Modelling and linearization

Seborg: Chapter 2 + 3.4 (lin.)
Skogestad: Ch. 11
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Mathematical Modeling of
Chemical Processes

Mathematical Model (Eykhoff, 1974)

“a representation of the essential aspects of an existing
system (or a system to be constructed) which
represents knowledge of that system in a usable form”

“Everything should be made as simple as possible, but
no simpler.” (A. Einstein)

“All models are wrong, but some are useful.”



General Modeling Principles

The model equations are at best an approximation to the real process.

Modeling inherently involves compromise between
* Model accuracy and complexity
» and: Cost and effort required to develop model

Process modeling 1s both an art and a science.
* Creativity (art) 1s required to make simplifying assumptions that result
in an appropriate model.

Dynamic models of chemical processes consist of:
 ordinary differential equations (ODE)
« and/or partial differential equations (PDE)
* plus related algebraic equations (AE).
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11.2 Modeling: Dynamic balances

Balance principle (“Conservation laws”): Applies to mass, mols of molecules, energy and momentum
This gives what is known as “first principles model” or “physical model” or “nonlinear state space model”
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Figure 11.1: The balance principle

Change Inventory = In — Out + Generated — Loss

.| 7 L™ " L e ~
accumulated in the system through the system’s boundary internally in the system
=0 formass-and-energy

In this chapter, the terms “change,” “in,” “out.” “generated” and “loss” are always
per unit of time. Mathematically, the general balance equation per unit of time is (see
(2.8) on page 42):

=0 f(Xl’ mass and energy

dB ke 1
7 = Bin - Buut +(Bﬂ'enurated - B]Uf\iﬁ _G: Ea R ] (112)
dt . S s 8

For reactions [mol]



General process system

Win [kg/S] —————————————————
Fain [Mol A/s]
Ein [‘J/S], Tin [K]

m [kg], V[m?]

o [T"T'[AK]] Woy [kg/s]
Fa out [MOl A/S]
————————————— Eout [J/S], Tout [K]

Formulate balances for mass (m), energy (E) and component mass (n,)
e Mass (m) and energy (E) are conserved quantities (no generation or loss)
* Chemical components (A) may be generated by chemical reactions. G, [mol A/s]



Win [kg/S] pTTTTTTTTTTTTTT :
A in [m0| A/S] I i
E, [/s], T,y [K] ! 1 i
m [kg], VImT |

n,[mol A]

E ] TIK] Wout [K/8]

FAout [mol A/s]
—————————————— Eout [I78], Tow [K]
Q[ /S] [J/s]

rate of mass rate of mass rate of mass

Mass balance:

accumulation 1n out

The total mass balance per unit of time is

d
g = Win — Wout [kg,rfﬂ] (113)

where m [kg] is the system’s mass (“inventory of mass inside the control volume”),
dm/dt [kg/s] is the change in mass inventory per unit of time and w;,, — wq. [kg/s] are
thc mass flow rates for for the entering and exiting streams (bulk flow). By introducing
the density, we get
d(pV
(df } = Pinfin — Poutout [kg;’fb]

where V' [m?] is the system’s volume, gin [m®/s] and gout [m®/s] are the volumetric
flow rates and p, pi,, and poue [kg/m?3] are the (average) densities,




wm [kars]  rememmmeeomeees :

. [mol A/s] G, [mol A/s]:
R T
bl viml
i E[J [TOT[K]] i Wout [KQ/S]
: ; FAOut [mol A/s]
Rt b ;/t _____ I out [J/s], Tout [K]
Molar component balance: QLIST W (yrs]
rate of component 1 rate of component 1
accumulation in
rate of component 1 rate of component 1
— + (2-7)
out produced

The dynamic component balance can, for an arbitrary component A, be written

dﬁ,q

—= = Fajn— Faou +Ga| [mol A/s (11.6)

(we normally use mole basis, but the component balance can also be written on weight
basis [kg A/s]). Here, n4 [mol A] is the inventory (amount) of component A inside
the system’s boundary, Fa i, — Fa cu [mol A/s| are the molar flow rates of A in the 3
streams (bulk flow) and G4 [mol A/s] is net generated in the chemical reactions. This




Wm [ka/s] e
i [mol A/s] , N/m?
E/; is), T, [Km p [N/m?]

L Pex IN'M?]
m [kg], V[m3] |

Energy balance (=First Law of Thermodynamics) e
: Wout [kg/S]

rate of energy rate of energy in rate of energy out i E ] TIK]
. (T . - . - FA out LMol A/s]
accumulation by convection by convection ! ,
-------------- out [918], ot [K]

[ / 1w rs]
net rate of heat addition net rate of work
+4  to the system from + < performed on the system (2-8)
the surroundings by the surroundings
dE A . Energy is a conserved quantity (no generation or loss).
G [ t EJ n EO ut + Q + I I [J / b] Heat of reaction is included in E with common reference state (usually elements)

The total energy of a thermodynamic system, E, is the sum of its internal energy,

kinetic energy, and potential energy: E = U + KE + PE + other (surface energy, etc)

Also many forms of work: W =W, + pV-work + other (electric, etc.)
where pV—WOI'k - Pinqin_ Pout9out — Pex dV/dt

1) Neglect KE and PE. 2) Neglect «other» work. 3) Introduce H,,=U., + p;,q;, etc. Get:

dU v v _
E - Hin - Hout + Q + W s _pexg []/b] (1111)

We usually prefer to work with enthalpy, and introducing U = H — pV in (11.11),

gives
dH dl’/ d]) The term “pressure-volume changes” in (11.12) is often negligible.
— Hill _ H()th. _|_ Q _|_ .[Iyq _ (]JGX _ p) _|_ 1 - I:J/S] (1 1 . 1 2) e The term is exactly zero (also for gases) for cases with constant pressure and volume.
df’ h ’ dz" df’ e The term is exactly zero (also for gases) for cases where the pressure is constant and
# ~ ~ equal to the surrounding’s pressure (p = pe stant).
pre:‘:sure—volume changeb . E\'f'n with vnrryiug pressure, .th«' term is ;\ppf'()ximnt(']y zero for liquids and solids,
= because the volume V is relatively small for such systems.




Can usually neglect kinetic and
potential energy 1n energy balance

N v=0m/s
777777) \ | h=100m Conclusion:
Process plants: Typically
v <10 m/s,
H <100 m,
100m v=_ mis @ * AT =0.24 K is negligible
h=0m = Can neglect KE and PE compared to
' Q%e&/vﬂ)mfs temperature changes (changes in U)
O E=U+KE+RE

Waterfall: (1) potential energy -> (2) kinetic energy -> (3) thermal energy
Thermal energy 1s included in internal energy (U).

Proof: Energy balance (for m=1kg water): PE, = KE, = U,
mgh, = %2 mv,2 = mcpT5 [J]

where
g =10 m/s?
cp = 1 kcal/kg,K = 4184 J/kg,K

10




Which control volume and which balance?

In principle, the balance equations are easy to formulate, but we need to decide:

1. Which control volume (where do we draw the boundary for the quantity we are
balancing)?
2. Which balance (which quantity are we considering, for example, mass or energy)?

The answer to the last question is typically:

Interested in mass, volume or pressure: mass balance

Interested in concentration: component balance

Interested in temperature: energy balance

Interested in the interaction between flow and pressure: Mechanical energy balance
(= momentum balance = Bernoulli = Newton's second law)

11



Dot notation

 In the control field (EE), a dot means derivative (of quantity inside boundary)
e But in other fields (ME) 1t may mean a transfer rate (through boundary)

« For this reason I usually avoid dot-notation

Control field: V = ‘rf}, = derivative [m3/s]
Other fields: V = ¢ = flowrate [m3/s]

12



Dynamic modeling. Examples

* You should do many examples!

« See my book: CHEMICAL AND ENERGY PROCESS ENGINEERING,
CRC Press (Taylor & Francis Group), 2009, Chapter 11..

« Chapter 11 on dynamics available here:

http://folk.ntnu.no/users/skoge/prosessregulering/course-material/

Example 1. Mixing tank (CSTR)

We [kg/S] rooTTmmoooeos
drF :m3/s] : l

Cap [MmOl/m3] 0 Lt |
- 1 I
T K] : m, V .
F L | |
Task: ' Ny, C I
ask: I Ar ~A I W
Formulate mass, component and energy balances I T I
to find expressions for dV/dt, dc,/dT, dT/dt 1 I q
Assume: : /M |
+ Perfect mixing | / % : C
+ Noreacton == e m === A
» Constant density

» Constant heat capacity Q T

» Single phase (liquid)
e Do NOT assume constant volume V

13



Example 2. Buffer tank on gas pipeline

(Example 11.10)

|r1 pD L.Il'

F, [mol/s] H Fout [mol/s]

Task:

*Find residence time, ¢,

*Find time constant ; for dynamic response

*Hint: Find expression for dp/dt and rearrange to standard form to find time
constant (gives dynamics for effect of changes in p,, on p, F;,, etc.)

in’

Note: Only one mass (mole) balance, so this is a first-order system

Assume:
T constant; Ideal gas, pV = nRT
sLinear valves: F;, = ¢ (p;-P), Fou= S(P-Pout)

Gas dynamics
are very fast!

Data at steady state: 14

pi,=10.1 bar, p=10 bar, p.,=9.9 bar, V = 10m3, F, =F, = 100 mol/s, T=300K



Summary: Dynamic modeling

Use of the “balance principles” (resulting in differential equations)
combined with other equations for equilibrium, heat transfer etc.
(resulting 1n algebraic equations), gives in a “‘nonlinear state space
model” on the general form:

Balance equations: dd% = f1(x1,x2,u)
Additional algebraic equations: 0 = fo(x1, T2, u)
where
u - independent variables (inputs, disturbances)
x - states (internal model variables) - dependent variables

y = g(x1,x2,u) - output variables (measurements)

The states x,, X,... are usually the balanced quantities (mass, energy,
molar holdup). It is possible to redefine the states, for example, to
replace x,=H (energy) by x,=T (temperature), but this requires work
(see example), so we often don’t do it.

15



Linearization = Tangent approximation = Taylor series
expansion

Tangent approximation: f(x)
F(x)=F(X"+¢ X) Y f(X) + Celf X

where C = slope = (of/0x)-

ror

t Negligible error for
* small deviations
f(X ) __________ from point * (small

| ¢ X)

I

I

|

’ R [0~

X  X=X+¢ X X 0
0.5

Example: f(x) = +/x. Linearize around point x*=1. I 1 1+05-0=1

2

Ax =x—x" =x—1, f(x") =1, C = (af/ox)= 1/(2vVx*) = 0.5



Linearization (Linear model)

What is a linear system?
1. Gain k = Ay/Au is constant, independent of magnitude of Au.

2. Satisfies the superposition principle: that is, the total response is the sum of individual responses. Let
* f(u)=y,(t) y, =change in temperature when change u, (put on heater)
* f(u,)=y,(t) y,=change in temperature when change u, (open window)
Then
*  f(utu,) =y,(t) + y,(t) =y(t) (y=change iny with both at same time)
Why linearize?
—  Much simpler mathematics (transfer functions)

— All real systems behave linearly for small deviations from steady state (using control!)
How linearize?

1. Linearize nonlinear dynamic model (e.g., obtained from balance equations):
dx/dt = f(x,u)
to get a linear «state space» model in deviation variables (Ax(t) = x(t) — x*, etc.):
dAx/dt=A Ax + B Au
where A = (0f/0x).and B = (of/0u). are constants (matrices in the general case).

17



Linearization of dynamic model. Proof of «How»

Dynamic model (e.g., from balance equations)

where = are the (internal, model) states and u
are the independent variables.
RHS: First-order Tavlor series expansion of non-

linear term gives linear approximation

flz,u) = f(a" u )—i—(—) Au —i—( )
f*

Af
where Au=u—u* and Az =z — z*
are deviations from the nominal trajectory,

dx*
dt

= f(z"u") = [~

LHS:
de d(Azxz+x2*) dAx

ar dt =z

Note: f" on LHS cancels against f* on RHS
Conclusion: Set LHS=RHS (f* drops out!):

d &:1,
dt

= f—( )*& +( )*&u
‘-—-::1,-—-" T

= f* = 0 (steady state)

Nonlinear model:
Linear model becomes: V* dAx/dt = Af

QED

But some things become simpler for normal case when we linearize around steady state:
Special case (slight extension) when we linearize around a steady state (f*=0):
V(t) dx/dt = f(x,u) (Here V(t) can be any function or variable)

Proof (assume that * is a steady state so f*=0).
Rewrite nonlinear model as: dx/dt = f/V
Linearize using brown box: dAx/dt = (1/V*) Af — (f*/V*2) AV =

(1/V*) Af 18




This 1s how I do 1t

dx(t)

1. Nonlinear model,

= f(x,u)
2. Steady state (*), f(x ,u' ) =0
— Use to find missing parameters
3. Introduce deviation variables
- Ax(t) =x(t) — x*, etc
4. Linearize model

— Simplest is to do one term at a time:

d dA
w =it et fi= 0= A+ AL +Af

5. Analyze, simulate, plot

,where Af; =

|A+

| Au



Example 1: Outflow from tank (bath-tub with no plug)

Nonlinear static model

Jout = kv h (turbulent outflow)

= Aq(}ut — (6(;3;1/_;1))*Ah- = thTAfl

\_Y_l

* Note: Time constant for flow response (liquids)
— Twice residence time for turbulent outflow

— Equal to residence time for laminar outflow

— Gas dynamics are much faster! 20



Start here part 3 - lecture 4 (10 sep 2024)

Example 2: CSTR

Notes
1. Bilinear term on RHS: A(xu) = x* Au + y* Au

2. Linearize LHS:

Note: When you have a nonlinear model on the form V(t)dT/dt = f, 21
And you linearize a steady state, the linear version simply becomes V* dAT/dt = Af, that
is, you can use V* on the left hand side.

Proof : See bottom of proof slide (in red)









Summary linearization

1. Nonlinear model: %% = f(z, u)

2. Steady-state (find missing parameterx etc.

3. Introduce deviation variables: Ax(t) = z(t) — z*, Au(t) = u(t) — u*

. of ., 0
4. Linear model: 422 = Af = (==)" Az + (==)* Au
Ox ou
S, S,
A B
..-"\ua.l‘\-'zo: For scalar system we may rearrange to stan- Note: If you also have
dard form dAr static model equations
— = —Ar+ kAu then | recommend to start
dt by linearizing these
to find time ((msl(ml T.
Note that 7 = —5, k = _Ql

Also note that 4 < 0 for a stable system.

24



Linearize static model (for
algebaic equations)

Static model
y=t(x,u)
Consider small deviations in u from nominal point where y*=f(x*,u*)
Linear model in deviation variables (Ax(t) = x(t) — x*, etc.):
Ay=CAx +D Au
where
C= (of/ox)-
D= (of/ou)-
are constants (matrices in the general case)

25



Example 3 linearization: Flash

Flash tank with two components (zg,y,x: mole fraction light component)
VLE: Assume constant relative volatility ®=21:

y/x ax
A= T/ Y~ THa-—D=
Model assumptions: Well mixed, neglect vapor mass V, Yy
, —>
p and M constant (using Q and L)
u=VvV [T e
d=F, zF E’ /ZF
N
y =y (output) /7 Q M
Nominal data: F*=1 kmol/min, z";=0.5, y"*=0.84, M = 1kmol L x
I

Task: 1. Derive dynamic model + 2. Find nominal steady-

state + 3. Linearize to find model (in deviation variables)
26



Solution

1. Overall and component balances [kmol /h|:

dM d(Mzx
0= _p_p_y, M
dt dt
2. Find steady-state: 0 = F* — L* — V", 0=F"2p — L*2" = V7*y
Combined with VLE (a = 21) and given data (F* = 1,y* = 0.84):

= Fzp—Lx—Vy

Slope=c=0.84

o =02,V — 0460 L = 0531 y] o

/
/
i3 |

3. Linearize model. 1/ VLE

Linearize balance equations:

0=AF — AL - AV (I usually start by linearizing the static equations)

JMﬂ%ﬂ:f”A%%ﬂ$AF—Lﬂh%wﬁ\éé —V* Ay —y"AV

) S~
AF—AV cAx

ﬂ-f% = —(L*4+cV*)Az — (y* — o)AV + F*Azp + (27 — ¥)AF

Linearize VLE: ¢ = [iﬂ)* 21 212720 _ () g4
Ay = ¢ Ax -

1+20z* (14-20x*)2




Conclusion.
Get:

i;‘f = Ax + Bu+ Byd; y=Cx
where

r=Axr;y = Ay

u=AV:d = ( - )

AZJF
and -
A= -5+ = 0925 [min~!]
B=—%7 = —0.64 [mol ]
Bg = (2~ L5)=(03 1)
C=c=084

28



% Using symbolic toolbox in Matlab

sSyms y x

=21 - (y/x) / ((1-y)/(1-x)) % definition relative volatility=21
y=solve(f,y)

fplot(y,[0 1])

dydx(x)=diff(y,x)

dydx(0.2)

eval(ans)

Result:

f=21- (y*(x - 1))/(x*(y - 1))

y =(21*x)/(20*x + 1)

dydx(x) =21/(20*x + 1) - (420*x)/(20*x + 1)"2
ans =21/25

ans =0.8400

o

Figure 2 == -
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8.1 General

The relationship between the input and output variables of dynamic
transfer systems may be described not just in terms of various dif-
ferential equations, generally of a higher order, but also in terms of
systems of first order differential equations. The variables that appear
in addition to the input and output variables in such differential equa-
tion systems must conform to certain definite conditions, and are then
generally characterised by the letter x as state variables.

The system of differential equations is then constructed in such a way
that the n derivatives x; of the state variables x; are expressed as func-
tions of these state variables and the p input variables u;

x1 = filxr, ..., Xn, U1, ..., Up, T)
(8.1)
ifﬂ = fﬂ(x].'l"'!xﬂ!ull"'iuplt}

The g output variables y; are represented as functions of the state vari-
ables and input variables:

V1 =gl{xl:'-wxn!ul:"':up:t}
(8.2)

yi! = gq(xli"'!xﬂ!ulﬂ"'!up'lt}

30



In abbreviated form, the input, output and state variables are combined
as vectors, and one obtains

x = f(x,u,t)

y=g(x,u,t) (8.3)

In case of a linear time-invariant system, equation (8.3) simplifies to:

X=Ax+B-u

y=C-x+D-u (84)

where A, B, C, D are matrices with time-independent coefficients.

Solution

t
x(t) = el x(0) + JEA“‘T]B w(7)dT
0

=1+ —A+—A2

— (A - t)"f
Z- 1! 7|

31



8.4 Controllability and observability

From the general solutions of the state space equations (8.49) and (8.54),
some important statements about the described system can be derived.
Among these characteristics are the controllability and the observability
of the system - terms that were introduced by Kalman in 1960.

A system
X=A-x+B-u

y=C-x+D-u (8.61)

is said to be controllable if its state x can be transferred from any ar-
bitrary initial state x(tg) to the final state O in finite time by means of
an appropriate input value, the control vector w(t).

Correspondingly, the system (8.61) is said to be observable if from the
known input vector u(t) and from the measurement of y(t) over a
finite time interval, the initial state x(fy) can be determined uniquely.
For observable systems, one can design so-called state observers which
generate estimates of the state variables from the input and output
variables.

32



One can demonstrate, that a system with a single input variable u and
a single output variable 7y is controllable , if the vectors

b,A-b,A°-b,..., A"1.b (8.62)

are linearly independent . Thus, the (n,n)-controllability matrix

Qs=[b, A b, A’ b, ..., AV . D] (8.63)

is nonsingular if and only if the system is controllable. In other words,
controllability is given when

detQgs #0 . (8.64)

A system with a single input variable u, n state variables and a single
output variable y is said to be observable, if the vectors

cl,cl A, ..., cT. Al (8.65)

are linearly independent . In other words, observability is given if the
(n,n)-observability matrix

ET
cT-A
Qg = ; (8.66)

T -A"

is nonsingular.

33



Minimum realization

* Unobservable states x are unintersting for us as they have no
effect on the outputs (y)

» Uncontrollable states x cannot be effected by our inputs (u)

* Model from u to y: Eliminate unobsevable and
uncontrollable™ states to get model with fewest number of
states («minimal realization»). Saves computation time.

» Corresponds to cancelling identical poles and zeros,
(s+a)/(s+a), in transfer function

— Note how much simpler it becomes with transfer functions (Laplace)

34
*But initial value of uncontrollable states will affect outputs, at least temporarily
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