

• Avoids operating at limit to instability
• Use ON/OFF controller (=relay) were input u(t) varies +-d

(around nominal)
• Switch when output y(t) reaches +- a0 (deadband) (around

setpoint; can use a0=0)
• Example: Thermostat in your home

• From this obtain Pu and
d: amplitude u(t) (set by user)

a: amplitude y(t) (from experiment)
𝐾𝐾𝑢𝑢 =

4𝑑𝑑
𝜋𝜋𝜋𝜋

III. Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

Kc0=1.5
Δys=1

Δyu=0.54
Δyp=0.79

tp=4.4

Start from steady state and do step P-response
1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys % offset parameter
A = 1.152*Mo^2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))

2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]
tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)
See Exercise 8!

Δy∞

Alternative to Ziegler-Nichols closed-loop experiment: Obtains more information and avoids cycling.

23

April 4-8, 2004 KFUPM-Distillation Control Course 24

Effect of sampling
• All real controllers are digital, based on sampling
• ¢ t = sampling time (typical 1 sec. in process control, but could be MUCH faster)
• Max sampling time (Shannon): ¢ t < ¿c/2, but preferably much smaller (¿c = closed-loop response time)
• With continuous methods: Approximate sampling time as effective delay µ= ¢ t /2
• Strange things can happen if ¢ t is too large:

¢ t =0.02

¢ t

yk
Yk-1 Yk+1

k=present time

Digital (discrete) implementation of first-order filter
of measurement*

ym y

*Equivalent to “exponentially moving average” of time series data. See Exercise 8, Problem 2

Tuning: Select ¿F = 0.1 ¿c

t

k

t-Δt

k-1

But: τF should be selected independent of Δt
Typical: τF = 0.1 τc (normally much larger than Δt).

Comment. «Normal» moving
average (not as good) for last 10
measurements is

𝑦𝑦𝑘𝑘 =
1

10
 �
𝑛𝑛=0

9

𝑦𝑦𝑚𝑚,𝑘𝑘−𝑛𝑛

Discrete (digital) implementation
(practical in computer) of PID controller

This is Sigurd’s recommendation
= “Alt. 3” (see next page)

(Backward Euler)

e(t) = ys – y, y = filtered measurement

“How to program a PID controller in 5 minutes.” (In addition you should filter the measurement; see previous slide)

t

k

t-Δt

k-1

Normally: Use -dy/dt rather than de/dt
to avoid differentiation of setpoint

Comparison with book: Digital implementation of PID controllers

Finite difference approximation:

?

ek = present sampled value = e(t)
ek-1 = previous sample = e(t-Δt)
ek-2 = e(t-2Δt)

Velocity form

=Bumpless
transfer

Note: p = output from controller

Alt. 1

Alt. 2

Alt. 3 (Sigurd’s with bias as extra state, better than Alt. 1 and Alt. 2)

? This is a major
disadvantage
of Alt. 2

Alt. 1 (position form)
Alt. 2 (velocity form)

only exceeds limits by small amount

Block diagram symbols

Should I buy a valve positioner?

• Usually not, if the valve is for automatic control
• But it may be difficult to avoid because most vendors include them

• If you can measure the flow, then a slave flow controller eliminates the need to
buy a valve positioner.

• Also, the valve positioner is often slow (and tunings cannot be changed) and it
then adds an effective delay which may make feedback control difficult

Conclusion PID
• Use SIMC-tunings for Kc, taui, taud

– Tuning parameter tauc
– Note that taud is for cascade PID form

• Add filter on noisy measurements
– To avoid «nervous» MV (= controller output)
– First-order filter 1/(tauf*s+1).

• Typical tauf=0.1*tauc
• Overall controller (cascade form) is then: C(s) = Kc

τ𝐼𝐼𝑠𝑠+1
τ𝐼𝐼𝑠𝑠

τ𝑑𝑑𝑠𝑠+1
τ𝐹𝐹𝑠𝑠+1• Usually taud=0 and often tauf=0.

• Add anti-windup
– Recommend «input tracking».

• Tracking constant KT. Typical KT=1
• May in some cases add filter on setpoint (2-DOF control)

– Less general approach: Use a different P-gain Kcs for the setpoint

	PID control.�Practical issues
	Smith Predictor
	PID controller
	Sign of the controller gain
	Slide Number 5
	Series to ideal form
	Slide Number 7
	Integral windup
	Anti-windup
	Anti-windup with tracking (approach 2)
	Slide Number 11
	Slide Number 12
	Anti-windup with cascade control
	Bumpless transfer
	Optimal PID settings
	Methods for online tuning of PID controllers
	Tuning of your PID controller�I. “Trial & error” approach (online)
	II. Ziegler-Nichols closed-loop method (1942)
	Slide Number 19
	Slide Number 20
	Åstrøm relay method (1984): Alternative approach to obtain cycling (and Ku)
	III. Shams’ method: Closed-loop setpoint response with P-controller with about 20-40% overshoot
	Slide Number 23
	Slide Number 24
	Effect of sampling
	Digital (discrete) implementation of first-order filter of measurement*
	Discrete (digital) implementation (practical in computer) of PID controller
	Comparison with book: Digital implementation of PID controllers
	Block diagram symbols
	Should I buy a valve positioner?
	Conclusion PID

