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Need a model for tuning

 Model: Dynamic effect of change in input u (MV) on 
output y (CV) 

 First-order + delay model for PI-control

 Second-order model for PID-control

 Recommend: Use second-order model (PID control) only if ¿2>µ

MODEL



1. Step response experiment

 Make step change in one u (MV) at a time
 Record the output (s) y (CV)

MODEL, Approach 1: From data



STEP IN INPUT u

RESULTING OUTPUT y

θ: Delay - Time where output does not change
τ1: Time constant - Additional time to reach 
                               63% of final change
k = ∆ y(∞)/∆ u : Steady-state gain 

Δy(∞)

Δu

MODEL, Approach 1

If the output y keeps ramping (with little sign of flattening) after about 4 times the delay θ
then you can use an integrating process model (so you don’t need τ1).

Step response first-order process



Step response integrating process

Δy

Δt

MODEL, Approach 1

Slope k’ = «integrating process gain»



2. Model reduction of more complicated model

 Start with complicated stable model on the form

 Want to get a simplified model on the form

 Most important parameter is the “effective” delay θ
 Use second-order model only if ¿2>µ

MODEL, Approach 2: From more complicated model



Details:
MODEL, Approach 2



Example 1

Half rule

MODEL, Approach 2



s=tf('s')
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)
g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)] 
step(g,g1,g2)
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Example 2

Original (third-order with inverse response)
First-order approx. using half rule
Second-order approx. using half rule
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half rule

3

MODEL, Approach 2

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) ≈ 1
0.2−0.08 𝑠𝑠+1

(rule T3).  
Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) ≈ 1 (rule T1b) which would reduce the effective delay by 0.05 (instead
of 0.08).  In any case, it only has a small effect om the effective delay, so it does not matter much for the final result. 



half rule

3

MODEL, Approach 2
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g0: Original complicated system 
(with 2 zeros and 8 poles) 

g2: 2nd order with delay (half rule, θ=0.77)

g1: 1st order with delay (half rule, θ=1.47)

Example 3.

MODEL, Approach 2



Example 4. Integrating process

Example. g0 = 5/(s*(3*s+1)), 
g = 5*exp(-1.5*s)/s,
step(g,g0,10) 13

Doesn’t look so good
But it’s OK



Approximation of LHP-zeros

τc  = desired closed-loop time constant

14

MODEL, Approach 2

Normally, we should approximate T0 by 
a “close-by” τ0 . 
• BUT: The goal is to use the model for 

control purposes, so we should keep 
(i.e., not approximate) the τ which is 
closest to the desired τc. 

In Example E3, we have two possible values for 
τ0 , namely 20 and 1. Since T0=15, it  seems clear 
that we should select the closest τ0 = 20 and use 
rule T2. 
• But what if T0=2, maybe selecting τ0 = 1 is 

better (and using rule T1)? 
• No, this is not clear. Since τc =θ is between 

0.05 (PID) and 0.15 (PI), we may want to 
keep τ =1 which is closest to τc ,that is, also in 
this case select τ0 = 20 (and use rule T2)

• This may seem surprising, but. in any case, it 
turns out that it will not matter very much for 
the PI/PID-tunings for  this example (try!), 
because k/tau1 (and thus Kc) will not change 
much and because tauI = 
min(tau,4(tauc+theta)).

• Of course, if T0 gets very close to 1, then we 
should select τ0 = 1.

Generally, the LHP-zeros approximation 
rules results in acceptable (robust) PI/PID-
settings, but not necessarily the “optimal” 
settings.
See: Exam 2022, Problem 1 and Problem 5d

g0

g2

g1

PID-controller (from 2nd order model) will give performance improvement because τ2 > θ

(you are not expected to remember this)



Step response (without control)
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g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)
g1=1.5*exp(-0.15*s)/(1.05*s+1)
g2=1.5*exp(-0.05*s)/((s+1)*(0.15*s+1))
step(g0,g1,g2,1)

Note: It’s the initial
response that matters
for feedback control
(time from 0 to about 5*tauc)

g1
g0, g2

g0

g1, g2



Alternative: Obtain model from data numerically. Here: use procest (matlab)- but
procest seems not to be reliable when I study other cases

% We generate some artifical data from a high-order model
s=tf('s')
G = 3*(1-0.1*s)/((10*s+1)*(3*s+1)*((s+1)^3))
Ts=1;     % sampling time 1 s  (Comment: This may be too long; could make shorter to fit only initial response)
t = Ts*[0:109]';
u = [zeros(10,1); ones(100,1)];  % Step response
y = lsim(G,u,t);

% Now fit the data to a second-order plus delay model using Matlab
data=iddata(y,u,Ts);  %
type=('P2D')          % P2D =  2nd order model + delay
sys = procest(data,type)

% Compare the two models

k=sys.Kp; tau1=sys.Tp1; tau2=sys.Tp2; Td=sys.Td;
Gfit = k*exp(-Td*s)/((tau1*s+1)*(tau2*s+1))
step(G,Gfit,'--')
figure(2),step(G,Gfit,'--',10)

OUTPUT FROM procest (MATLAB):

Process model with transfer function:  
                Kp                     
  G(s) = ----------------- * exp(-Td*s)
         (1+Tp1*s)(1+Tp2*s)            
                                       
         Kp = 2.9986                   
        Tp1 = 9.6838                   
        Tp2 = 3.9211,
         Td = 2.478                    
 Half rule: Gives similar result 16

Half rule:

Kp = 3
Tp1 = 10
Tp2=3+0.5=3.5
Td=0.5+2*1+0.1=2.6



 Time domain (“ideal” PID)

 Laplace domain (“ideal”/”parallel” form)

 For our purposes. Simpler with cascade/series form

 Usually τD=0. Then the two forms are identical.
 Only two parameters left (Kc and τI)
 How difficult can it be to tune???

 Surprisingly difficult without systematic approach! 

PID controller
e



Tuning of PID controllers
 SIMC tuning rules (“Skogestad IMC”)(*)

 Main message: Can usually do much better by taking a systematic approach
 Key: Look at initial part of step response

 Initial slope: k’ = k/τ1

 One tuning rule! 

• τc: desired closed-loop response time (tuning parameter)
• For robustness select: τc ≥ θ

Let’s start with the CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
 (Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:



Derivation of  SIMC-PID tuning rules

 PI-controller (based on first-order model)

 For second-order model add D-action.
For our purposes, simplest with the “series” (cascade) PID-form:



Basis: Direct synthesis (IMC)

Closed-loop response to setpoint change

Idea: Specify desired response:

and from this get the controller. ……. Algebra:
 



SIMC-tunings

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!

Time delay is not really desired
but it cannot be avoided

Note: Process g has time delay (θ)



IMC Tuning = Direct Synthesis 
Algebra:

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay θ, than the Smith 
Predictor controller from which it was derived. We are lucky .
Reference: Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .

IMC-tuning is the same as “Lambda-tuning”: τc is sometimes called λ

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018


Example step setpoint response
(with choice τc=θ =2)
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s=tf(‘s’);
k=1; tau=10; theta=2; 
g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Kc=(1/k)*(tau/(tauc+theta));   % Kc=2.5
taui=tau;
c = Kc*(1+ 1/(taui*s));
T = g*c/(1+g*c);
Tideal = exp(-theta*s)/(tauc*s+1);
step(T,Tideal,20)

y (PI)

Red: «ideal» = «originally desired» (with Smith Predictor)

PI: Overshoot (y=1.04) is from approximation exp(-θs) = 1 - θs 



Input usage for setpoint response
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%Input usage
figure(2);
KS = c/(1+g*c);
KSideal = (1/k)*(tau*s+1)/(tauc*s+1); 
step(KS,KSideal,20); 
axis([0 20 0 5])

u (PI)

Red: «ideal» (with Smith Predictor)

Input u «overshoots» because we are are «speeding
up» the response from  τ=10 to τc=2. 

Input starts from 0



Integral time
 Found: Integral time = dominant time constant (τI = τ1)
 Gives P-controller for integrating process (τI = ∞)

 This works well for setpoint changes
 But: τI needs to be modified (reduced) for integrating disturbances

Example. “Almost-integrating process” with disturbance at input:
  G(s) = e-s/(30s+1)

Original integral time τI = 30 gives poor disturbance response
Try reducing it!

gc

d
yu

SIMC-tunings



Effect of decreasing Integral Time
τI = τ1

Reduce τI to this value:
τI = 4 (τc+θ) = 8 θ

Setpoint change at t=0 Input disturbance at t=20

SIMC modification:
Decrease integral time to improve disturbance 
rejection for slow processes (with large τ)!



Integral time
 Want to reduce the integral time for “integrating” processes
 But to avoid “slow oscillations” (not caused by the delay θ) 

we must require k’KcτI≥4, which with the SIMC-rule for Kc
gives:  

 Proof: Need k’KcτI≥4 to avoid slow oscillations (from last week):

SIMC-tunings



Conclusion: SIMC-PID Tuning Rules 

One tuning parameter: τc  

SIMC-tunings



Some special cases

One tuning parameter: τc

SIMC-tunings

(1)(*) Note that we get pure I-controller for static process with delay.



Selection of tuning parameter τc

Two main cases
1. TIGHT CONTROL (τc small):  Want “fastest 

possible control” subject to having good robustness
• Want tight control of active constraints (“squeeze and shift”)
• Select τc = θ (effective delay)

2. SMOOTH CONTROL (τc large):  Want “slowest 
possible control” subject to acceptable disturbance 
rejection

• Prefer smooth control if fast control is not required

SIMC-tunings



Typical closed-loop SIMC responses with the choice τc=θ

TIGHT CONTROL



TIGHT CONTROL

(can increase process gain k by factor 3 before we get instability from «overreaction»)



 Example 2. Compare PI and PID 
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s=tf('s')
g=(-0.3*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)^3)
k=1;
tau1=2.5, tau2=0, theta=1.47, tauc=theta % 1st order
%tau1=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order

Kc=(1/k)*tau1/(tauc+theta)        % Kc.   PI: 0.85  PID: 1.30
taui=min(tau1,4*(tauc+theta))    % taui. PI: 2.50  PID: 2
taud=tau2;                                  % taud. PI: 0     PID: 1.2
cpi=Kc*(1+1/(taui*s));            
cd=(taud*s+1)/(0.1*taud*s+1);
cpid=cpi*cd;
L = cpid*g
S=inv(1+L)
%setpoint response
Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint
Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint
%Input disturbance
gd=g;
Td=gd*S; Td=minreal(Td);
Tud=-gd*cpid*S; Tud=minreal(Tud);
Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;
%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi,'blue',Typid,'blue--',Tuypi,'red',Tuypid,'red--',15)
figure(2),step(Tdpi,'blue',Tdpid,'blue--',Tudpi,'red',Tudpid,'red--',15)

TIGHT CONTROL

Note: tau2=1.2 > theta=0.77 
so 2nd order and PID should give improvement compared to PI
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Input u

Input u

STEP SETPOINT CHANGE (ys)
(note: without D-action on setpoint, 
so u jumps initially to Kc also for PID)

STEP INPUT DISTURBANCE (gd=g)

PI

PID

Output y

Output y

Conclusion:
PID is quite a lot better.
(expected since tau2=1.2
> theta=0.77)

Example 2.

PI

PID

PID

PI

PI

PID



Comments 
1. Derivative action (PID) can help a little to speed up response for a process with time delay (e.g. use τD = θ/3), but we
then need to reduce τC (i.e., increase Kc) to get the performance benefit (e.g., reduce τC  from θ to θ/2). 
We did not do this in the above simulation, so this is why the benefit of D-action is small. 
2. Use derivative action (PID) for unstable processes, for example, a double integrating process (not so common in 
process control).

SIMC-tunings

SHOULD WE ADD DERIVATIVE ACTION TO COUNTERACT TIME DELAY?

NO



Too complicated



When do we need «tight control»? 
For hard constraints where backoff is costly

«SQEEZE and SHIFT» RULE

Original
tuning

Improved
tuning

Optimized
operation

Setpoint

Squeeze
variance Shift setpoint to reduce backoff

time

New backoff



Tuning for smooth control
SMOOTH CONTROL

 Tuning parameter: τc = desired closed-loop response time 

 Selecting τc=θ if we need “tight control” of y. 

 Other cases: “Smooth control” of y is sufficient, so select τc > θ for 
 slower control
 smoother input usage

 less disturbing effect on rest of the plant
 less sensitivity  to measurement noise
 better robustness

 Question: Given that we require some disturbance rejection.
 What is the largest possible value for τc ?
 ANSWER: τc,max =1/ωd  (where ωd is defined as the frequence where |gd(jωd)| = ymax/dmax )

Proof: S. Skogestad, ``Tuning for smooth PID control with acceptable disturbance rejection'', Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).



Level control (integrating process)

  Level control often causes problems
 Typical story:
 Level loop starts oscillating
 Operator detunes by decreasing controller gain
 Level loop oscillates even more
 ......

 ???
 Explanation: Level is by itself unstable and requires control.  

LEVEL CONTROL



Level control (integrating process): Can have 
both fast and slow oscillations with PI-control

 Fast oscillations (Kc too high): P < π τI

 Caused by (effective) time delay
 Slow oscillations (Kc too low): P > π τI

 Caused by integral action in controller 
 Avoid slow oscillations: 𝑘𝑘′𝐾𝐾𝑐𝑐𝜏𝜏𝐼𝐼 ≥ 4.

LEVEL CONTROL

P=period of oscillations = 2π/ω



How avoid slowly oscillating levels?
LEVEL CONTROL

0.1 ¼ 1/π2



Case study oscillating level

  We were called upon to solve a problem with oscillations in a 
distillation column

 Closer analysis: Problem was oscillating reboiler level in upstream 
column

 Use of Sigurd’s rule solved the problem

LEVEL CONTROL



LEVEL CONTROL
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SIMC-rule with measurement dynamics

Rule: Combine the measurement dynamics 
gm(s) and the process model g(s) and 
apply the SIMC-rules on ggm. This applies 
both to the model approximation (half rule) 
to get a 1st or 2nd model and to the PI- or 
PID-tuning, including the choice of τc.

Proof: handwritten note



Tuning of PID controllers
 SIMC tuning rules (“Skogestad IMC”)(*)

 Main message: Can usually do much better by taking a 
systematic approach

 Key: Look at initial part of step response
 Initial slope: k’ = k/τ1

 One tuning rule! 

• τc: desired closed-loop response time (tuning parameter)
• For robustness select: τc ≥ θ

CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
 (Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:

Note: The delay θ includes any measurement delay
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