
PID Tuning
using the SIMC rules

Sigurd Skogestad
NTNU, Trondheim, Norway

Need a model for tuning

 Model: Dynamic effect of change in input u (MV) on
output y (CV)

 First-order + delay model for PI-control

 Second-order model for PID-control

 Recommend: Use second-order model (PID control) only if ¿2>µ

MODEL

1. Step response experiment

 Make step change in one u (MV) at a time
 Record the output (s) y (CV)

MODEL, Approach 1: From data

STEP IN INPUT u

RESULTING OUTPUT y

θ: Delay - Time where output does not change
τ1: Time constant - Additional time to reach
 63% of final change
k = ∆ y(∞)/∆ u : Steady-state gain

Δy(∞)

Δu

MODEL, Approach 1

If the output y keeps ramping (with little sign of flattening) after about 4 times the delay θ
then you can use an integrating process model (so you don’t need τ1).

Step response first-order process

Step response integrating process

Δy

Δt

MODEL, Approach 1

Slope k’ = «integrating process gain»

2. Model reduction of more complicated model

 Start with complicated stable model on the form

 Want to get a simplified model on the form

 Most important parameter is the “effective” delay θ
 Use second-order model only if ¿2>µ

MODEL, Approach 2: From more complicated model

Details:
MODEL, Approach 2

Example 1

Half rule

MODEL, Approach 2

s=tf('s')
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)
g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)]
step(g,g1,g2)

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1
Step Response

Time (seconds)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Step Response

Time (seconds)

Am
pl

itu
de

Example 2

Original (third-order with inverse response)
First-order approx. using half rule
Second-order approx. using half rule

9

half rule

3

MODEL, Approach 2

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) ≈ 1
0.2−0.08 𝑠𝑠+1

(rule T3).
Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) ≈ 1 (rule T1b) which would reduce the effective delay by 0.05 (instead
of 0.08). In any case, it only has a small effect om the effective delay, so it does not matter much for the final result.

half rule

3

MODEL, Approach 2

April 4-8, 2004 KFUPM-Distillation Control Course 12

g0: Original complicated system
(with 2 zeros and 8 poles)

g2: 2nd order with delay (half rule, θ=0.77)

g1: 1st order with delay (half rule, θ=1.47)

Example 3.

MODEL, Approach 2

Example 4. Integrating process

Example. g0 = 5/(s*(3*s+1)),
g = 5*exp(-1.5*s)/s,
step(g,g0,10) 13

Doesn’t look so good
But it’s OK

Approximation of LHP-zeros

τc = desired closed-loop time constant

14

MODEL, Approach 2

Normally, we should approximate T0 by
a “close-by” τ0 .
• BUT: The goal is to use the model for

control purposes, so we should keep
(i.e., not approximate) the τ which is
closest to the desired τc.

In Example E3, we have two possible values for
τ0 , namely 20 and 1. Since T0=15, it seems clear
that we should select the closest τ0 = 20 and use
rule T2.
• But what if T0=2, maybe selecting τ0 = 1 is

better (and using rule T1)?
• No, this is not clear. Since τc =θ is between

0.05 (PID) and 0.15 (PI), we may want to
keep τ =1 which is closest to τc ,that is, also in
this case select τ0 = 20 (and use rule T2)

• This may seem surprising, but. in any case, it
turns out that it will not matter very much for
the PI/PID-tunings for this example (try!),
because k/tau1 (and thus Kc) will not change
much and because tauI =
min(tau,4(tauc+theta)).

• Of course, if T0 gets very close to 1, then we
should select τ0 = 1.

Generally, the LHP-zeros approximation
rules results in acceptable (robust) PI/PID-
settings, but not necessarily the “optimal”
settings.
See: Exam 2022, Problem 1 and Problem 5d

g0

g2

g1

PID-controller (from 2nd order model) will give performance improvement because τ2 > θ

(you are not expected to remember this)

Step response (without control)

15

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)
g1=1.5*exp(-0.15*s)/(1.05*s+1)
g2=1.5*exp(-0.05*s)/((s+1)*(0.15*s+1))
step(g0,g1,g2,1)

Note: It’s the initial
response that matters
for feedback control
(time from 0 to about 5*tauc)

g1
g0, g2

g0

g1, g2

Alternative: Obtain model from data numerically. Here: use procest (matlab)- but
procest seems not to be reliable when I study other cases

% We generate some artifical data from a high-order model
s=tf('s')
G = 3*(1-0.1*s)/((10*s+1)*(3*s+1)*((s+1)^3))
Ts=1; % sampling time 1 s (Comment: This may be too long; could make shorter to fit only initial response)
t = Ts*[0:109]';
u = [zeros(10,1); ones(100,1)]; % Step response
y = lsim(G,u,t);

% Now fit the data to a second-order plus delay model using Matlab
data=iddata(y,u,Ts); %
type=('P2D') % P2D = 2nd order model + delay
sys = procest(data,type)

% Compare the two models

k=sys.Kp; tau1=sys.Tp1; tau2=sys.Tp2; Td=sys.Td;
Gfit = k*exp(-Td*s)/((tau1*s+1)*(tau2*s+1))
step(G,Gfit,'--')
figure(2),step(G,Gfit,'--',10)

OUTPUT FROM procest (MATLAB):

Process model with transfer function:
 Kp
 G(s) = ----------------- * exp(-Td*s)
 (1+Tp1*s)(1+Tp2*s)

 Kp = 2.9986
 Tp1 = 9.6838
 Tp2 = 3.9211,
 Td = 2.478
 Half rule: Gives similar result 16

Half rule:

Kp = 3
Tp1 = 10
Tp2=3+0.5=3.5
Td=0.5+2*1+0.1=2.6

 Time domain (“ideal” PID)

 Laplace domain (“ideal”/”parallel” form)

 For our purposes. Simpler with cascade/series form

 Usually τD=0. Then the two forms are identical.
 Only two parameters left (Kc and τI)
 How difficult can it be to tune???

 Surprisingly difficult without systematic approach!

PID controller
e

Tuning of PID controllers
 SIMC tuning rules (“Skogestad IMC”)(*)

 Main message: Can usually do much better by taking a systematic approach
 Key: Look at initial part of step response

 Initial slope: k’ = k/τ1

 One tuning rule!

• τc: desired closed-loop response time (tuning parameter)
• For robustness select: τc ≥ θ

Let’s start with the CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
 (Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:

Derivation of SIMC-PID tuning rules

 PI-controller (based on first-order model)

 For second-order model add D-action.
For our purposes, simplest with the “series” (cascade) PID-form:

Basis: Direct synthesis (IMC)

Closed-loop response to setpoint change

Idea: Specify desired response:

and from this get the controller. ……. Algebra:

SIMC-tunings

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!

Time delay is not really desired
but it cannot be avoided

Note: Process g has time delay (θ)

IMC Tuning = Direct Synthesis
Algebra:

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay θ, than the Smith
Predictor controller from which it was derived. We are lucky .
Reference: Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .

IMC-tuning is the same as “Lambda-tuning”: τc is sometimes called λ

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

Example step setpoint response
(with choice τc=θ =2)

23

s=tf(‘s’);
k=1; tau=10; theta=2;
g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Kc=(1/k)*(tau/(tauc+theta)); % Kc=2.5
taui=tau;
c = Kc*(1+ 1/(taui*s));
T = g*c/(1+g*c);
Tideal = exp(-theta*s)/(tauc*s+1);
step(T,Tideal,20)

y (PI)

Red: «ideal» = «originally desired» (with Smith Predictor)

PI: Overshoot (y=1.04) is from approximation exp(-θs) = 1 - θs

Input usage for setpoint response

24

%Input usage
figure(2);
KS = c/(1+g*c);
KSideal = (1/k)*(tau*s+1)/(tauc*s+1);
step(KS,KSideal,20);
axis([0 20 0 5])

u (PI)

Red: «ideal» (with Smith Predictor)

Input u «overshoots» because we are are «speeding
up» the response from τ=10 to τc=2.

Input starts from 0

Integral time
 Found: Integral time = dominant time constant (τI = τ1)
 Gives P-controller for integrating process (τI = ∞)

 This works well for setpoint changes
 But: τI needs to be modified (reduced) for integrating disturbances

Example. “Almost-integrating process” with disturbance at input:
 G(s) = e-s/(30s+1)

Original integral time τI = 30 gives poor disturbance response
Try reducing it!

gc

d
yu

SIMC-tunings

Effect of decreasing Integral Time
τI = τ1

Reduce τI to this value:
τI = 4 (τc+θ) = 8 θ

Setpoint change at t=0 Input disturbance at t=20

SIMC modification:
Decrease integral time to improve disturbance
rejection for slow processes (with large τ)!

Integral time
 Want to reduce the integral time for “integrating” processes
 But to avoid “slow oscillations” (not caused by the delay θ)

we must require k’KcτI≥4, which with the SIMC-rule for Kc
gives:

 Proof: Need k’KcτI≥4 to avoid slow oscillations (from last week):

SIMC-tunings

Conclusion: SIMC-PID Tuning Rules

One tuning parameter: τc

SIMC-tunings

Some special cases

One tuning parameter: τc

SIMC-tunings

(1)(*) Note that we get pure I-controller for static process with delay.

Selection of tuning parameter τc

Two main cases
1. TIGHT CONTROL (τc small): Want “fastest

possible control” subject to having good robustness
• Want tight control of active constraints (“squeeze and shift”)
• Select τc = θ (effective delay)

2. SMOOTH CONTROL (τc large): Want “slowest
possible control” subject to acceptable disturbance
rejection

• Prefer smooth control if fast control is not required

SIMC-tunings

Typical closed-loop SIMC responses with the choice τc=θ

TIGHT CONTROL

TIGHT CONTROL

(can increase process gain k by factor 3 before we get instability from «overreaction»)

 Example 2. Compare PI and PID

33

s=tf('s')
g=(-0.3*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)^3)
k=1;
tau1=2.5, tau2=0, theta=1.47, tauc=theta % 1st order
%tau1=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order

Kc=(1/k)*tau1/(tauc+theta) % Kc. PI: 0.85 PID: 1.30
taui=min(tau1,4*(tauc+theta)) % taui. PI: 2.50 PID: 2
taud=tau2; % taud. PI: 0 PID: 1.2
cpi=Kc*(1+1/(taui*s));
cd=(taud*s+1)/(0.1*taud*s+1);
cpid=cpi*cd;
L = cpid*g
S=inv(1+L)
%setpoint response
Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint
Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint
%Input disturbance
gd=g;
Td=gd*S; Td=minreal(Td);
Tud=-gd*cpid*S; Tud=minreal(Tud);
Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;
%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi,'blue',Typid,'blue--',Tuypi,'red',Tuypid,'red--',15)
figure(2),step(Tdpi,'blue',Tdpid,'blue--',Tudpi,'red',Tudpid,'red--',15)

TIGHT CONTROL

Note: tau2=1.2 > theta=0.77
so 2nd order and PID should give improvement compared to PI

KFUPM-Distillation Control Course 34

Input u

Input u

STEP SETPOINT CHANGE (ys)
(note: without D-action on setpoint,
so u jumps initially to Kc also for PID)

STEP INPUT DISTURBANCE (gd=g)

PI

PID

Output y

Output y

Conclusion:
PID is quite a lot better.
(expected since tau2=1.2
> theta=0.77)

Example 2.

PI

PID

PID

PI

PI

PID

Comments
1. Derivative action (PID) can help a little to speed up response for a process with time delay (e.g. use τD = θ/3), but we
then need to reduce τC (i.e., increase Kc) to get the performance benefit (e.g., reduce τC from θ to θ/2).
We did not do this in the above simulation, so this is why the benefit of D-action is small.
2. Use derivative action (PID) for unstable processes, for example, a double integrating process (not so common in
process control).

SIMC-tunings

SHOULD WE ADD DERIVATIVE ACTION TO COUNTERACT TIME DELAY?

NO

Too complicated

When do we need «tight control»?
For hard constraints where backoff is costly

«SQEEZE and SHIFT» RULE

Original
tuning

Improved
tuning

Optimized
operation

Setpoint

Squeeze
variance Shift setpoint to reduce backoff

time

New backoff

Tuning for smooth control
SMOOTH CONTROL

 Tuning parameter: τc = desired closed-loop response time

 Selecting τc=θ if we need “tight control” of y.

 Other cases: “Smooth control” of y is sufficient, so select τc > θ for
 slower control
 smoother input usage

 less disturbing effect on rest of the plant
 less sensitivity to measurement noise
 better robustness

 Question: Given that we require some disturbance rejection.
 What is the largest possible value for τc ?
 ANSWER: τc,max =1/ωd (where ωd is defined as the frequence where |gd(jωd)| = ymax/dmax)

Proof: S. Skogestad, ``Tuning for smooth PID control with acceptable disturbance rejection'', Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).

Level control (integrating process)

 Level control often causes problems
 Typical story:
 Level loop starts oscillating
 Operator detunes by decreasing controller gain
 Level loop oscillates even more


 ???
 Explanation: Level is by itself unstable and requires control.

LEVEL CONTROL

Level control (integrating process): Can have
both fast and slow oscillations with PI-control

 Fast oscillations (Kc too high): P < π τI

 Caused by (effective) time delay
 Slow oscillations (Kc too low): P > π τI

 Caused by integral action in controller
 Avoid slow oscillations: 𝑘𝑘′𝐾𝐾𝑐𝑐𝜏𝜏𝐼𝐼 ≥ 4.

LEVEL CONTROL

P=period of oscillations = 2π/ω

How avoid slowly oscillating levels?
LEVEL CONTROL

0.1 ¼ 1/π2

Case study oscillating level

 We were called upon to solve a problem with oscillations in a
distillation column

 Closer analysis: Problem was oscillating reboiler level in upstream
column

 Use of Sigurd’s rule solved the problem

LEVEL CONTROL

LEVEL CONTROL

44

SIMC-rule with measurement dynamics

Rule: Combine the measurement dynamics
gm(s) and the process model g(s) and
apply the SIMC-rules on ggm. This applies
both to the model approximation (half rule)
to get a 1st or 2nd model and to the PI- or
PID-tuning, including the choice of τc.

Proof: handwritten note

Tuning of PID controllers
 SIMC tuning rules (“Skogestad IMC”)(*)

 Main message: Can usually do much better by taking a
systematic approach

 Key: Look at initial part of step response
 Initial slope: k’ = k/τ1

 One tuning rule!

• τc: desired closed-loop response time (tuning parameter)
• For robustness select: τc ≥ θ

CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
 (Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:

Note: The delay θ includes any measurement delay

	PID Tuning �using the SIMC rules ��Sigurd Skogestad�NTNU, Trondheim, Norway��
	Need a model for tuning
	1. Step response experiment
	Step response first-order process
	Step response integrating process
	2. Model reduction of more complicated model
	Slide Number 7
	Example 1
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Example 4. Integrating process
	Approximation of LHP-zeros�
	Step response (without control)
	Slide Number 16
	Slide Number 17
	Tuning of PID controllers
	Slide Number 19
	Slide Number 20
	Slide Number 21
	IMC Tuning = Direct Synthesis
	Example step setpoint response�(with choice τc=θ =2)
	Input usage for setpoint response
	Slide Number 25
	Effect of decreasing Integral Time
	Integral time
	Conclusion: SIMC-PID Tuning Rules
	Slide Number 29
	Selection of tuning parameter c
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	When do we need «tight control»? �For hard constraints where backoff is costly
	Tuning for smooth control
	Level control (integrating process)
	Level control (integrating process): Can have both fast and slow oscillations with PI-control
	How avoid slowly oscillating levels?
	Case study oscillating level
	Slide Number 43
	Slide Number 44
	Tuning of PID controllers

