
Modelling and linearization

Seborg: Chapter 2 + 3.4 (lin.)
Skogestad: Ch. 11
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Reference group process control:
Need 4 students (volunteers) 
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Mathematical Modeling of 
Chemical Processes

Mathematical Model (Eykhoff, 1974)
“a representation of the essential aspects of an existing 
system (or a system to be constructed) which 
represents knowledge of that system in a usable form”

“Everything should be made as simple as possible, but 
no simpler.” (A. Einstein)

“All models are wrong, but some are useful.”
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General Modeling Principles
• The model equations are at best an approximation to the real process.

• Modeling inherently involves compromise between 
• Model accuracy and complexity
• and: Cost and effort required to develop model

• Process modeling is both an art and a science. 
• Creativity (art) is required to make simplifying assumptions that result 

in an appropriate model.

• Dynamic models of chemical processes consist of:
• ordinary differential equations (ODE) 
• and/or partial differential equations (PDE)
• plus related algebraic equations (AE).
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Balance principle (“Conservation laws”): Applies to mass, mols of molecules, energy and momentum
This gives what is known as “first principles model”  or “physical model” or “nonlinear state space model”

For reactions [mol] 

=0 for mass and energy

=0 for mass and energy

System boundary
(= control volume)

5



General process system

Q [J/s]

m [kg], V[m3]
nA [mol A]
E [J], T[K]

win [kg/s]
FA,in [mol A/s]
Ein [J/s], Tin   [K]
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wout [kg/s]
FA,out [mol A/s]
Eout [J/s], Tout   [K]

W [J/s]

Formulate balances for mass (m), energy (E) and component mass (nA)
• Mass (m) and energy (E) are conserved quantities (no generation or loss)
• Chemical components (A) may be generated by chemical reactions. GA [mol A/s]



Mass balance:

rate of mass rate of mass rate of mass
(2-6)

accumulation in out
     

= −     
     
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Molar component balance:

rate of component i rate of component i
accumulation in

rate of component i rate of component i
(2-7)

out produced

   
=   

   

   
− +   
   C
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GA [mol A/s]



Energy balance (=First Law of Thermodynamics) 
     

= −     
     

 
 + + 
 
 

rate of energy rate of energy in rate of energy out
accumulation by convection by convection

net rate of heat addition net rate of work
to the system from performed on the sys
the surroundings

 
 
 
 
 

tem (2-8)
by the surroundings

The total energy of a thermodynamic system, E, is the sum of its internal energy, 
kinetic energy, and potential energy: E = U + KE + PE + other (surface energy, etc)
Also many forms of work:                W = Ws + pV-work + other (electric, etc.)
                                                where pV-work = Pinqin – poutqout – pex dV/dt

1) Neglect KE and PE. 2) Neglect «other» work. 3) Introduce Hin=Uin + pinqin. etc. Get: 
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Energy is a conserved quantity (no generation or loss).
Heat of reaction is included in E with common reference state (usually elements)

p [N/m2]
pex [N/m2]



Waterfall: (1) potential energy -> (2) kinetic energy -> (3) thermal energy
Thermal energy is included in internal energy (U).

Can usually neglect kinetic and 
potential energy in energy balance

Proof: Energy balance (for m=1kg water): PE1 = KE2 = U3
mgh1 = ½ mv2

2 = mcPT3 [J]
where

g = 10 m/s2

cP = 1 kcal/kg,K = 4184 J/kg,K
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Which control volume and which balance?
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Dot notation

• In the control field (EE), a dot means derivative (of quantity  inside boundary)
• But in other fields (ME) it may mean a transfer rate (through boundary)
• For this reason I usually avoid dot-notation
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Dynamic modeling. Examples
• You should do many examples!
• See my book: CHEMICAL AND ENERGY PROCESS ENGINEERING, 

CRC Press (Taylor & Francis Group), 2009, Chapter 11..
• Chapter 11 on dynamics available here:

http://folk.ntnu.no/users/skoge/prosessregulering/course-material/ 

Example 1. Mixing tank (CSTR)

Q

m, V
nA, cA
T

w
q
cA
T

wF [kg/s]
qF   [m3/s]
cAF [mol/m3]
TF   [K]

Task: 
Formulate mass, component and energy balances
to find expressions for dV/dt, dcA/dT, dT/dt
Assume:
• Perfect mixing
• No reaction
• Constant density
• Constant heat capacity
• Single phase (liquid)
• Do NOT assume constant volume V
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Example 2. Buffer tank on gas pipeline 
(Example 11.10)

Task:
•Find residence time, ¿r
•Find time constant ¿ for dynamic response
•Hint: Find expression for  dp/dt and rearrange to standard form to find time
     constant (gives dynamics for effect of changes in pin on p, Fin, etc.)
Note: Only one mass (mole) balance, so this is a first-order system

Assume: 
•T constant; Ideal gas, pV = nRT
•Linear valves: Fin = c (pin-p), Fout= c(p-pout)

Data at steady state:
pin=10.1 bar, p=10 bar, pout=9.9 bar, V = 10m3, Fin=Fout = 100 mol/s, T=300K

Gas dynamics 
are very fast!
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Summary: Dynamic modeling
• Use of the “balance principles” (resulting in differential equations) 

combined with other equations for equilibrium, heat transfer etc. 
(resulting in algebraic equations), gives in a “nonlinear state space 
model” on the general form:

• The states x1, x2… are usually the balanced quantities (mass, energy, 
molar holdup). It is possible to redefine the states, for example, to 
replace x1=H (energy) by x1=T (temperature), but this requires work 
(see example), so we often don’t do it.
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Linearization = Tangent approximation = Taylor series 
expansion

xx* x=x*+¢ x

f(x)

f(x*)

Tangent approximation:
   f(x)=f(x*+¢ x) ¼ f(x*) + C¢¢ x
where C = slope = (∂f/∂x)* error

Negligible error for 
small deviations 
from point * (small 
¢ x)

x

0
0.5
1 1
2



Linearization (Linear model)
• What is a linear system?

1. Gain k = Δy/Δu is constant, independent of magnitude of Δu.
2. Satisfies the superposition principle: that is, the total response is the sum of individual responses. Let

• f(u1)=y1(t)  y1 = change in temperature when change u1 (put on heater)
• f(u2)=y2(t)   y2 = change in temperature when change u2 (open window)
Then
• f(u1+u2) = y1(t) + y2(t)  = y(t)   (y=change in y with both at same time)

• Why linearize?
– Much simpler mathematics (transfer functions)
– All real systems behave linearly for small deviations from steady state (using control!)

• How linearize?
1. Linearize nonlinear dynamic model (e.g., obtained from balance equations): 

dx/dt = f(x,u)
to get a linear «state space» model in deviation variables (Δx(t) = x(t) – x*, etc.): 

dΔx/dt = A Δx + B Δu
where A = (∂f/∂x)* and B = (∂f/∂u)* are constants (matrices in the general case).
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Linearization of dynamic model. Proof of «How»

But some things become simpler for normal case when we linearize around steady state:
Special case (slight extension) when we linearize around a steady state (f*=0): 
Nonlinear model:             V(t) dx/dt = f(x,u)    (Here V(t) can be any function or variable)
Linear model becomes:   V* dΔx/dt = Δf

Proof (assume that * is a steady state so f*=0).
Rewrite nonlinear model as: dx/dt = f/V
Linearize using brown box:   dΔx/dt = (1/V*) Δf – (f*/V*2) ΔV = (1/V*) Δf 
QED
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Conclusion: Set LHS=RHS (f* drops out!):



This is how I do it



Example 1: Outflow from tank (bath-tub with no plug)

• Note: Time constant for flow response (liquids)
– Twice residence time for turbulent outflow
– Equal to residence time for laminar outflow

– Gas dynamics are much faster! 20

Nonlinear static model



Notes

1. Bilinear term on RHS:   Δ(xu) = x* Δu + y* Δu

2. Linearize LHS: 
Note: When you have a nonlinear model on the form V(t)dT/dt = f,
And you linearize a steady state, the linear version simply becomes V* dΔT/dt = Δf, that 
is,  you can use V* on the left hand side.

Proof : See bottom of proof slide (in red)

Example 2: CSTR
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Start here part 3 - lecture 4  (10 sep 2024)



Example 2: Linearization CSTR

22



23



Summary linearization
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Note: If you also have 
static model equations 
then I recommend to start 
by linearizing these 



Linearize static model (for 
algebaic equations)

Static model
y=f(x,u)

Consider small deviations in u from nominal point where y*=f(x*,u*)
Linear model in deviation variables  (Δx(t) = x(t) – x*, etc.):

Δy = C Δx  + D Δu 
where

C= (∂f/∂x)*  

D= (∂f/∂u)*

are constants (matrices in the general case)
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Example 3 linearization: Flash
• Flash tank with two components (zF,y,x: mole fraction light component)
• VLE: Assume constant relative volatility ®=21:

• Model assumptions: Well mixed, neglect vapor mass
• p and M constant (using Q and L)
• u = V
• d = F, zF
• y = y (output)
• Nominal data: F*=1 kmol/min, z*

F=0.5, y*=0.84, M = 1kmol

• Task: 1. Derive dynamic model + 2. Find nominal steady-
state + 3. Linearize to find model (in deviation variables)

L, x

V, y

F, zF
MQ

26



Solution

x

y Slope=c=0.84

VLE
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0=

(I usually start by linearizing the static equations)
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% Using symbolic toolbox in Matlab 
syms y x
f=21 - (y/x) / ((1-y)/(1-x)) % definition relative volatility=21
y=solve(f,y)
fplot(y,[0 1])
dydx(x)=diff(y,x)
dydx(0.2)
eval(ans)

Result:

f =21 - (y*(x - 1))/(x*(y - 1))
y =(21*x)/(20*x + 1)
dydx(x) =21/(20*x + 1) - (420*x)/(20*x + 1)^2
ans =21/25
ans =0.8400
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Solution

31



32



33



Minimum realization
• Unobservable states x are unintersting for us as they have no 

effect on the outputs (y)
• Uncontrollable states x cannot be effected by our inputs (u) 
• Model from u to y: Eliminate unobsevable and 

uncontrollable* states to get model with fewest number of 
states («minimal realization»). Saves computation time.

• Corresponds to cancelling identical poles and zeros, 
(s+a)/(s+a), in transfer function
– Note how much simpler it becomes with transfer functions (Laplace)

*But initial value of uncontrollable states will affect outputs, at least temporarily
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