Transfer function

Can\w‘st multiply G and ul!

y(s) = G(s) u(s)

G(s) = transfer function of linear dynamic system

u and y: deviation variables

s: Laplace variable (replaces t as independt variable).
Note (may be confusing): s has units s' = second-"

Some typical transfer functions:

1. First-order with delay process, G(s)=k e®s/(ts+ 1)
— Example: Heated tank with delay in heater, y=T, u=Q,
V dT/dt = q,,(T, -T(t)) + Q(t- 6) /(pcp) Get t=V/q,, and k=1/(pc,V)
2. Integrating process, G(s)=k’/s
— Example:y = level (V) and u=qin, dV/dt=q,,—q,, Getk'=1
3. PID-controller, C(s) = K (1 + 1/(t;s) + 15 s) («ideal PID»)

Ty 8% + s +1
C

TS



First-order system

y(s) = G(s) u(s)
Two standard forms of first-order system:

1. G(s)=b/(s-a) where a = pole («state space» form)
Follow from general case with A=a, B=b, C=1, D=0.
Note:

k’=b=initial slope
Time response to step M in u(t):
y(t) = 2= (1 — )

Stable fora<0  since exp(at) =0 as t->c°
Unstable for a>0 since exp(at) -> oo as t->o0

2. G(s)=k/(ts+1) (time constant form for stable system)
T=-1/a
k=g(0) = -b/a = steady-state gain

Time response to step M in u(t): y(t) = kM (1 - exp(-t/1))



General procedure, matrix state-space form

1.  General* Nonlinear dynamic model:
dx/dt = f(x,u,d), y=g(x,u,d) (xisvector of states, y is vector of “outputs”)

2.  Steady state model. dx*/dt=0 -> f(x*,u*,d*)=0
— Find steady state *. Typically, use to find missing data
3. Introduce deviation variables and linearize

— dx/dt = Af = A Ax(t) + B Au(t) + By Ad(t). A= (a—f) etc.

0x
— Ay(t)= Ag = C Ax(t) + D Au(t) + D4 Ad(t)
4. Laplace** of both sides of linear model* (t -> s)
— sx(s) = A x(s) + B u(s) + B4 d(s)
— y(s) = Cx(s) + D u(s) + D, d(s)
5. Algebra (eliminate x(s), see next page)
= y(s)=Gls) u(s) + G4 d(s)
— Transfer matrix, G(s) = C (slI-A)'B + D,
— Gy(s) = C (sl-A)1B4 + D,
6. Block diagram
7.  Controller design

*State-space form (differential equations) is not completely general:

1) Cannot handle time delay.

2) Let g(s)= n(s)/d(s). Must assume: order d(s) = order n(s) (so cannot handle ideal PID)
**We will only use Laplace for linear systems!



General* Transfer Matrix

General system with n differential equations in
n state variables z(t) (where =, u,y are vectors
and A, I3,C, D are matrices):

dre(t) .
7 =Ax(t) + Bu(t)

y(t) =Cx(t) + Du(t)

Laplace transform with zero intitial condition,
xz(0) = 0,u(0) = 0 (deviation variables):

sl z(s) =Ax(s) + Bul(s)
(sI — A)z(s) =B u(s)
z(s) = (sI — A)~ 1 Bu(s)
Get y(s) = G(s)u(s) where transfer matrix is:

G(s)=C (sI — A 1B+ D

Here

—-1 __ Gdj(S‘I — A)
(sl —=A) == det{sl — A)

where del(ST — A) =

d(s) =ans" +a,_15"" 4+ -4+ a1s+ag
is a n'th order polynomial in n,

The n roots (generally complex) of the polynomial d(s),

d(s) = det(sl-A)=0
are the same as the eigenvalues of the state matrix A, and are known as the «poles» of the system.
A system with n states (so A is a nxn matrix) has n roots = eigenvalues = poles

*Warning: Not completely general. Does not include time delay, which cannot be written as a polynomial in s, and must assume order d(s) = order n(s)..



3

4
5

6

8

Plan for next two weeks

First-order systems (SiS5)
. Second-order systems
—  Can have oscillations (complex poles)
. Closed-loop transfer function (with control)
. Poles and zeros
— Including inverse response (RHP-zeros)
. Slow oscillations for Pl-control of integrating process
. Approximating transfer functions

— Time delay
— Half rule

. Derivation of SIMC PID rules (SiS6)



Start here lecture 2 in week 5 (19/9-24)

Initial and final values for step response

Transfer function g(s)
— y(s) = g(s) u(s)
Deviation variables for y(t) and u(t)
Consider response y(t) to step of magnitude M in input.
— u(t) =0 for t>0, u(t) = M fort>0 = u(s)=M/s
From g(s) we get directly final and intital part of time response:

Steady-state gai+n: % = ¢(0)
Initial gain: % = g(00)

et
Initial slope: % = limy_, o0 Sg(S)

Proof: Note that y(s) = g(s)
Final value theorem: lim; .. y(t)

Initial value theorem: lim; o y(t) = lims_ o0 sy(s) = g(oo) M
Initial value theorem: lim; o y'(¢) = lims— 0o S(sY(s)) = lims_ 00 sg(s) M

Initial value theorem: lim;_,o 4™ (t) = lim,_, 00 s™(sy(5)) = lims_o0 s"g(s) M

= lim,_,0 sy(s) = lim,_,0 sg(s) & = g(0) M

S



2.5

2

Initial slope (for M=1)

1.5

Amplitude

0.5

Example: First-order system .
Time response: y(t) =kM (1 - exp(-t/t)) .| 9 (23) ol N
10s+ 1
.~ Example g1 (k=2, ¢=10) |
//' A
k/T = 2/10 =0.2 // y(t) J-’U} — K,"Pf[l - .'."T}
- / |
/’/ 63%
y kM
u(t) -
~ A
/ k
K g(s) = Tst1
[/ Steady-state gaiJrn: 7 = 9(0) = M
/ Initial gain: % = g(c0) =0
Initial slope: ?/(TW) = lims o 59(8) = é v v
Time (seconds)
s=tf('s')
gl =2/(10*s+1)
step(g1,50)

axis([0 40 -0.2 3])



First-order system responses
Time response: y(t) = kM (1 - exp(-t/t))

Step Response
3 T T T T T T T

25

1.5

Amplitude

g2: Change time constant t from 10 (g1, blue) to 12 (g2,
green) ....gives smaller initial slope & slower dynamics

g3: Larger steady-state gain (k=2.2) (red).
Gives larger initial slope than g1 (but dynamics are
not faster than gl, because also steady-state is
larger)

0.5

] ] ] ] ] ] ]
0 5 10 15 20 25 30 35 40

s=tf('s') Time (seconds)
gl =2/(10*s+1), step(g1,50)

axis([0 40 -0.2 3]); hold on,

g2 =2/(12*s+1), step(g2,50)

g3 =2.2/(10*s+1), step(g3,50)




- )
Integrating system, g(s)=k’/s.
Special case of first-order system with ;=00and k=00 but slope k’=k/;, is finite
Large ;0 g(s)=k/(; s+1) = k/(; s) =K'/s
Step response (u=M): y(t)/M = k't (ramp)

Step Response

3 ' I

25

1.5

Amplitude

0.5

0

Example: | | | |

s=tf('s")
gl =2/(10*s+1), st
axis([0 40 -0.2 3]);
g2 =2/(12*s+1), st
g3 = 2.2/(10%s+1),
g4 = 2/(10*s+0), st

g4l: Integrating system=0.2/s " 15 Time(::wnds)
gl & g4: Same initial response (slope = 0.2=k/)

ep(gl1,50)
hold on,
ep(g2,50)
step(g3,50)
ep(g4,50)

25 30 35 40



g6: Unstable system (e.g., exothermic reactor):
Note: Sign change in denominator d(s)

Step Response

3

2.5

g6

P

/

//

unstable P

P
S
%

g4 |

// Integrating system:
on the limit to unstable

1.5

Amplitude

0.5

gl
stable

Oops... Negative sign in d(s)...

Pole p=0.1 Unstable!

0 5 10 15 20
Time (seconds)

25 30 35

40

10



2nd order system.
Special case: Two first-order in series

G(s)=———
(r,sT1)(7,5+1)

Example: Temperature in two tanks in series, t,=V,/q, T, = V,/q

(1)  y(s) = G(s) u(s) with u(s)=M/s (step).

Partial fraction expansion of (1)
C C C
(2) y(s)=kM (?0 + s+11/T1 + S+12/'E ) where C4=1, C;=-1,/(1;- 1,), C=0,/(T,- T,)

(Find C,, C; and C, from (1)=(2)).
Inverse Laplace of (2)
y(t) =kM (C,+C,e"/"1+C, e~t/2)
Conclusion: Step response (M = change in input):

- N

y(t) = F:M(i -

— e i
- ) (5-47)

T T T2



Step response for two first-order in series: S-shaped response

1

0.8

0.7

0.6

Amplitude
o
o

0.4

0.3

0.2

0.1

Step Response

K
(r,st1)(z,511)

G(s)=

Two second-order systems
with taul+tau2=1:
g2a =1/((0.5*%s+1)*(0.5*s+1))
g2b =1/((0.9*s+1)*(0.1*s+1))

Compare with first-order system with tau=1
gl =1/(s+1) (Black line)

1 1.5 2 25
Time (seconds)

\ S-shaped: Initial slope=0 for g2a and g2b

Amplitude

=
tn

0.4

0.3

0.1

Note: Second-order system with
taul much larger than tau2 can
be approximated as first-order
plus delay with delay = tau2:

g2b = 1/((0.9*s+1)*(0.1*s+1))
glb = exp(-0.1*s)/(0.9*s+1)
| |

0.5 1

12



n identical first-order systems in series

Step Response

gl =2/(2*s+1), step(g1,50)

3 I

25

g2 =2/(2*s+1)"2, step(g2,50
g3 =2/(2*s+1)"3, step(g3,50
g4 =2/(2*s+1)"4, step(g4,50

g6 = 2/(2*s+1)"6, step(g6,50

Amplitude

)
( )

( ( )

g5 = 2/(2*s+1)A5, step(g5,50)
( ( )

( )

g7 =2/(2*s+1)"7, step(g7,50

0 5 10 15 20 25

Time (seconds)

30

35 40

Note: More poles (relative to zeros) gives flatter initial step response. Proof:
Initial value theorem: lim;_,o 3™ (¢) = lims_yoc s (sy(s)) = lims_yoe s"g(s) M

For system with poles excess= m = n-n, we get that g(s) ~ 1/s™ when s goes to infinity.

Then the m’th derivative, yi™)(t), is finite (non-zero) for step-response. The other m-1 derivatives of y(t) are zero!

Example G1(s) = 2/(2s+1). m=n=1. So first derivative y’(t) (initial slope) is non-zero

Example G7(s) = 2/(2s+1)77. m=n,=7. So six first derivatives of y(t) are zero -> Very flat initial response. AImkost like time delay.



O
-
()
wid
Q.
©
i
O

General 2nd order system

K B K
s +20rs+1 (s—A)(s—A4)

G(s)=

Roots (poles, eigenvalues): 1, _eEve -

¢>1 Overdamped (two real poles)

(=1 Critically damped (two real identical poles)
Il < 1 Underdamped (complex poles; oscillations)
(<0 Unstable

1. Two real poles (overdamped), * >1: Two first-order in series

K K r=0 +7,

(r,st1)(7,511) - T1T282 +(7, +7,)st+1 NE D

T =./T,T,

Two —real — poles :
TIE—HT, . TEE-;ITE

A=-1/t,4 =-1/1, y{t)=KM(1- — )(5-47)

>1

G(s)=

14



2. Complex poles, |°|<1

G(S): ) K - > K Poles: /\1_2 = % ~g3—1 =0T 1w
TS +2§TS+1 4 (S_ﬂ'l)(s_ﬂ?) \\'h(‘r(‘.o:;},f: \/—_'l,q,-':@

v(s) = G(s) u(s) with u(s)=M/s (step).
Inverse Laplace
V(s) = kM (22 + =

-A

1

+ sz ) -> y(t)/kM =Cy+C ert+C et

Complex poles give oscilllations!

1wt , O
Use Euler’s formula for complex parts: €~ = coswt + 1 sinwt
The complex parts in y(t) cancel!

Flna”y get fOF Y(t)/kM . w = Complex-part
_ L un — 2t + Simpler form: l
A -1 e A i y(t) =kM(1 — J_TFM sin(wt + 1))
1 — 2 —1/w
— : Y = tan =
= tan™! ﬂif & 0=l <1) (5 )‘

N

. 5 . : w/oc = Complex-part/Real-part
Note: 1 — (¢ = wr where w is complex part of pole



Table 3.1 Laplace Transforms for Various Time-Domain
Functions? (continued)

f(t) F(s)
1 —ilTy —tiTy e 1
20. 1+ T = (mie — 13" 2) s(mys + 1)(ms + 1)
(m1 # ™)
. _ 1
1 —tlr < 1 _ 2 . .
N uhe sin (V1 — L dfr o+ 0] s(7s* + 2Lws + 1)
72 _ Alternative forms of step
P = tan~! *—1‘/_—2, 0= |€| <1) response for oscillating
4 1 2nd order system (O<zeta<1)
22. 1 — C‘_crh[ Cos (\" s €2 ﬂT) s(1'232 + 2§TS + 1) Simpler form:
y(t) =EM(1— —F”taln( it + 1))
—===sin (V1 - - (2 tiv)] ¥ = tan~1(¥)
\[ e
O=[l<1
T . BT T2 i, 735 + 1
+ 14 2
5.1 T T —m ¢ s(tis + 1)(12s + 1)
(11 # 12)
df
2. — sF(s) — f(0)
dn
. 21 SF(s) — 7 1(0) — 572 W(0) — -
—_ Sf{n-—z)(o) _f(n-l)([))
26. f(t — 1)S(z — to) e " F(s)

“Note that f(f) and F(s) are defined for ¢ = 0 only.

16
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1.6

1

s + 2rs+1

1.2

1.0 —

0.6 |~

0.4

0.2

T=o02l T T T 1 S

1 - - 2
21. 1 - _ e~Uh gin[J1 — G tiv + ]
J1-2 ‘ —

p=tan1 Y28 0= <1)

| | | | { [ { ! :

Figure 5.8.

4 8 12 16 20
t

T

Step response of underdamped second-order processes.
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[image: image1.png]Figure 5.8. Step response of underdamped second-order processes.







Step Response

s=tf('s')
zeta=0.5, tau=1
g = 1/[(tau*s)A2 + 2*tau*zeta*s + 1]

step(g,20)

1.2 A
1
1 T L e SO S — S/\z +s+ 1
0.8
o >> pole(g)
=
ELD'E ans =
=T
041 -0.5000 + 0.8660i
-0.5000 - 0.8660i
0.2 -
5 . . .
0 5 10 15 20

Time (seconds)

18



PERSISTENT OSCILLATIONS

(Zero damping. On the limit to instability)

Amplitude

1.8

1.6

1.4

—a
]
T

—_—
T

_|:I
oo
T

0.4 r

0.2

Step Response

10
Time (seconds)

15

20

s=tf('s')
zeta=0, tau=1
g = 1/[(tau*s)A2 + 2*tau*zeta*s + 1]

step(g,20)
pole(g)

ans =

0.0000 + 1.0000i
0.0000 - 1.0000i

19
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Figure 5.10. Performance characteristics for the
step response of an underdamped process.

Time to first peak: 1, = at/y/1 -2 (5-50)

a/b= QOvershoot: 0S = exp (-;r:i';ha’l - tﬁ) (5-31)
d/b = undershoot

c/a= Decay ratio: DR = (0S)* = exp (—EEU V1- ﬁz)
(5-52)

Period: P = _3’“ (5-53)

G(s) = s

s’ +2Cts+1
1g]<1

Poles: Ao =0 +iw

3
SN .

T

tp=n/ w
OS=exp(no/w)

DR = 0S?

P=2tp=2n/ w

20
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Figure 5.10. Performance characteristics for the
step response of an underdamped process.







Example 1

4 0.8 k
T(s)= - D) - 9.9
(4ds+1)(s+1)+4 08s*+s+1 725*+27(s+1
Get
1 |~ 4
T=V0.8 = [)89443, C = m = (.559
— 1 — (2
o= 5 = 0625 w=""5 _ 92
T T

Time to first peak: t, = 7/w = 3.14/0.927 = 3.39 s
Overshoot: OS = exp(wo/w) = exp(—2.12) = 0.120
Period: P =21 /w = 2t, =6.78 s

Time to second peak: 3t, = 10.17 s

Step Response

0.9

0.8 r

0.7 r

0.6 r

e
o
T

Amplitude
<
.

o
[
T

0.2 r

0.1 r

0 2 4 6 8 10 12
Time (seconds)



COMPLEX POLES IN PRACTISE

Underdamped (Oscillating) second-order systems (|3 |<1)

K
s’ +2C1s +1

G(s) =

Corresponds to complex poles, A\, =0 + iw

Process systems:

Oscillations are usually caused by (too) aggressive control

U-tube is an exception (see example next slide)

Example 1: P-control (controller gain K ) of second-order process, g(s) = k/(¢4 s+1)(;,» s+1)
* Oscillates (*°<1) if K.k is large

But there also cases where we need «aggressive» control to avoid oscillations:

Example 3: Pl-control of integrating process, g(s)=k’/s

* Need control to stabilize
* Oscillates (*<1) if Kk’ is small (!






2024: Start week 6 (only 2 lectures this week)

Example 1. Setpoint response for
P-control of 2nd order process

7

y.‘s + 14 "+ y

T C > a '—i{'}

g(s) = k/[(4s+1)(s+1)]
P-controller: c(s) = K.

Task: Derive closed-loop transfer function T(s) for setpoint change (can set d=0).

Note: same example as before



g(s) = k/[(4s+1)(s+1)], g,=1
P-controller: c(s) = K. Data: K k=1

Example 1

T(s) 4 0.8 0.8
51 = - fr— . f— . E
(4s+1)(s+1)+4 08s2+s5+1 72524+27(s+1 Can also find ® from poles
Get 1 0.8s?+s+1=0
T =vV0.8=0.8044s, (= 3 0.8000 0.559 Solution:
Hl — s =-0.625 £ 0.927i
o= "5 — 0625, w=""%_007
T
Time to first peak: ¢, = 7/w = 3.14/0.927 = 3.39 s
Overshoot: OS = exp(no/w) = exp(—2.12) = 0.120
Period: P = 27 /w = 2t;, = 6.78 s
Time to second peak: 3t, = 10.17 s
___________________________ =1
Step Response £ Ys
Offset = 1 — kK /(1+kK.) = 1/(1+kK )
=1/5=0.2

. Note: Larger value of K_ gives

E less offset but more oscillations.

= Oscillations (complex poles) for

o K>0.5625.

0 2 4 6 8 10 12

Time (seconds)



Closed-loop transfer function

N (measurement noise)

(1) Process:y = g(s) u +g4(s) d
(2) Controller: u = c(s) (y.-y,,)
(3) Measurement:y_ =g, (s)y+n

Closed-loop response: Want to find effect of y,, d an n on outputy.
Task: Eliminate u and y,, to find
y=T(s) ys + Ty(s) d +T(s) n

26



Closed-loop transfer functions

d

{ »
N e
N (measurement noise)

Closed-loop output response:y =Ty, +T,d+T n
Introduce «loop»=L=gcg,

T(s) = gc/(1+L)

Ty(s) = g4/(1+L)

T =-T
General rule for negative feedback:

— Transfer function = «direct(s)» / (1 + «loop(s)») —Ga9mC
Example: What is response fromy,, d and n to u? ud = 141

- u=Tusys-l--l-udd-I-Tunn

Note that T4 = -T for input disturbance (g,=g) and g,,=1

—  which is interesting since with SIMC-rule we choose desired T, so we also «have control» over input change for disturbances



Sensitivity function S

— — C L g —g-'_{_:.i——|—r—
: ! loop=gcg,
I
I I
I

S gives effect of feedback
* T,=Direct*S where S=1/(1+loop)

* No control: S=1 (S=I for multivariable case)

 Want |S| small to have small control error |e]:
e=5S(y;—8n8yd)
* Perfect control (infinite c): S=0 (Achievable at steady state with I-action)



Steady-state offset with P-control

(k=process gain, K_= controller gain)

d

L7

Sensitivity fuction: S(s) = 1/(1+L) where L(s)=loop=gcg,..
S is transfer function from y, to control error e (since «Direct»=1): e = S(s) y,
Steady-state offset to step change in setpoint: e = S(0) y, where

S(0)= 1/(1+loop(0))=1/(1+K k)

since g(0)=k, c(0)=K,, g,,(0)=1

Example P-control. k=1, K_ = 4. Relative Steady-state offset e/y, is S(0)=1/(1+K k ) = 1/5=0.20 (20%)

Note with I-action (Pl-control): Get ¢(0)=o0, loop(0)= o, so $(0)=0 and get no steady-state offet.



Example 2. Pl-control of 1st order process

3"’.‘5 + T F + y

_I-'I)_I'- C L g -_i_{.} il
Example.

g(s) = g4(s) = 2/(3s+1)
SIMC Pl-controller, T.=0.5 (so we are speeding up the response relative to 1=3):

1
c(s)=K.(1+ r,_s)’ K=3,17,=2
> c(s)=3(1+2—1s) = 3

2s+1
2s




e
Example 2. Pl-control of 1st order process 1
Setpoint response. y=1, d=0 G

y=T(s) y, T

_ 2s+1) B (2s+1)
T(s) = (s2+2333s+1) (1.178s + 1)(0.566s + 1)

Amplitude

2nd order system with a zero

(No oscillation! The overshoot is from the zero polynomial n(s)=2s+1)

Initial slope = Sll_)rglo sT(s) =2

Time (seconds)
% Matlab

Note: Reach 63% approximately at t=1.=0.5 s=tf('s)
g = 2/(3*s+1)

c=3*(1+1/(2*s))
T = g*c/(1+g*c)
step(T)
31



Input Disturbance response (g,=g)

Td =
0.6667 s

s"2+2.333s+1

Step Response 2,5 MG

Amplitude

—_—
T

«Open-loop»:

«Closed-loop»: With feedback control

_— Initial slope = lim sTd(s) = 0.67 '
Steady-state =T ;,(0) =0

—

Disturbance response without control

2 4 6 8 10 12 14 16
Time (seconds)

18

IMPORTANT:
The initial disturbance response
(with or without feedback control)

is always the same

% Matlab

s=tf('s")

g =2/(3*s+1)

c=3*(1+1/(2*s))

Td=g/(1+g*c)

step(g,Td) 37



e

Comment: Adding delay gives oscillations,
0=0.5s

Us + - C LN R —g—r{‘_a——n—
Setpoint response. y=1, d=0 ‘

>> delay = exp(-0.5*s)
delay =

exp(-0.5*s) * (1) SUEH TVED WIS
>> L =g*c*delay

L=

exp(-0.5%s) * --------——-

>>T2 =L/(1+L)
Internal delays (seconds): 0.5 0.5

Amplitude

>> step(T2)

Complicated T(s) with delays...
Need to use simulations

Unstable with0=1s _

Time (seconds)

33
Comment: The SIMC-controller for the process g(s) = 2e0->$/(3s+1) with t.=6=0.5 has K =1.5 and t=3.



Example 3. Pl-control of integrating process (level)

FLOWSHEET. BLOCK DIAGRAM:
Qin 5 hs d
- B h@ (o] y=Ah
Vm3] NS ey VRN, ey WG y gi_AAqqout
| MV=q ‘ -

C{out k,

Mass balance with constant density (V=Ah): g(S) — gd(S) — 5
dV/dt = Qin — Qout 1

Deviation variables + linearize (well, it’s already linear!) C(S) — KC (1 -|— —)

A dAh/dt = Ag, (t) = Agy(t)
Laplace

An(s) = 2900 B ey (wea) K= 1/A

Task: Derive condition to avoid «slow» ocillations that may occur when K_ is too small

*Yes, this may seem a bit strange, but for Pl-control of integrating process you may get oscillatons when Kc is too small!
In addition, you may of course get the more common «fast» oscillations if Kc is too large because of «overreaction» with time delay.

TS



Integrating process with Pl-control:
k'

G(S)=? T {9

C(s) = Ke(1+ —)

General rule to avoid slow oscillations ({ = 1)

k,KCTI = 4

Need large controller gain and/or large integral time (!)

Proof: G(S) — k e b ~ k?’ where k' = %; C(S) =K. (1 + L)

T1s+1 718
Closed-loop poles:
1+GC=0=1+%K, (1+%) =0=>7s" + K Kris+ KK, =0
To avoid oscillations we must not have complex_poles:
B* —4AC > 0 = KPK27f — AK' Ko 2 0 =s{ K Kerr 2 A= 11 2 55




Closed-loop responses

Closed-loop response to disturbance d at input and setpoint change

y — —2 —g¢
Y= 1+gcd + T+gcds
Pl-control of integrator:

g(s) =57 cfs) = K=t
Get
T[& d_|_

o Ke(rrs+1l) Note: This is not a good tuning,
¥y= s+ Kermrs+ K.

et Kerrat Ke Ue Will get slow oscillations since
kKT, = 1%0.25%1=0.25 < 4

o s 0.25(s41) B 4ds (s +1)

¥y = 52+D.255+ﬂ.25d+ =210 255402595 — 4s2 1511 + 4s2 L g1 1 Ys

With 7 =1, K, = 0.25:

o

T,= h(s) T(s)
Notes:

e Steady-state gain h(0) for disturbance transfer function h(s) is zero (be-
cause controller has integral action)

e Steady-state gain T(0) for setpoint transfer function T'(s) is 1 (because
controller has integral action)

e Denominator is on form 7252 +27(s+ 1 witht=2and ( =0.25 < 1, so
there will be oscillations with period P == 277

e Initial response (f — 0) to disturbance i1s the same as with no control

(his) = T_Ijsr’—c — g(s) when s — oo since g(s)c(s) — 0 (which is the case

for all real systems))
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Simulink, tunepid4

Rt r [
To Workspace? at_epz
>+ numis) +
i e g >y
Step > den(s) hl
SUM  Transfer Fond Sum1 LTI System To Workspace
S
Scope
@H Tid
Clock To Workspace > u
To Workspace3

m Function Block Parameters: Transfer Fcnl

—Transfer Fcn

The numerator coefficient can be a vector or matrix expression. The
denominator coefficient must be a vector. The output width equals the
number of rows in the numerator coefficient. You should specify the
coefficients in descending order of powers of s.

— Parameters

Mumerator coefficients:

Denominator coefficients:

| [ 0.01*taui*taud taui 0]

Absolute tolerance:

|autn

State Name: (e.g., 'position')

J- oK Cancel Help Ap

ply

37



Pl-control of integrator (level control). G = 1/s, taui=1. VARY Kc

2.5

%tunepid4

s=tf('s')

theta=0

g=(1/s)*exp(-theta*s) % integrating
taud=0

taui=1

Kc=0.5 % oscillations (Kc*k'*taui = 0.5 < 4)
sim tunepid4; plot(Tid,y); hold on %

Kc=0.25 % more oscillations (Kc*k'*taui = 0.25 < 4)
sim tunepid4; plot(Tid,y,'red");

Kc=1 % less oscillations (Kc*k'*taui=1)

sim tunepid4; plot(Tid,y,'green’);
hold off

20 25 30

Input disturbance at t=20

Setpoint change at t=0

40

Note: Need higher controller gain
to reduce “slow” oscillations!
Avoid slow oscillations: k'K.t; = 4

So would need to increase Kc to 4 in this case
(SIMC-rule)




1.8

1.6

0.4 H

0.2

Pl-control of integrator (level control). G = 1/s, Kc=1.

VARY taui

Setpoint change at t=0

Input disturbance at t=20

40

Note: Need larger integral
time reduce “slow” oscillations
Avoid slow oscillations: k'K;t; = 4
So need to use taui=4 to have
no oscillations (SIMC-rule).
Get T(s)=(4s+1)/(2s+1)"2
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Poles and zeros
g(s) = n(s)/d(s).

Example. g(s) 12546

T 3052+ 335+ 3

Standard forms:

1. Time constant form (5) = D5+ D
S) — K
g (le’ + 1)(’?25 + ]_) T
25 +1
g(s) =2

(10s +1)(s + 1)

2. Pole-zero form,

(s —21) -
g(s)=-c -
p=pole, z=zero (s =p1)(s—p2)--
(more general, for unstable and B 12 s+0.5

complex poles/zeros) 9(s)

T 30(s+0.1)(s+1)
Z1 = —1/T1 = —1/2 = —(]5

pr=—1/m1=-1/10 = —0.1;

pr=—1/m=—-1/1=-1
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Poles and zeros

Transfer functions G(s) of linear, time-invariant systems with time delay are ratios

of two polynomials in s (Laplace variable)
— G(s) = n(s)/d(s)
Polynomials have roots.

root in denominator, d(s)=0:
root in numerator, n(s)=0:

Effect on dynamics:

G(s) — o "pole” (x)
G(s) = 0”zero” (0)

— Poles determine stability and fast or slow dynamics
* d(s)=(ts+1). «Stable» LHP-poles slow down the response

— slower forlarget

* Poles in right half plane (RHP): Unstable .
— Example: g(s)=1/(s-1). Has RHP-pole at s=1

* Complex poles (=eigenvalues of A): Oscillations with frequency w

Im(s)

-0.5+0.87i X N

*H

-0.5-0.87i X |

Re(s

— Example: g(s) =1/(s"2 +s+1). Solve d(s)=s*2+s+1=0.Get polessl = -0.5+0.87*%i,s2 =-0.5-0.87*i, w=0.87

— Zeros are responsible for shape of response

* n(s)=(Ts+1). Zeros in left half plane (LHP): «Lift» the response

— give overshoot for large T.

* n(s)=(-Ts+1). Zeros in right half plane (RHP): always give inverse response

— Inverse response makes problems for feedback control
— Example: g(s)=(-0.5s+1) / (10s*2+11s+1). Has RHP-zero at s=2

Im(s)




Zeros

/eros
e Zeros are common in practise

e Occur when there are several «paths» to the output.
*  RHP zero: «competing effects where slow wins (has largest gain)»

N

v—> Y

s

All coefficients positive: LHP zero

e Example ] 2 0.3
P gi(s) = 10s5+1° g2(s) = 3 l/
. _ 2(s4+1)40.3(10s+1) _ . 217541
9(s) =91+ g2 = (10s+1)(s+1) 2'3(105+1)(s+1)
* Example 2 g1(s) = 1052+1= gg((s) ): —(Sofl | Sign change: RHP zero ) Inverse response
B  2(s41)—0.3(10s41) Y0.50541
9(3) =91 1t92= (10s+1)(s+1) o 1'7i108+15i8+1) ) ‘ ‘ _ Step Response
* Example 3 0.3 2
p 91(3) —  T0s+1° Z{gQ(S) — S+1
B A% 41)-0.3(ms 1) 11.3s541
g(s) =91+ 92 = (10s+1)(s+1) 1'7(108+1)(8+1)
/

Note; Overshoot since 11.3>10
(overshoot: competing effects where fast wins)

5 10 15 20 25 30 35 40
Time (seconds)

Example 2: RHP-zero with «time constant» -0.59: Similar to delay of 0.59.



Start here week 7

Zeros

K(tes +1)
(115 + 1)(728 + 1)

3_

(5-14)

G(s) =

s
KM

Figure 5.3 Step response of an overdamped second-
order system (Eq. 5-14) for different values of 7, (7 = 4,
Ta = 1}
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Summary poles and zeros

G(s) = n(s) / d(s)=K’(s-z) / (s-p;)(s-p,)..
Example: G(s) = 4 (3s-1)/(s%+s-2),
Get: k'=12, z,=1/3, p;=-2 p,=1

Poles p (=eigenvalues of A-matrix)
— Determine speed of response, exp(p*t)
— Negative sign in d(s) ) p, in RHP: unstable, exp(p,*t) ! 1 (NEED control)
— Pole p complex: oscillating response
Zeros z
— Determine shape of response

— Negative sign in n(s) ) z, in RHP: inverse response (BAD for control)
— LHP-zero may give overshoot



Approximation of time delay

 Time delay is a bit difficult because it’s «infinite order»
— So cannot directly use with g(s)=n(s)/d(s) (where n and d are polynomials)
— or with «state-space» form (dx/dt=Ax+Bu)

e Taylor expansion of e* (x=-0s)

o0 " 2 $3 334

€T
=D Tt gt

1=

* Approximation of delay as n(s)/d(s):

e =1 —0s+ -~ —Os+1 RHP-zero approximation (we use this for SIMC)
—ps 1 N 1
€ T oefs T Ps 4+ 1 1st order approximation
0
—5S 6
pe €29 —Zs+1 S
e 05 — T~ 92 Pade approximation (better)
6_§S ?S + 1

0
—fs ~ (—%S + 1)%
Lev 1

n’th order Pade approximation (even better)
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“Going the other way”

Simple approximations of time delay

Example: Step response of first-order system plus delay

Step Response

1 =
0.8+ - | :
L —S ]
0.6 ( e
g(s) =
04 s+ 1 E
2 0.2+ —
2 < s=tf('s')
E— 0 —— - theta=1
< Y/ g0=exp(-theta*s) % 0. Original time delay.
02 3 / gl=-theta*s+1 % 1. As RHP-zero.
g2=1/(theta*s+1) % 2. As First order
04~ / g3 = (-theta*s/2+1)/(theta*s/2+1) % 3. Combined: Pade-approx
, h=1/(s+1)
0.6 1 step(g0*h,g1*h,g2*h,g3*h)
axis([05-11.1])
0.8/ T
-1 / \ \ \ \ \ \ \

|
2.5 3 3.5 4 4.5 5
Time (seconds)
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n"th order Pade approximation

Accurate for large n

( 0 g 1)"
(215 + 1)

Note: Number of RHP-zeros
= number of 0-crossings of step response

Step Response

s=tf('s')

theta=1

g0 =exp(-theta*s) % Original time delay

gl = (-theta*s/2+1)/(theta*s/2+1) % 1st-order Pade-approximation

Amplitude

g3 = (-theta*s/6+1)"3/(theta*s/6+1)*3 % 3rd-order Pade-approximation
h=1/(s+1)

step(g0*h,g1*h,g2*h,g3*h)

axis([05-0.2 1.1])

i

Why use Pade?
To get model on state space form, dx/dt=Ax+Bu

n

I 0.5 1 1.5 g 2.5 3 3.0 4 4.5

Time (seconds)
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Approximations of transfer functions

e Going the «other way»

* Want to approximate g(s)=n(s)/d(s) as first-order plus delay

— «Skogestad half rule» to find effective delay. IMPORTANT!
— see slides SiS6 for SIMC-rule



Extra: Examples of dynamic model
structures



RHP-zero (inverse response)

w_ [kg/s] = const.

_ T,=10C = const.
Electric heater

sl 7=20s [ Th y=TICl
u=w,, [kg/s] /NV\ 70C Mix 40C

To=10C QW]
=const.

Response in y=T to a 10% step increase in u=w,, =0.1:
41.5C

40C

38.5C

Two effects: 1) Direct effect of mixing: g,(s)=15
2) Indirect effect of changed T,: g,(s) =-30/(20s+1

J

g(s) =g1+g> =
L 15—2U3:|:1
20541

50



Model derivation

Electric heater

d1=Wc [kg/s]
d,=T,

x=Ty y=TI[C]

D
u=w,, [kg/s] /\/\/\
d,=To d.=Q [W]

1. Model. Assume:
Mass m [ke] in heater constant
cp constant

Energy balance heater + mixer:

d pT ¢

dmeele) — wyep(To — T) + Q
! — thh_wcTc
T= We+wh

2. Linearize:

y=AT.z = ATy, u= Aw,

- .

] At = a +;1'EI.

y=Cx+ Du

S
~

I
N

Mix

3. Nominal steady-state data:
I = 10C. Ty, =70C, T = 40C

wp = w, = lkg/s,m = 20kg
Gives:
k=Tl = 10270 — g

wy 1
T=m/wy =20/1=20
tu::',—l—w;; -
D= T, —T* — T0—40 — 15
wetwy 2

4. Transfer function:

y(s) = Gls)u(s)

G(s)=C25+D
= 055525 + 15
155y
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Zero at O (no steady-state effect)

Bypass (10%)

u=awlkg/s]

Electric heater 10C
w[kg/s]=1=const. r=2s | T. | y=TIC]
T =10C g o g

0 N\/\ 70C Mix 64C
Q [W]
=const.

Response in y=T to a step decrease in bypass fraction from 0.1 to 0.05:

67C
64C
Two effects: 1) Direct effect of mixing: g,(s)=-60 g(s) =g1+g> =
2) Indirect effect of changed T,: g,(s) = 60/(22s+1) — 60%
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Model derivation

Bypass, u=a w [kg/s]

w[kg/s]=1=const.

<

Electric heater 10C

T = 22s Th

T,=10C=const.

1. Model. Assume:
Mass m [keg| in heater constant
cp constant

Energy balance heater + mixer:

ﬂ"’“idtil =(1—aj)wep(Ty —Tp) + Q

T=(1—a)Ty+ aT,

2. Linearize:

y=AT.x2=AT,u=a«a
d:r

T = T+ ku
y=Czx+ Du
= _ Lo=Th

_ ill—ct‘J
T =mjuwy
C=(l—a")
D= (17 - Tj)

\

.,

/Q (W] \

3. Nominal steady-state data:
To =10C. T, = 70C. T = 64C
w = 1lkg/s.a =0.1,m = 20kg
Gives:

p=_—TozTh _ 1070 _ 667

H—a) — 0.0
m/w; = 20/0.9 = 22
C = fl—a-):D.Q
D=(T; — T*'jz—ﬁ[]

4. Transfer function:
y(s) = G(s)u(s)
G(s) = Ot~ i+ D

667
= 0932 T 60 .
= 60(005 r— 1) = 6055

y=TI[C]

AN 70C Mix 64C
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