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MODEL

Need a model for tuning

Model: Dynamic effect of change in input u (MV) on
output y (CV)

First-order + delay model for PI-control

G(s) = Tlsk—|—1 c—0s

Second-order model for PID-control

—0s

_ k
G(8) = (s (aok D) ©

0 Recommend: Use second-order model (PID control) only if ,>p



1. Step response experiment

= Make step change in one u (MV) at a time
= Record the output (s) y (CV)



Step response first-order process
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If the output y keeps ramping (with little sign of flattening) after about 4 times the delay 6
then you can use an integrating process model (so you don’t need t,).



Step response integrating process
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Slope k' = «integrating process gain»



2. Model reduction of more complicated model

= Start with complicated stable model on the form

L (Tyos41)(Toos+1)  —g
Gols) = ko fryget 1)most 19 €

= Want to get a simplified model on the form

Os

— k —
Gl8) = Dt ©

= Most important parameter is the “effective” delay 0
= Use second-order model only if ¢,>n



OBTAINING THE EFFECTIVE DELAY 6

Basis (Taylor approximation):

1 1
e 5~ 1—-6s and e 5=

Effective delay =
“true” delay

+ inverse reponse time constant(s)

+ |half jof the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7;

(or to 1 if use second-order model).

Details:

e Half rule: the largest neglected (denominator)
time constant (lag) is distributed evenly to the
effective delay and the smallest retained time
constant.

In summary, let the original model be in the form

()

! —ths
[Trios + 1 ¢ @ ®

where the lags 1y are ordered according to their magni-
tude, and T:T']“' = () denote the inverse response (negative
numerator) time constants. Then, according to the half-
rule, to obtain a first-order model e~ /(t;5s + 1), we use

T T - h
rl='€l0+ﬂ: 9:904_%_'_250_'_2?—-;“4_5

2 i=3 i
(10)

and, to obtain a second-order model (4), we use

T
T1 = Ti0s =712 +ﬂ:
2
11)
T30 inv h (
9 = Oy +—2 - o
b+ +§Im+z HES

where h is the sampling period (for cases with digital
implementation).

The main basis for the empirical half-rule is to main-
tain the robustness of the proposed Pl- and PID-tuning
rules, as is justified by the examples later.




Example 1

Amplituce

The second-order process

Time [32c)

1
Is+1)(0.65+ 1)

90(8) — (

with

k=1, mn=1406/2=13; 6=0.6/2=0.3;




Amplitude

s=tf('s")
g=(-0.1"s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)

EXH,I ] Iple 2 g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)]

step(9.91,92)

Step Response
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Example 3

(—0.35s +1)(0.08s + 1) :
go(s) =k 3
2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)

half rule
Is approximated as-a first-order delay process with

T =2%1/2=125
#=1/24+04+0.24+3-0.05+0.3 —0.08=1.47
or as a second-order delay process with

T = 2

o=14+04/2=1.2
#=04/240.2+3-0.05+0.3—0.08=0.77

1
(0.2-0.08)s+1 (rule T3)'

Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) = 1 (rule T1b) which would reduce the effective delay by 0.05 (instead
of 0.08). In any case, it only has a small effect om the effective delay, so it does not matter much for the final result.

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) =




Example 3
(—0.35s +1)(0.08s + 1)
go(s) =k 3
(23 + 1)(13 +1)(0.4s 4+ 1)(0.2s 4+ 1)(0.05s + 1)
half rule
IS apprommate rst- ord delay process with

1=2+4+1
9—1/2 - 0.054+ 0.3 —0.08 =1.47

or as a s?éo/ncfogle}//elay process with
T = 2/

TQ—l-I—O /2—12
#=04/240.2+3-0.05+0.3—0.08=0.77




step Response
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Example 3.
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ey o -
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< g0: Original complicated system
i (with 2 zeros and 8 poles) ]
= ' 92: 2nd order with delay (half rule, 6=0.77) ]
0 g1: 1st order with delay (half rule, 6=1.47) |
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Example 4. Integrating process

_ k'
90(8) ~ s(m20s+1)

Half rule gives
) —8a .
g(s) = K= with § = =0

s 2
Proof:
Note that integrating process corresponds to an infinite time constant
Write

_ ;{"TI _ k‘rTI
90(8) - 718(m208+1)  (T1s+1)(7m20s+1
and then apply half rule as normal, noting that 7 + 222 ~ 7y:

) where 4 — o

9(8) . -PLLJT]_E_ TGEQS - kfe__%o.j_- 8 . . . . SfepRe_sponsle .
(r1+-32%)s s

Doesn'’t look so good
Example. g0 = 5/(s*(3*s+1)), "l But it's OK
g = 5%exp(-1.5"s)/s,

step(g,90,10) °

13




Approximation Of LHP-ZCI‘OS (you are not expected to remember this)

[ To/ 70 for Ty > 19 > 1, (Rule T1),
To/t. forTp = 1. = 10 (Rule T1a),
Tos+1 |4 for 7. > To > 70 (Rule T1b),
708 + 1 Tv/t0 for g > Ty = 51, (Rule T2),
F ~ def .
| % for o = min(tg, 57.) = Ty (Rule T3).

1, = desired closed-loop time constant

Example E3. For the process (Example 4 in (Astrom et al. 1998))

2(15s + 1)
) — 1
g0 9005) = 205+ 1) (s + (015 + 1)2 (13)
we first introduce from Rule T2 the approzimation
15s +1 15s _
~— =0.75
20s+1  20s

(Rule T2 applies since Ty = 15 is larger than 50, where 0 is computed below). Using the half rule,
the process may then be approzimated as a first-order time delay model with

g1 k=2-0.75= 15 9:0.1+Oé—1=0v15; T1=1+Oé—1=1.05
or as a second-order time delay model with
k=15, #= Oé—l:(].l]b; n=1 1'2:0.1+0£3—l:0.15

PID-controller (from 2nd order model) will give performance improvement because 1, > 0

Normally, we should approximate T, by

a “close-by” 1,

* BUT: The goal is to use the model for
control purposes, so we should keep
(i.e., not approximate) the t which is
closest to the desired ..

In Example E3, we have two possible values for
1, namely 20 and 1. Since T (=15, it seems clear
that we should select the closest 1, =20 and use
rule T2.

* But what if T;=2, maybe selecting t,=1 is
better (and using rule T1)?

* No, this is not clear. Since t,=0 is between
0.05 (PID) and 0.15 (PI), we may want to
keep t=1 which is closest to 7, ,that is, also in
this case select 1,= 20 (and use rule T2)

» This may seem surprising, but. in any case, it
turns out that it will not matter very much for
the PI/PID-tunings for this example (try!),
because k/taul (and thus Kc) will not change
much and because taul =
min(tau,4(taucttheta)).

* Ofcourse, if T gets very close to 1, then we
should select t,= 1.

Generally, the LHP-zeros approximation
rules results in acceptable (robust) PI/PID-
settings, but not necessarily the “optimal”
settings.

See: Exam 2022, Problem 1 and %’ioblem 5d




Step response (without control)

Step Response

10 1 20
Time (seconds)

Note: It’s the initial

response that matters

for feedback control

(time from 0 to about 5*tauc)

Amplitude

037

0.2}

0.1F

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)"2)
g1=1.5"exp(-0.15*s)/(1.05*s+1)

step(g0,91,92,1)

Step Response

o
.

0.2 0.4 0.6 0.8 1

Time (seconds)



Alternative: Obtain model from data numerically. Here: use procest (matlab)- but

procest seems not to be reliable when | study other cases

% We generate some artifical data from a high-order model
s=tf('s")
G = 3*(1-0.1*s)/((10*s+1)*(3*s+1)*((s+1)"3))

Ts=1; % samplingtime 1 s (Comment: This may be too long; could make shorter to fit only initial response)
t = Ts*[0:109];
u = [zeros(10,1); ones(100,1)]; % Step response
y = Isim(G,u,t);

Step Response

% Now fit the data to a second-order plus delay model using Matlab
data=iddata(y,u,Ts); %

type=('P2D") % P2D = 2nd order model + delay

sys = procest(data,type)

Amplitude

% Compare the two models

k=sys.Kp; tau1=sys.Tp1; tau2=sys.Tp2; Td=sys.Td;
Gfit = k*exp(-Td*s)/((tau1*s+1)*(tau2*s+1)) 7
step(G,Gfit,'--") T, .
figure(2),step(G,Gfit,'--',10) Time (seconds)

OUTPUT FROMprocest(MATLAB):

Process model with transfer function:
Kp
G(s) = ~——mmmmmm - * exp(-Td*s)
(1+Tp1*s)(1+Tp2*s)

Kp = 2.9986
Tp1=9.6838
Tp2 = 3.9211,
Td = 2.478

Half rule: Gives similar result

Half rule:

Kp=3

Tp1=10
Tp2=3+0.5=3.5
Td=0.5+2*1+0.1=2.6

16



PID controller

Time domain (“ideal” PID)
k sk de t

ult) = o + K. (e(t) + & [y e(t*)dt* + 7,252

Laplace domain (“ideal”/”parallel” form)
__ / 1 /

c(s) = K. (1A s THS)
For our purposes. Simpler with cascade/series form

o(s) = K ASDTostD) i) ooz o

TIS
Usually t,=0. Then the two forms are identical.

Only two parameters left (K, and 1))

How difficult can it be to tune???
a Surprisingly difficult without systematic approach!




Let’s start with the CONCLUSION

Tuning of PID controllers

SIMC tuning rules (“Skogestad IMC”)®)
Main message: Can usually do much better by taking a systematic approach

Key: Look at initial part of step response
Initial slope: k> = k/t,
One tuning rule!

fs

_ k —
G(8) = D) (st D) ©

For cascade-form PID controller:

_ 1 1
Ke=% w0
77 = min(7y, 4(7. + 6))
D = 79
» 1. desired closed-loop response time (tuning parameter)
* Forrobustness select: 1, =0

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003

(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”



Derivation of SIMC-PID tuning rules

PI-controller (based on first-order model)

c(s) = K (1 + =) = K, 25

TIS C 7118

For second-order model add D-action.

For our purposes, simplest with the “series” (cascade) PID-form:

C(S) — KC (TIS+1)(’TD8—|—1) (1)

TIS



Basis: Direct synthesis (IMC)
ld

Jd
+ T
T - - O -_'_l ;J

Closed-loop response to setpoint change

y="T ys; T(s) =132

ldea: Specify desired response: (y/ys)desired =T

and from this get the controller. ....... Algebra: | ¢ = % -

1
i1




SIMC-tunings
Note: Process g has time delay (0)

Desired step response

[sR=1 ys =
[aX=Y =
(o0 1 9
E3% —USs
T ( ) — T.85+1 €
G Ys J desired ¢ X
05 Time delay is not really desired
but it cannot be avoided
04 -
3= =
[l il
Rl = -
o
UO 5 & kLo b= 14 15 18 =0
time [sec)

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!



IMC Tuning = Direct Synthesis

Algebra:

e Controller:  ¢(s) = (13}- -

(/s )desired

e s

e Consider second-order with delay plant:  g(s) = k(ﬂﬁi)(mﬂ)

e Desired first-order setpoint response: (i) R
Ys/ desired Tes+1
e Gives a “Smith Predictor’ controller:  ¢(s) = (TI‘SH};W‘SH){T ‘,.Jrll )
[ - G

e To get a PID-controller use ¢=% ~ 1 — fs and derive

(s) = (118 + 1)(728 + 1) 1
= k (1. + 6)s

which is a cascade form PID-controller with

1 .
K=

= T =T, Tp =173
kT, +0 ’

® 7. is the sole tuning parameter

IMC-tuning is the same as “Lambda-tuning”: 7. is sometimes called A

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay 6, than the Smith
Predictor controller from which it was derived. We are lucky ©.

Reference: Chriss Grimholt and Sigurd Skogestad. "'Should we forget the Smith Predictor?" (2018)

In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .



http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018

Example step setpoint response
(with choice t,=0 =2)

Step Response

1.2 ‘
A o e _ __7:”,‘:—:*———
Red: «ideal» = «originally desired» (with Smith Predictor)
08 - =
% 0.6 |- ’ .
= /
=< Pl: Overshoot (y=1.04) is from approximation exp(-6s) = 1 - 8s
04 - s=tf('s’); i
k=1; tau=10; theta=2;
g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Ke=(1/k)*(tau/(tauc+theta)); % Kc=2.5
0.2 - taui=tau; 7
c = Kc*(1+ 1/(taui*s));
T =g*c/(1+g*c);
Tideal = exp(-theta*s)/(tauc*s+1);
| | ‘ | step(T,ITideaI,ZO) ‘ |
0

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)



Input usage for setpoint response

4.5

3.5

Amplitude

0.5

Input starts from0 o/

| Red: «ideal» (with Smith Predictor)

\ . Input u «overshoots» because we are are «speeding -
up» the response from 1=10 to 7 .=2.

%Input usage R
figure(2);

KS = c/(1+g*c);

KSideal = (1/k)*(tau*s+1)/(tauc*s+1);

~ . step(KS,KSideal,20);
\\ axis([0 20 0 5])
| | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Time (seconds)

24



SIMC-tunings

Integral time

Found: Integral time = dominant time constant (t; = 1)

Gives P-controller for integrating process (1, = )

o This works well for setpoint changes

o But: 1, needs to be modified (reduced) for integrating disturbances

d

o |

VV'\<

\ 4
@

1 8

Example. “Almost-integrating process” with disturbance at input:
G(s) =e%/(30s+1)
Original integral time 1, = 30 gives poor disturbance response
Try reducing it!



Effect of decreasing Integral Time

y(t) B |2 /

/

0 ;
Setpoint change at t=0 Input di8turbance at t=20

10 20 30 40 50 60

T =Ty

Reduce 1, to this value:
7,=4 (1.+t0)=806

SIMC modification:
Decrease integral time to improve disturbance
rejection for slow processes (with large t)!

Figure 2: Effect of changing the integral time 7; for Pl-control of “slow” process gi{s) = e7* /(305 + 1} with A = 15.

Load disturbance of magnitude 10 occurs at ¢ = 20.

Too large integral time: Poor disturbance rejection
Too small integral time: Slow oscillations



SIMC-tunings
Integral time

Want to reduce the integral time for “integrating” processes

But to avoid “slow oscillations™ (not caused by the delay 0)
we must require kK’K 1, =4, which with the SIMC-rule for K_

gives:
71 > 4(1¢ + 0)

Proof: Need k’K 124 to avoid slow oscillations (from last week):

6793

G(S) - k’rls—l-l
Closed-loop poles:

1+GC=0=1+2K, (1+%) =0=ms*+KK.ms+ kK. =0
To avoid oscillations we must not have complex poles:

B* —4AC > 0= K K27} — 4K Kot > 0 = (K Kerp > 45 71 > 5y
Inserted SIMC-rule for K. = ﬁ%w then gives

71 > M7, 4 0)

= %’ where k' = %; C(s) = K, (1 + L)

TS




SIMC-tunings

Conclusion: SIMC-PID Tuning Rules

For cascade form PID controller:
1 7 11

Ke=- b . 1
k40 K 140 1)
4
77 = min{ry, T } = min{r,4(r. +0)} (2)
C
D = T9 (3)

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis")

2. Reduce integral time to get better disturbance rejection for slow or

integrating process (but avoid slow cycling = 77 > J}{ )
[

One tuning parameter: t,



SIMC-tunings

Some special cases

Process q(s) K. Tr TE,IJ
First-order k% %T—E‘r—e min{ry,4(r. + @)} | -
Second-order, eq.(4) k{ﬁ -T+E::l_:ll[:-z-'!+l] %ﬂ;‘rﬁ, min{7,4(r. +0)} | ™

Pure time delay'") ke % 0 0 ) -
Integrating!?) k’% L. (:n:1+31| A(7, +0) ;
Integrating with lag ;S(:f;:i” = (:n:1+49]| d(r. + 0) T
Double integrating'® | k"= o rl{ﬁie]g 4 (1. +0) 4 (1 + 0)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7, as a tuning parameter).
(1) The pure time delay process is a special case of a first-order process with m, = 0.

(2) The integrating process is a special case of a first-order process with 7 — oc.

(3) For the double integrating process, integral action has been added according to eq.(27).

(4) The derivative time is for the series form PID controller in eq.(1).

(*)

. © ey o def
*) Pure integral controller c(s) = %i with K % Ko — k{l_.lm},

T

One tuning parameter: t,

(1)(*) Note that we get pure I-controller for static process with delay.



SIMC-tunings

Selection of tuning parameter T,

Two main cases

DICENCONTROWMERSNGEN: Want “fastest

possible control” subject to having good robustness

Want tight control of active constraints (“squeeze and shift”)
Select T, = 0 (effective delay)

SMOOTH CONTROL (z, large): Want “slowest
possible control” subject to acceptable disturbance
rejection

Prefer smooth control if fast control is not required



Typical closed-loop SIMC responses with the choice t.=0

4r 4
=l -
- 3 ~,
=2 ~
:] - = 3
Q ~~ T
yg I
0 I 1 -
0 5 10 15 20 25 30 35 40
13 4
s 1F
—_
- 2 "N.
a 0
Z = case 1 (pure delay)
= = case 2 (Integrating)
=1 *='= case 3 (int.+lag)
— case 4 (double Int.
S case 5 (first-order) . . . .
0 5 10 15 20 25 30 35 40
time
Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7. =

Unit setpoint change at ¢ = (; Unit load disturbance at ¢ = 20,
Simulations are without derivative action on the setpoint.
Parameter values: § = Lk=1kF = 1. " = 1.

g).



TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC: 7.=16 (4)

Gives:

K, 2 05T _ 05 1
R R
77 = min{7y, 80}

-~ S O
S M S,

D = T2

Gain ma rgin about 3 (canincrease process gain k by factor 3 before we get instability from «overreaction»)

Process g(s) rl:'_]f' e %‘;! fhs
Controller gain, K, “TJ_E-'L %{',—
Integral time, 7 1 a6
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4° 46.9°
Allowed time delay error, Af/# 2.14 1.59
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M, || 1.00 1.30
Phase crossover frequency, wigy - ¢ 157 1.49
Gain crossover frequency, w. - 0.50 0.51

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (7. = #). The same margins apply to
second-order processes if we choose 7p = 7.



= Example 2. Compare PI and PID

_ 1 (—0.3s +1)(0.08s +1)
(25 +1)(1s +1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

90(s)

=tf('s' . = =
Z:(-(Os.fg*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)"3) Note: tau2=1.2 > theta=0.77
lout=2.5, tau2=0, thela=1.47, tauc=theta % fst order so 2nd order and PID should give improvement compared to Pl

%tau1=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order

Kc=(1/k)*tau1/(tauc+theta) % Ke. PI: 0.85 PID: 1.30
taui=min(tau1,4*(tauc+theta)) % taui. PI: 2.50 PID: 2
taud=tau2; % taud. PI: 0 PID: 1.2 d
cpi=Kc*(1+1/(taui*s));
cd=(taud*s+1)/(0.1*taud*s+1);

cpid=cpi*cd; L d
L = cpid*g

S=inv(1+L) Ga
%setpoint response

Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint
Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint

%Input disturbance s + -+ y
gd=g; c .0 g -0 -
Td=gd*S; Td=minreal(Td); -

Tud=-gd*cpid*S; Tud=minreal(Tud);
Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;
%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi,'blue’, Typid,'blue--', Tuypi,'red’, Tuypid,'red--',15)
figure(2),step(Tdpi,'blue’, Tdpid,'blue--', Tudpi,'red', Tudpid,'red--',15)



Example 2.

(—0.35 4+ 1)(0.08s + 1)

gols) = k@S +1)(Ls + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)?

Conclusion:
PID is quite a lot better.

(expected since tau2=1.2
> theta=0.77)

Amplitude

Amplitude

0.6
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Step Response

STEP SETPOINT CHANGE (y,)

(note: without D-action on setpoint,
so u jumps initially to Kc also for PID)

Time (seconds)

Step Response
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-
- — e
= e e

EP INPUT DISTURBANCE (g,=

\\ =

—————— [

Time (seconds)

)
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SIMC-tunings

SHOULD WE ADD DERIVATIVE ACTION TO COUNTERACT TIME DELAY?
First order with delay plant (79 = 0) with 7. = 6:

1.4

1.2F A

K, =(0.5/k) (t,/8)

T|=T1

15 20 25 30 35 40
e

Figure 5: Setpoint change at t = 0. Load disturbance of magnitude 0.5 occurs at ¢ = 20.

NO e Observe: Derivative action (solid line) has only a minor effect.

e Conclusion: Use second-order model (and derivative action) only when
T > 6 (approximately)

Comments
1. Derivative action (PID) can help a little to speed up response for a process with time delay (e.g. use tp = 6/3), but we

then need to reduce 1. (i.e., increase K_) to get the performance benefit (e.g., reduce 1t from 6 to 6/2).
We did not do this in the above simulation, so this is why the benefit of D-action is small.

2. Use derivative action (PID) for unstable processes, for example, a double integrating process (not so common in
process control).



6.3 Ideal PID controller

The settings given in this paper (K., 77, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

1 K! ‘
Ideal PID : '(s) = K|, (l + —+ TL,S) =—= (*r;'rbsz + 718 + l) (35)
Trs JE
we use the following translation formulas
- - D ™D D
ﬁ’,zfic(l —)- - (1 —)- - 36
‘ +’TI T +T,- » "D l—|—%’- (36)

Example. Consider the second-order process g/s) = e */(s+1)? (E9) with the k=1, = 1,1, =1
and 7, = 1. The series-form SIMC settings are K, = 0.5, 77 = 1 and 7p = 1. The corresponding
settings for the ideal PID controller in (35) are K! =1, 7} = 2 and 7}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.



When do we need «tight control»?
For hard constraints where backoft is costly

«SQEEZE and SHIFT» RULE
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SMOOTH CONTROL

Tuning for smooth control

Tuning parameter: t, = desired closed-loop response time
Selecting t.=0 if we need “tight control” of y.

Other cases: “Smooth control” of y is sufficient, so select t, > 0 for
o slower control
o smoother input usage
less disturbing effect on rest of the plant
o less sensitivity to measurement noise
o better robustness

Question: Given that we require some disturbance rejection.

o What is the largest possible value for t_ ?
0 ANSWER: T 0 =1/Wy (where wyis defined as the frequence where |g4(jwq)l = Ymax/dmax )

Proof: S. Skogestad, ""Tuning for smooth PID control with acceptable disturbance rejection", Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).



LEVEL CONTROL

Level control (integrating process)

Level control often causes problems
Typical story:
o Level loop starts oscillating

0 Operator detunes by decreasing controller gain
o Level loop oscillates even more

Explanation: Level 1s by itself unstable and requires control.



Level control (integrating process): Can have
both fast and slow oscillations with PI-control

= Fast oscillations (K, too high): P <m 1,
0 Caused by (effective) time delay
= Slow oscillations (K, too low): P> & 1,

o Caused by integral action in controller

0 Avoid slow oscillations: k'K, .t; = 4.

P=period of oscillations = 2n/®



How avoid slowly oscillating levels?

« Simplest: Use P-control only (no integral action)

 |If you insist on integral action, then make sure
the controller gain is sufficiently large

* |If you have a level loop that is oscillating then

use Sigurds rule (can be derived):

f=0.1- (Py/1,)?
where
P, = period of oscillations [s]

Tio = original integral time [s]
0.1~ 1/7?

. . . . Py = = C \/ﬁ WN 2 [ —2 (39)
To avoid oscillations, increase K. - 1, by factor shere v hve ssamad < <1 (Sgniant il

ns). Thu ,fom(39)hp oduct of the original con-
troller gain and integral time is approximately

1 (10\°
K, r.(]:(zn)zy(ﬁ)

To avoid oscillations (¢ = 1) with the new settings we
must from (21) require K.r;=4/k', that is, we must
require that

Kty ! (ﬂ))z
> (2 40
Kotio ~ 72 \1o (40)
Her 1/rr ~ 0.10, so we h ¢ the rule:
T oid * l ow’ osmll f period Py the pro
d f h ll T gai § al time should b

dby f or fa 01(P/ 0)”

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL

Case study oscillating level

We were called upon to solve a problem with oscillations 1n a
distillation column

Closer analysis: Problem was oscillating reboiler level in upstream
column

Use of Sigurd’s rule solved the problem



APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f ~ 0.1(Fy/779)°.

Real Plant data:

Period of oscillations Py = 0.85h = 51min = f = 0.1 (51/1)* = 260

BERORE?  (Kc=- 05, teni= Tmia)

gy
o (wlvepts.)
BN N TR TS T KV P
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SIMC-rule with measurement dynamics

Rule: Combine the measurement dynamics
d.(s) and the process model g(s) and
apply the SIMC-rules on gg,,. This applies
both to the model approximation (half rule)
to get a 15t or 2" model and to the PI- or
PID-tuning, including the choice of t_.

Proof: handwritten note
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CONCLUSION

Tuning of PID controllers

SIMC tuning rules (“Skogestad IMC”)™
Main message: Can usually do much better by taking a
systematic approach
Key: Look at 1nitial part of step response
Initial slope: k* = k/t,
One tuning rule!

For cascade-form PID controller:

_ 1 1
Ke=% w0
77 = min(7y, 4(7. + 6))
D = 79
» 1. desired closed-loop response time (tuning parameter)
* Forrobustness select: 1, =0

Note: The delay 0 includes any measurement delay

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003

(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”
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