
Transfer function

Some typical transfer functions:
1. First-order with delay process, G(s)=k e-θs/(τs+ 1)

– Example: Heated tank with delay in heater, y=T, u=Q, 
                V dT/dt = qin(Tin-T(t)) + Q(t- θ) /(ρcP)        Get τ = V/qin and k=1/(ρcPV) 

2. Integrating process, G(s)=k’/s
– Example: y = level (V) and u=qin,     dV/dt = qin – qout Get k’=1

3. PID-controller , C(s) = Kc(1 + 1/(τIs) + τD s)   («ideal PID») 

G(s)u(s) y(s) = G(s) u(s)

G(s) = transfer function of linear dynamic system
u and y: deviation variables
s: Laplace variable (replaces t as independt variable). 
    Note (may be confusing): s has units s-1 = second-1

 

Can just multiply G and u!

= 𝐾𝐾𝑐𝑐
τ𝐼𝐼τD 𝑠𝑠2 + τI 

s +1
τI 

s 1



First-order system
y(s) = G(s) u(s)

Two standard forms of first-order system:

1.   G(s) = b/(s-a)  where a = pole («state space» form)
        Follow from general case with A=a, B=b, C=1, D=0.   

Note:
 k’=b=initial slope 
Time response to step M in u(t):   

𝑦𝑦 𝑡𝑡 = 𝑏𝑏𝑏𝑏
−𝑎𝑎

1 − 𝑒𝑒𝑎𝑎𝑎𝑎
• Stable for a<0       since exp(at) =0 as t->∞

• Unstable for a>0  since exp(at) -> ∞ as t->∞

2.    G(s) = k/(τs+1)   (time constant form for stable system)
 τ = -1/a
 k=g(0) = -b/a = steady-state gain 

 Time response to step M in u(t):  y(t) = kM (1 - exp(-t/τ))
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General procedure, matrix state-space form
1. General* Nonlinear dynamic model: 

dx/dt = f(x,u,d),   y = g(x,u,d)  (x is vector of states, y is vector of “outputs”)
2. Steady state model.             dx*/dt=0 -> f(x*,u*,d*)=0 

– Find steady state *. Typically, use to find missing data
3. Introduce deviation variables and linearize

– dx/dt = Δf = A Δx(t) + B Δu(t) + Bd Δd(t).    A = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∗

 etc.
– Δy(t)= Δg = C Δx(t) + D Δu(t) + Dd Δd(t)

4. Laplace** of both sides of linear model* (t -> s)
– sx(s) = A x(s) + B u(s) + Bd d(s)
– y(s)  = C x(s) + D u(s) + Dd d(s)

5. Algebra (eliminate x(s), see next page)
– y(s) = G(s) u(s) + Gd d(s)
– Transfer matrix, G(s)  = C (sI-A)-1B + D, 
– Gd(s) = C (sI-A)-1Bd + Dd

6. Block diagram 
7. Controller design

*State-space form (differential equations) is not completely general: 
1) Cannot handle time delay.  
2) Let g(s)= n(s)/d(s). Must assume: order d(s) ≥ order n(s) (so cannot handle ideal PID)

**We will only use Laplace for linear systems! 3



General*  Transfer Matrix

The n roots (generally complex) of the polynomial d(s),
                         d(s) = det(sI-A)=0
are the same as the eigenvalues of the state matrix A, and are known as the «poles» of the system.
A system with n states (so A is a nxn matrix) has n roots = eigenvalues = poles

*Warning: Not completely general. Does not include time delay, which cannot be written as a polynomial in s, and must assume order d(s) ≥ order n(s).. 
4



Plan for next two weeks
1. First-order systems  (SiS5)
3. Second-order systems  

– Can have oscillations (complex poles)
4. Closed-loop transfer function (with control) 
5. Poles and zeros 

– Including inverse response (RHP-zeros)
6. Slow oscillations for PI-control of integrating process
7. Approximating transfer functions 

– Time delay
– Half rule

8. Derivation of SIMC PID rules (SiS6)
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Initial and final values for step response
• Transfer function g(s)

– y(s) = g(s) u(s)
• Deviation variables for y(t) and u(t)
• Consider response y(t) to step of magnitude M  in input. 

– u(t) = 0 for t>0, u(t) = M for t≥0   ⇒ u(s)=M/s
• From g(s) we get directly final and intital part of time response:

6

Start here lecture 2 in week 5 (19/9-24)
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s=tf('s')
g1 = 2/(10*s+1)
step(g1,50)
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Example: First-order system 
Time response:  y(t) = kM (1 - exp(-t/τ))

Initial slope (for M=1):  k/τ = 2/10 = 0.2
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s=tf('s')
g1 = 2/(10*s+1), step(g1,50)
axis([0 40 -0.2 3]); hold on,
g2 = 2/(12*s+1), step(g2,50)
g3 = 2.2/(10*s+1), step(g3,50) 8

g2: Change time constant τ from 10 (g1, blue) to 12  (g2, 
green) ….gives smaller initial slope & slower dynamics

g3: Larger steady-state gain (k=2.2) (red).
Gives larger initial slope than g1 (but dynamics are 
not faster than g1, because also steady-state is 
larger)

First-order system responses
Time response:  y(t) = kM (1 - exp(-t/τ))
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g4=0.2/s g3

s=tf('s')
g1 = 2/(10*s+1), step(g1,50)
axis([0 40 -0.2 3]); hold on,
g2 = 2/(12*s+1), step(g2,50)
g3 = 2.2/(10*s+1), step(g3,50)
g4 = 2/(10*s+0), step(g4,50)

Example:
g4: Integrating system =0.2/s
g1 & g4: Same initial response (slope = 0.2=k/¿)

Integrating system, g(s)=k’/s.
Special case of first-order system with ¿=∞and k=∞ but slope k’=k/¿ is finite

Large ¿:    g(s)=k/(¿ s+1) ≈ k/(¿ s) = k’/s
Step response (u=M): y(t)/M = k’t (ramp)



g6: Unstable system (e.g., exothermic reactor):
       Note: Sign change in denominator d(s)
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2
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10 s

g6 =

2
--------
10 s - 1

g4

g1
stable

g6
unstable Integrating system: 

on the limit to unstable

Oops… Negative sign in d(s)… Pole p=0.1 Unstable!
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2nd order system.
Special case: Two first-order in series

1 2

KG(s)=
( s+1)( s+1)τ τ

Example: Temperature in two tanks in series, τ1=V1/q, τ2 = V2/q

Conclusion: Step response (M = change in input): 

(5-47)

11

(1)     y(s) = G(s) u(s) with u(s)=M/s (step). 
Partial fraction expansion of (1)
 (2)     y(s) = kM (𝐶𝐶0

𝑠𝑠
 + 𝐶𝐶1
𝑠𝑠+1/τ1

 + 𝐶𝐶2
𝑠𝑠+1/τ2

) where C0=1, C1=-τ1/(τ1- τ2), C2=τ2/(τ1- τ2)

     (Find C0, C1 and C2 from (1)=(2)).

Inverse Laplace of (2)
                 y(t) =kM (C0+𝐶𝐶1e−t/τ1+C2 e−t/τ2 )



Two second-order systems 
with tau1+tau2=1:
   g2a = 1/((0.5*s+1)*(0.5*s+1))
   g2b = 1/((0.9*s+1)*(0.1*s+1))

Compare with first-order system with tau=1
    g1 = 1/(s+1)  (Black line)

g2b = 1/((0.9*s+1)*(0.1*s+1))
g1b = exp(-0.1*s)/(0.9*s+1) 

Note: Second-order system with 
tau1 much larger than tau2 can 
be approximated as first-order 
plus delay with delay = tau2:

1 2

KG(s)=
( s+1)( s+1)τ τ

Step response for two first-order in series: S-shaped response

S-shaped: Initial slope=0 for g2a and g2b
12
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g1 = 2/(2*s+1), step(g1,50)
g2 = 2/(2*s+1)^2, step(g2,50)
g3 = 2/(2*s+1)^3, step(g3,50)
g4 = 2/(2*s+1)^4, step(g4,50)
g5 = 2/(2*s+1)^5, step(g5,50)
g6 = 2/(2*s+1)^6, step(g6,50)
g7 = 2/(2*s+1)^7, step(g7,50)

g1

g7

n identical first-order systems in series

Note: More poles (relative to zeros) gives flatter initial step response. Proof:

For system with poles excess= m = np-nz, we get that g(s) ~ 1/sm when s goes to infinity. 
     Then the m’th derivative, y(m)(t), is finite (non-zero) for step-response. The other m-1 derivatives of y(t) are zero! 
Example G1(s) = 2/(2s+1). m=np=1. So first derivative y’(t) (initial slope) is non-zero
Example G7(s) = 2/(2s+1)^7. m=np=7. So six first derivatives of y(t) are zero -> Very flat initial response. Almkost like time delay.

 

g2
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1. Two real poles (overdamped), ³  >1: Two first-order in series 

General 2nd order system

1 1 2 2

:
1/ , 1/

Two real poles
λ τ λ τ

− −
= − = − (5-47)
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2. Complex poles, |³|<1
2 2 2

1 2

G(s)=
2 1 ( )( )
K K

s s s sτ ζτ τ λ λ
=

+ + − −

y(s) = G(s) u(s) with u(s)=M/s (step). 
Inverse Laplace 

 y(s) = kM (𝐶𝐶0
𝑠𝑠

 + 𝐶𝐶1
𝑠𝑠−λ1

 + 𝐶𝐶2
𝑠𝑠−λ2

) ->   y(t)/kM =C0+𝐶𝐶1eλ1t+C2eλ2t 

Complex poles give oscilllations!
Use Euler’s formula for complex parts:
The complex parts in y(t) cancel! 
Finally get for y(t)/kM:

15ω/σ = Complex-part/Real-part

ω = Complex-part



Table 3.1  Laplace Transforms for Various Time-Domain
Functionsa (continued)

f(t) F(s)

A
pp

en
di

x 
A

Alternative forms of step
response for oscillating
2nd order system (0<zeta<1)
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[image: image1.png]Figure 5.8. Step response of underdamped second-order processes.








s=tf('s')
zeta=0.5, tau=1
g = 1/[(tau*s)^2 + 2*tau*zeta*s + 1]
step(g,20)

                       g =
                                 1
                           -----------
                           s^2 + s + 1

>> pole(g)

ans =

  -0.5000 + 0.8660i
  -0.5000 - 0.8660i
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s=tf('s')
zeta=0, tau=1
g = 1/[(tau*s)^2 + 2*tau*zeta*s + 1]

         g = 
                       1
                   -------
                   s^2 + 1
 

         step(g,20)
         pole(g)

         ans =

                  0.0000 + 1.0000i
                  0.0000 - 1.0000i

 

PERSISTENT OSCILLATIONS
(Zero damping. On the limit to instability)
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OS=exp(πσ/ω)

DR = OS2

P=2tp=2π/ω

1s2s
K=G(s) 22 +ζτ+τ

|ζ|<1

20

a/b=
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Figure 5.10. Performance characteristics for the
step response of an underdamped process.
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Underdamped (Oscillating) second-order systems (|³|<1)

Corresponds to complex poles, 

Process systems:
Oscillations are usually caused by (too) aggressive control
U-tube is an exception (see example next slide)

Example 1: P-control (controller gain Kc) of second-order process, g(s) = k/(¿1 s+1)(¿2 s+1) 

• Oscillates (³ <1) if Kck is large 

But there also cases where we need «aggressive» control to avoid oscillations:

Example 3: PI-control of integrating process, g(s)=k’/s
• Need control to stabilize
• Oscillates (³ <1) if Kck’ is small (!) 

1s2s
K=G(s) 22 +ζτ+τ

COMPLEX POLES IN PRACTISE
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Note: The system is linear 

P≈2𝜋𝜋𝜋𝜋 =1.40s



Example 1. Setpoint response for
 P-control of 2nd order process 

g(s) = k/[(4s+1)(s+1)]
P-controller:  c(s) = Kc

Task: Derive closed-loop transfer function T(s) for setpoint change (can set d=0).

24
Note: same example as before

2024: Start week 6 (only 2 lectures this week)
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Offset = 1 – kKc/(1+kKc) = 1/(1+kKc) 
            = 1/5 = 0.2 

Can also find ω from poles
         0.8 s2 + s + 1 = 0
  Solution:
            s = -0.625 ± 0.927i   

ys=1

Note: Larger value of Kc gives 
less offset but more oscillations. 
Oscillations (complex poles) for 
Kc>0.5625. 

g(s) = k/[(4s+1)(s+1)], gm=1
P-controller:  c(s) = Kc . Data: Kck = 1

0.8



Closed-loop transfer function

(1) Process: y = g(s) u + gd(s) d
(2) Controller: u = c(s) (ys-ym)
(3) Measurement: ym = gm(s) y + n

Closed-loop response: Want to find effect of ys , d an n on output y.
Task: Eliminate u and ymto find
 y = T(s) ys + Td(s) d  + Tn(s) n

gm

n (measurement noise)

26



Closed-loop transfer functions

• Closed-loop output response: y = T ys + Td d + Tn n
• Introduce «loop»= L = g c gm

T(s) =  gc/(1+L)
Td(s) = gd/(1+L)
Tn = - T

• General rule for negative feedback: 
– Transfer function = «direct(s)» / (1 + «loop(s)»)

• Example: What is response from ys, d and n to u?
– u = Tus ys + Tud d + Tun n

• Note that Tud = -T for input disturbance (gd=g) and gm=1 
– which is interesting since with SIMC-rule we choose desired T, so we also  «have control» over input change for disturbances

27

gm

n (measurement noise)

𝑇𝑇𝑢𝑢𝑢𝑢 =
−𝑔𝑔𝑑𝑑𝑔𝑔𝑚𝑚𝑐𝑐

1 + 𝐿𝐿



Sensitivity function S

S gives effect of feedback  
• Tcl = Direct*S  where S=1/(1+loop)

• No control: S=1  (S=I for multivariable case)
• Want |S| small to have small control error |e|: 

e = S (ys – gm gd d)

• Perfect control (infinite c): S=0 (Achievable at steady state with I-action)

28

gm

n

loop = g c gm



Steady-state offset with P-control
(k=process gain, Kc= controller gain)

e

Sensitivity fuction: S(s) = 1/(1+L) where L(s)=loop = g c gm.
S is transfer function from ys to control error e (since «Direct»=1): e = S(s) ys
Steady-state offset to step change in setpoint: e = S(0) ys  where 

S(0)= 1/(1+loop(0))= 1/(1+Kck )  
 since g(0)=k, c(0)=Kc, gm(0)=1

Example P-control. k=1, Kc = 4. Relative Steady-state offset e/ys is  S(0)=1/(1+Kck ) = 1/5= 0.20 (20%)

Note with I-action (PI-control): Get c(0)=∞,  loop(0)= ∞, so S(0)=0 and get no steady-state offet.

gm

29



Example 2. PI-control of 1st order process

Example.  
            g(s) = gd(s) = 2/(3s+1)
SIMC PI-controller, τc=0.5 (so we are speeding up the response relative to τ=3):  
            c(s) = 𝐾𝐾𝑐𝑐(1 + 1

𝜏𝜏𝐼𝐼𝑠𝑠
),  Kc= 3, τI =2

            ->   c(s) = 3 1 + 1
2s

=  3 2𝑠𝑠+1
2𝑠𝑠
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y= T(s) ys

Example 2. PI-control of 1st order process
Setpoint response. ys=1, d=0

𝑇𝑇 𝑠𝑠 =
2𝑠𝑠 + 1

(𝑠𝑠2 + 2.333𝑠𝑠 + 1) =
2𝑠𝑠 + 1

(1.178𝑠𝑠 + 1)(0.566𝑠𝑠 + 1)

   2nd order system with a zero
(No oscillation! The overshoot is from the zero polynomial n(s)=2s+1)

Initial slope = lim
𝑠𝑠→∞

 𝑠𝑠𝑠𝑠 𝑠𝑠  = 2

31

Note: Reach 63% approximately at t=τc=0.5 % Matlab
s=tf('s')
g = 2/(3*s+1)
c = 3*(1 + 1/(2*s))
T = g*c/(1+g*c)
step(T)



Input Disturbance response (gd=g)

Td =
  0.6667 s
  -----------------
  s^2 + 2.333 s + 1

32

Initial slope = lim
𝑠𝑠→∞

 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠  = 0.67

Steady-state =𝑇𝑇𝑑𝑑 0  = 0
 

«Open-loop»: 
Disturbance response without control

«Closed-loop»: With feedback control

% Matlab
s=tf('s')
g = 2/(3*s+1)
c = 3*(1 + 1/(2*s))
Td=g/(1+g*c)
step(g,Td)

g = gd =

2
-------
3 s + 1

IMPORTANT:
The initial disturbance response
(with or without feedback control) 
is always the same 



>> delay = exp(-0.5*s)
delay =

exp(-0.5*s) * (1)
>> L =g*c*delay

L =   
12 s + 6

exp(-0.5*s) * -----------
6 s^2 + 2 s

>> T2 = L/(1+L)
Internal delays (seconds): 0.5  0.5 

>> step(T2)

Setpoint response. ys=1, d=0

Unstable with θ = 1 s

Complicated T(s) with delays…
Need to use simulations

Comment: Adding delay  gives oscillations, 
θ = 0.5 s

33
Comment: The SIMC-controller for the process g(s) = 2e-0.5s/(3s+1) with τc=θ=0.5 has Kc=1.5 and τI=3.



Example 3. PI-control of integrating process (level)

g 𝑠𝑠 = 𝑔𝑔𝑔𝑔 𝑠𝑠 = 𝑘𝑘′

𝑠𝑠
c 𝑠𝑠 = 𝐾𝐾𝑐𝑐(1 + 1

𝜏𝜏𝐼𝐼𝑠𝑠
)

y = Δh
u = -Δqout
d = Δqin

LC
h

hs
qin

qout

MV=qout

FLOWSHEET: BLOCK DIAGRAM:

Mass balance with constant density (V=Ah):
 dV/dt = qin – qout
Deviation variables + linearize (well, it’s already linear!)
 A dΔh/dt = Δqin(t) – Δqout(t)
Laplace

 Δh(s) = Δqin(s)−Δq𝑜𝑜𝑜𝑜𝑜𝑜 (s)
𝐴𝐴𝐴𝐴

 = (k’/s) (u+d) k’ = 1/A

V [m3]

Task: Derive condition to avoid «slow» ocillations that may occur when Kc is too small 
34*Yes, this may seem a bit strange, but for PI-control of integrating process you may get oscillatons when Kc is too small!

In addition, you may of course get the more common «fast» oscillations if Kc is too large because of «overreaction» with time delay. 



General rule to avoid slow oscillations 𝜁𝜁 ≥ 1 :
𝑘𝑘′𝐾𝐾𝐶𝐶𝜏𝜏𝐼𝐼 ≥ 4

Integrating process with PI-control:

                     G 𝑠𝑠 = 𝑘𝑘′

𝑠𝑠
  𝐶𝐶 𝑠𝑠 = 𝐾𝐾𝑐𝑐(1 + 1

𝜏𝜏𝐼𝐼𝑠𝑠
)

Proof:

Need large controller gain and/or large integral time (!)
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Closed-loop responses

Td=

36

Note: This is not a good tuning,
Will get slow oscillations since
k’KcτI = 1*0.25*1=0.25 < 4



Simulink, tunepid4

37
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2.5 %tunepid4 
s=tf('s')
theta=0
g=(1/s)*exp(-theta*s) % integrating 
taud=0
taui=1   
Kc=0.5 % oscillations (Kc*k'*taui = 0.5 < 4)
sim tunepid4; plot(Tid,y); hold on % 

Kc=0.25 % more oscillations (Kc*k'*taui = 0.25 < 4)
sim tunepid4; plot(Tid,y,'red');

Kc=1   % less oscillations (Kc*k'*taui = 1)
sim tunepid4; plot(Tid,y,'green');
hold off

Kc=0.5

Kc=1

Kc=0.25

PI-control of integrator (level control). G = 1/s, taui=1. VARY Kc

Input disturbance at t=20

Setpoint change at t=0

Note: Need higher controller gain 
to reduce “slow” oscillations! 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:  𝑘𝑘′𝐾𝐾𝐶𝐶𝜏𝜏𝐼𝐼 ≥ 4
So would need to increase Kc to 4 in this case
(SIMC-rule)
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taui=0.5

taui=4 (SIMC)
taui=2

PI-control of integrator (level control). G = 1/s, Kc=1. VARY taui

Input disturbance at t=20

Setpoint change at t=0

So need to use taui=4 to have 
no oscillations (SIMC-rule).
Get T(s)=(4s+1)/(2s+1)^2

Note: Need larger integral 
time reduce “slow” oscillations 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:  𝑘𝑘′𝐾𝐾𝐶𝐶𝜏𝜏𝐼𝐼 ≥ 4
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Poles and zeros
g(s) = n(s)/d(s).
 Example. 

Standard forms:
1. Time constant form

  
 
2. Pole-zero form, 
       p=pole, z=zero
                   (more general, for unstable and 
                   complex poles/zeros)

40
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Poles and zeros
• Transfer functions G(s) of linear, time-invariant systems with time delay are ratios 

of two polynomials in s (Laplace variable)
– G(s) = n(s)/d(s)

• Polynomials have roots.
root in denominator, d(s)=0: G(s) →∞ ”pole” (x)
root in numerator,     n(s)=0:           G(s) → 0 ”zero”  (0)

• Effect on dynamics: 
– Poles determine stability and fast or slow dynamics

• d(s)=(τs+1). «Stable» LHP-poles slow down the response 
– slower for large τ 

• Poles in right half plane (RHP): Unstable . 
– Example: g(s)=1/(s-1).  Has RHP-pole at s=1

• Complex poles (=eigenvalues of A): Oscillations with frequency ω
– Example: g(s) = 1/(s^2 + s + 1).  Solve d(s)= s^2 + s + 1 = 0. Get poles s1 =  -0.5 + 0.87*i, s2 = -0.5 – 0.87*i,  ω=0.87

– Zeros are responsible for shape of response 
• n(s)=(Ts+1). Zeros in left half plane (LHP): «Lift» the response 

– give overshoot for large T.
• n(s)=(-Ts+1). Zeros in right half plane (RHP): always give inverse response

– Inverse response makes problems for feedback control
– Example: g(s)=(-0.5s+1) / (10s^2+11s+1). Has RHP-zero at s=2

Re(s)

Im(s)

1

Re(s)

Im(s)

2
0

-0.5 + 0.87i

-0.5 - 0.87i



Zeros
• Zeros are common in practise 
• Occur when there are several «paths» to the output.
• RHP zero: «competing effects where slow wins (has largest gain)»

• Example  1.

• Example 2

• Example 3 

g1(s)

g2(s)

u y

g1(s) = 2
10s+ 1 ; g2(s) = 0:3

s+ 1
g(s) = g1 + g2 = 2(s+ 1)+ 0:3(10s+ 1)

(10s+ 1)(s+ 1) = 2:3 2:17s+ 1
(10s+ 1) (s+ 1)

g1(s) = 2
10s+ 1 ; g2(s) = ¡ 0:3

s+ 1
g(s) = g1 + g2 = 2(s+ 1)¡ 0:3(10s+ 1)

(10s+ 1)(s+ 1) = 1:7 ¡ 0:59s+ 1
(10s+ 1)(s+ 1)

All coefficients positive: LHP zero

Sign change: RHP zero ) Inverse response

g1(s) = ¡ 0:3
10s+ 1 ; g2(s) = 2

s+ 1
g(s) = g1 + g2 = 2(s+ 1)¡ 0:3(10s+ 1)

(10s+ 1)(s+ 1) = 1:7 11:3s+ 1
(10s+ 1)(s+ 1)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
Step Response

Time (seconds)

Am
pl

itu
de

3

1
2Note; Overshoot since 11.3>10

(overshoot: competing effects where fast wins)

Zeros

Example 2: RHP-zero with «time constant» -0.59: Similar to delay of 0.59. 42
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Zeros

43

Start here week 7



Summary poles and zeros
• G(s) = n(s) / d(s)=k’(s-z1) / (s-p1)(s-p2)..
• Example: G(s) = 4 (3s-1)/(s2+s-2), 

Get: k’=12, z1=1/3, p1=-2 p2=1

• Poles p (=eigenvalues of A-matrix)
– Determine speed of response, exp(p*t)
– Negative sign in d(s) ) p2 in RHP: unstable, exp(p2*t) ! 1 (NEED control)
– Pole p complex: oscillating response

• Zeros z
– Determine shape of response 
– Negative sign in n(s) ) z1 in RHP: inverse response (BAD for control)
– LHP-zero may give overshoot
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Approximation of time delay
• Time delay is a bit difficult because it’s «infinite order»

– So cannot directly use with g(s)=n(s)/d(s) (where n and d are polynomials) 
– or with «state-space» form (dx/dt=Ax+Bu)

• Taylor expansion of ex (x=-θs)
 

• Approximation of delay as n(s)/d(s):

45

Pade approximation (better)

n’th order Pade approximation (even better)

RHP-zero approximation (we use this for SIMC)

1st order approximation



Simple approximations of time delay
Example: Step response of first-order system plus delay 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Step Response

Time (seconds)

Am
pl

itu
de s=tf('s')

theta=1
g0=exp(-theta*s)                                 % 0. Original time delay. 
g1= - theta*s + 1                                  % 1. As RHP-zero. 
g2= 1/(theta*s+1)                                % 2. As First order
g3 = (-theta*s/2+1)/(theta*s/2+1)   % 3. Combined: Pade-approx
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5 -1 1.1])

0
3

1

2

“Going the other way”
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n’th order Pade approximation

• Accurate for large n

s=tf('s')
theta=1
g0 =exp(-theta*s)                                         % Original time delay
g1 = (-theta*s/2+1)/(theta*s/2+1)           % 1st-order Pade-approximation
g2 = (-theta*s/4+1)^2/(theta*s/4+1)^2   % 2nd-order Pade-approximation
g3 = (-theta*s/6+1)^3/(theta*s/6+1)^3   % 3rd-order Pade-approximation
h=1/(s+1)
step(g0*h,g1*h,g2*h,g3*h)
axis([0 5 -0.2 1.1])

Original delay

1

2 3
Why use Pade? 
To get model on state space form, dx/dt=Ax+Bu

Note: Number of RHP-zeros 
         = number of 0-crossings of step response
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Approximations of transfer functions

• Going the «other way»
• Want to approximate g(s)=n(s)/d(s) as first-order plus delay

– «Skogestad half rule» to find effective delay. IMPORTANT!
– see slides SiS6 for SIMC-rule
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Extra: Examples of dynamic model 
structures

How do we get zeros?
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RHP-zero (inverse response)

Q [W]
=const.

u=wH [kg/s]
T0=10C

wC [kg/s] = const.
T0=10C = const.

y = T [C]
Electric heater

Th

Mix70C 40C

Response in y=T to a 10% step increase in u=wH =0.1:

38.5C

41.5C

40C

Two effects: 1) Direct effect of mixing: g1(s)=15
2) Indirect effect of changed Th:  g2(s) = -30/(20s+1)

¿ = 20s

20s

} g(s) = g1 + g2 =
¡ 15¡ 20s+ 1

20s+ 1 50



Model derivation

d3=Q [W]
u=wH [kg/s]
d2=T0

d1=wC [kg/s]
d2=T0

y = T [C]
Electric heater

x = Th

1. Model. Assume:
Mass m [kg] in heater constant
cP constant

Energy balance heater + mixer:
d(m cP Th )

dt = wh cP (T0 ¡ Th ) + Q
T = wh Th + wc Tc

wc + wh

Mix

2. Linearize:
y = ¢ T; x = ¢ Th ; u = ¢ wh
¿dx

dt = ¡ x + ku
y = Cx + Du
k = T ¤

o ¡ T ¤
h

w ¤
h

¿ = m=w¤
h

C = w ¤
h

w ¤
c + w ¤

h

D = T ¤
h ¡ T ¤

wc + w ¤
h

3. Nominal steady-state data:
T0 = 10C; Th = 70C; T = 40C
wh = wc = 1kg=s; m = 20kg
Gives:
k = T ¤

o ¡ T ¤
h

w ¤
h

= 10¡ 70
1 = ¡ 60

¿ = m=w¤
h = 20=1 = 20

C = w ¤
h

w ¤
c + w ¤

h
= 0:5

D = T ¤
h ¡ T ¤

wc + w ¤
h

= 70¡ 40
2 = 15

4. Transfer funct ion:
y(s) = G(s)u(s)
G(s) = C k

¿s+ 1 + D
= 0:5 ¡ 60

20s+ 1 + 15
= ¡ 15¡ 20s+ 1

20s+ 1 51



Zero at 0 (no steady-state effect)

Q [W]
=const.

w[kg/s]=1=const.
T0=10C

y = T [C]
Electric heater

Th

Mix70C 64C

Response in y=T to a step decrease in bypass fraction from 0.1 to 0.05:

64C

67C

Two effects: 1) Direct effect of mixing: g1(s)=-60
2) Indirect effect of changed Th:  g2(s) = 60/(22s+1)

¿ = 22s

22s

} g(s) = g1 + g2 =
¡ 60 22s

22s+ 1

Bypass (10%)
u = ® w [kg/s]

10C

52
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Model derivation

Q [W]

1. Model. Assume:
Mass m [kg] in heater constant
cP constant

Energy balance heater + mixer:
d(m cP Th )

dt = (1 ¡ ®)wcP (T0 ¡ Th ) + Q
T = (1 ¡ ®)Th + ®Tc

2. Linearize:
y = ¢ T; x = ¢ T; u = ®
¿dx

dt = ¡ x + ku
y = Cx + Du
k = ¡ T ¤

o ¡ T ¤
h

(1¡ ®¤ )
¿ = m=w¤

h
C = (1 ¡ ®¤)
D = (T¤

o ¡ T¤
h )

3. Nominal steady-state data:
T0 = 10C; Th = 70C; T = 64C
w = 1kg=s; ® = 0:1; m = 20kg
Gives:
k = ¡ T ¤

o ¡ T ¤
h

(1¡ ®¤ ) = ¡ 10¡ 70
0:9 = 66:67

¿ = m=w¤
h = 20=0:9 = 22

C = (1 ¡ ®¤) = 0:9
D = (T¤

o ¡ T¤
h ) = ¡ 60

4. Transfer funct ion:
y(s) = G(s)u(s)
G(s) = C k

¿s+ 1 + D
= 0:9 66:67

22s+ 1 ¡ 60
= 60( 1

22s+ 1 ¡ 1) = ¡ 60 22s
22s+ 1

w[kg/s]=1=const.
T0=10C=const.

y = T [C]
Electric heater

Th

Mix70C 64C

¿ = 22s

Bypass, u = ® w [kg/s]

10C
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