
Frequency analysis

Important for understanding stability and 
robustness of feedback systems
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Mathematics. Complex number G, j2=-1 

Re(G)

Im(G)
G(jω)=R+jI

R

I

G = 𝑅𝑅 + 𝑗𝑗 𝐼𝐼
Im(G)=R, Re(G)=I

𝐺𝐺 = 𝑅𝑅2 + 𝐼𝐼2

𝜙𝜙 = ∠𝐺𝐺 =  arctan
𝐼𝐼
𝑅𝑅

Polar form

May also use i instead of j, i2=-1. (i is common in mathematics; j is more common in control)
arctan = arctg = atan = tan-1

From degrees to radians: Multiply by 𝜋𝜋
180°

|𝐺𝐺|

∠𝐺𝐺

Examples:
𝐺𝐺 = 2. 𝐺𝐺 = 2, ∠𝐺𝐺 = arctan 0 = 0° = 0 𝑟𝑟𝑟𝑟𝑟𝑟

𝐺𝐺 = 3𝑗𝑗.  𝐺𝐺 = 3, ∠𝐺𝐺 = arctan
3
0

= arctan∞ = 90° =
𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟 = 1.57 𝑟𝑟𝑟𝑟𝑟𝑟 

𝐺𝐺 = 2 + 3𝑗𝑗. 𝐺𝐺 = 22 + 32 = 13 = 3.61, ∠𝐺𝐺 = arctan
3
2

= 56.3° = 0.983 𝑟𝑟𝑟𝑟𝑟𝑟

𝐺𝐺 =
1
3𝑗𝑗

= −
1
3
𝑗𝑗 , 𝐺𝐺 =

1
3

= 0.33,  ∠𝐺𝐺 = −90° = −
𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟 

j-axis =

Real axis =

Euler’s formula



𝐺𝐺 = 𝐺𝐺1 ⋅ 𝐺𝐺2 ⋅ 𝐺𝐺3
𝐺𝐺 = 𝐺𝐺1 ⋅ 𝐺𝐺2 ⋅ 𝐺𝐺3
∠𝐺𝐺 = ∠𝐺𝐺1 + ∠𝐺𝐺2 + ∠𝐺𝐺3

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝑓𝑓:

𝐺𝐺 =
𝐺𝐺1
𝐺𝐺2

𝐺𝐺 = 𝐺𝐺1 / 𝐺𝐺2
∠𝐺𝐺 = ∠𝐺𝐺1 − ∠𝐺𝐺2Ch
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Multiply complex numbers: 
Multiply magnitudes and add phases 

Polar form

𝐺𝐺1 = 2 + 4𝑗𝑗, 
𝐺𝐺2 = −3 + 3𝑗𝑗
|𝐺𝐺1| = 22 + 42 = 20 = 4.47,∠𝐺𝐺1 = atan 4

2
= 63.3° = 1.107 𝑟𝑟𝑟𝑟𝑟𝑟

|𝐺𝐺2| = 32 + 32 = 18 = 4.24,∠𝐺𝐺2 = atan −3
3

= −45° = −0.785 𝑟𝑟𝑟𝑟𝑟𝑟

𝐺𝐺 = 𝐺𝐺1 ⋅ 𝐺𝐺2, 
𝐺𝐺 = 4.47 ⋅  4.24 =  18.953, ∠𝐺𝐺 = 63.3° + (−45°) =  18.3° = 0.322 𝑟𝑟𝑟𝑟𝑟𝑟

G =  18.953𝑒𝑒𝑗𝑗0.322 

𝐺𝐺 =
𝐺𝐺1
𝐺𝐺2

 , 𝐺𝐺 =
4.47
4.24

= 1.054,  ∠𝐺𝐺 = 63.3° − (−45°) = 108.3° = 1.89 𝑟𝑟𝑟𝑟𝑟𝑟 



Force linear system with sinusoidal input: u(t) =  u0 sin ωt 
Output has same frequency: y(t) =  y0 sin (ωt + ϕ)
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14.1

Period: P[s] 
Frequency: ω [rad/s] = 2π / P
Phase shift: ϕ [rad]  = −Δ𝑡𝑡

𝑃𝑃
2𝜋𝜋 = −Δ𝑟𝑟 ⋅ 𝜔𝜔 

Amplitude ratio (gain): AR = y0/u0

• We have assumed deviation variables, otherwise we need to add an «average» or «bias» to both u(t) and y(t).
• We assume that the input sinusoid is persistent and consider the «steady-state» as 𝑟𝑟 → ∞.
• One period (cycle) = 2π [rad] = 360o

u0= y0=

u



Example: Ground temperature phase shift

Surface temperature:  
u(t) =  uavg + u0 sin (ω(t-t0)) 

• uavg = 62oF (= 17C)
• Amplitude u0 = 62-40=22oF

Frequency of oscillations:
• P = 365d,  
• ω=2𝜋𝜋

𝑃𝑃
= 2𝜋𝜋

365
= 0.017 rad/d,

Ground temperature:
y(t) =  yavg + y0 sin (ω(t-t0) + ϕ)

• yavg = 62oF (= 17C)
• y0 and φ depend on depth X

Amplitude (y0) and Gain decreases with depth X.
• X=5ft, y0 = 62-50=12 F,  
• Gain = AR = 𝑦𝑦0

𝑢𝑢0
= 12

22
= 0.55

Time shift and phase shift  increases with depth X.
• X=5 ft, Δt = 35 days (=from Feb.4 to Mar. 11 = from Aug. 6 to Sep.10): 

• ϕ = - Δt ω = -35d * 0.017 rad/d= - 0.602 rad = -34.5o

0oC

33oC
u(t)

y(t)

AR = amplitude ratio = gain =  𝑦𝑦0
𝑢𝑢0



General: Simple method to find sinusoidal response of system G(s)

1. Input signal to linear system: u = u0 sin(ωt)
2. Steady-state (“persistent”, t→∞) output signal: y = y0 sin(ω t + φ)
3. What is AR = y0/u0 and φ?

Solution (extremely simple!)
1. Find system transfer function, G(s)
2. Let s=jω (imaginary number, j2=-1) and evaluate G(jω ) = R + j I (complex number)
3. Then (“believe it or not!”)

AR = |G(jω )| (magnitude of the complex number)
φ = Å G(jω )  (phase of the complex number)

Re(G)

Im(G) G(jω )=R+jI

R

I
Å G

|G|

G(s)
u y



u y

As t →∞: (see 4-26)

y(t) = AR *A*sin(ωt+φ)

u(t) = A sin(ω t)

General (VERY SIMPLE).
Set s=jω in G(s). Then
AR = |G(jω )|

   φ = Å G(jω )

(5-22)

Note: A is the same as u0

AR = 𝐾𝐾
𝜔𝜔2𝜏𝜏2+1

𝜙𝜙 = − tan−1(𝜔𝜔𝜔𝜔)

Proof, first-order system



Example: Gain and phase shift for first-order system:

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

1 + 𝜔𝜔𝑗𝑗𝜔𝜔
⋅

1 − 𝜔𝜔𝑗𝑗𝜔𝜔
1 − 𝜔𝜔𝑗𝑗𝜔𝜔

(𝑗𝑗2 = −1)

𝐺𝐺 𝑠𝑠 =
1

𝜔𝜔𝑠𝑠 + 1

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

1 + 𝜔𝜔2𝜔𝜔2
−

𝜔𝜔𝜔𝜔
1 + 𝜔𝜔2𝜔𝜔2

𝑗𝑗

R         I
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𝐺𝐺 = 𝐴𝐴𝑅𝑅 = 𝑅𝑅2 + 𝐼𝐼2 =
1

1 + 𝜔𝜔2𝜔𝜔2

𝜙𝜙 = ∠𝐺𝐺 = arctan
𝐼𝐼
𝑅𝑅

= − arctan 𝜔𝜔𝜔𝜔
Gain and phase shift

1.

2.

3.

SIMPLER: Use polar form formulas for complex numbers! G=G1/G2, where G1=k, G2=τs+1.  
Set 𝑠𝑠 = 𝑗𝑗𝜔𝜔.𝐺𝐺𝑒𝑒𝑟𝑟:  𝐺𝐺 = 𝐺𝐺1

𝐺𝐺2
= 𝑘𝑘

𝜔𝜔𝜏𝜏 2+1
,  𝜙𝜙 =  ∠𝐺𝐺 = ∠𝐺𝐺1 − ∠𝐺𝐺2 = 0 −  arctan(𝜔𝜔𝜔𝜔)

This method is 
not really
recommended

𝑘𝑘

𝑘𝑘𝑘𝑘

𝑘𝑘

𝑘𝑘



0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SINUSOIDAL RESPONSE OF FIRST-ORDER SYSTEM
k = 1, τ = 1 [s]1

s+ 1
u(t) = sin(ωt) y(t) = AR sin(ω t + φ )

w=0.3; tau=1; t = linspace(0,20,1000);
u = sin(w*t);
AR = 1/sqrt((w*tau)^2+1)
phi = - atan(w*tau), phig=phi*180/pi, dt=-phi/w
y = AR*sin(w*t+phi);
plot(t,y,t,u)

6 Plots: Increase ω from 0.1 to 30 rad/s

1

2

3

4

5

6

! = 0.1 rad/ s, P = 62.8 s
AR = 0.995
Á = -0.1 rad = -5.7 o

¢ t = 0.997 s

! = 1 rad/ s, P = 6.28 s
AR = 0.707
Á = -0.785 rad = -45 o

¢ t= 0.785 s

! = 10 rad/ s, P = 0.628 s
AR = 0.0995
Á = -1.47 rad = -84.3 o

¢ t= 0.147 s

! = 30 rad/ s, P = 0.209 s
AR = 0.033
Á = -1.54 rad = -88.1 o

¢ t= 0.051 s

! = 3 rad/ s, P = 2.09 s
AR = 0.316
Á = -1.24 rad = -71.6 o

¢ t = 0.416s

! = 0.3 rad/ s, P = 20.9 s
AR = 0.958
Á = -0.291 rad = -16.7 o

¢ t = 0.972 s
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1/√2 = 0.707

-arctg(10)=-84.3◦

-arctg(1)=-45◦

-arctg(0.1)=-5.7◦



Misprint: Should start from 1.0

Note: Nyquist plot is not included in last edition



Example: Ground temperature phase shift. X=5ft
What is τ if assume a first-order response from u to y? g(s) = k/(τs+1) 

Data: u0 = A= 22, y0 = 12, ω=0.017 rad/d, ϕ = – 35o

Solution:
• We know from physics that the gain k=1. So g(s) = 1/(τs+1)
1. From amplitude data: AR = y0/u0 = 0.545.  

Get:  

2. From phase shift data. ϕ = – 35o

Get:
Conclusion: This system is more complex than first order (no big surprise!)
It’s described by partial differential equations and can be approximated by a high-order system with many poles and zeros.
For example, g(s) = (τ2s+1) / (τ1s+1) (τ3s+1)  where τ1 > τ2 > τ3 



Frequency response of time delay

g=e-θs

Gain = |g(jω)| = 1

Phase shift = ϕ = ∠(g(jω)) = - ωθ [rad]

Alternative proof: Time domain
            u(t)
            y(t)







Solution: |𝑔𝑔 𝑗𝑗𝜔𝜔 | = 𝑔𝑔1 ⋅ 𝑔𝑔2
𝑔𝑔3 ⋅ 𝑔𝑔4

,  ∠𝑔𝑔 𝑗𝑗𝜔𝜔 = ∠𝑔𝑔1 + ∠𝑔𝑔2 − ∠𝑔𝑔3 − ∠𝑔𝑔4
𝑔𝑔1 = 𝑘𝑘 ,  ∠𝑔𝑔1 = 0

𝑔𝑔2 = 1 + (𝜔𝜔𝑇𝑇)2 ,  ∠𝑔𝑔2 = atan (𝜔𝜔𝑇𝑇)
𝑔𝑔3 = 1 + (𝜔𝜔𝜔𝜔1)2,  ∠𝑔𝑔3 = atan 𝜔𝜔𝜔𝜔1
𝑔𝑔4 = 1 + (𝜔𝜔𝜔𝜔1)2,  ∠𝑔𝑔4 = atan 𝜔𝜔𝜔𝜔1

If we also have a time delay 𝑔𝑔5 =  𝑒𝑒−𝜃𝜃𝜃𝜃 𝑟𝑟𝑡𝑒𝑒𝑡𝑡 
𝑔𝑔5 = 1 ,∠𝑔𝑔5 = −𝜔𝜔𝜔𝜔 [𝑟𝑟𝑟𝑟𝑟𝑟]



OK!





Oops! Phase drops for RHP zero

Phase increases for LHP zero

Peak goes to infinity when ξ=0



Figure 14.4  Bode diagram for a time delay, e-θs.
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-1 rad = -57o at ωθ = 1

=-ωθ

Bode plot of time delay. 

G = exp(-θs)
  |G(jω)| = 1
∠𝐺𝐺 𝑗𝑗𝜔𝜔 = −𝜔𝜔𝜔𝜔



ASYMPTOTES
Frequency response of term (Ts+1): set s=jω.
Asymptotes:

(jω T + 1) ~ 1     for ω T << 1 (slope n=0, phase=0)
(jω T + 1) ~ jω T for ω T >> 1 (slope n=1, phase=90o)

Gain slope n: |G|~ωn

Rule for asymptotic Bode-plot, L = k(Ts+1)/(τs+1)….. : 
1. Start with low-frequency asymptote (s→0)

(a) If constant (L(0)=k): 
Gain=k (slope=0) 
Phase=0o

(b) If integrator (L=k’/s): 
Gain slope= -1 (on log-log plot). Need one fixed point, for example, gain=1 at ω =k’
Phase: -90o. 

2. Break frequencies (order … from large T and τ … to small T and τ):

3. Time delay, e-θs.  Gain: no effect, Phase contribution: -ωθ [rad] (-1 rad = -57o
 at ω=1/θ)

Change in gain slope Change in phase

ω=1/T (zero) +1 +90o (-90o if T negative)

ω=1/τ (pole) -1 -90o (+90o if τ negative)
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g(s) = 10 100s+ 1
(10s+ 1) (s+ 1)

Example with phase lead (not so common in process control) 

Frequency
[rad/s ]
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=2

Gc(s) = 210s+ 1
10s

PI-controller:



Bode plots of ideal 
parallel PID controller 
and series PID 
controller with filter.

Ideal parallel:

Series with Derivative 
Filter:            
C 𝑠𝑠 = 2 10𝜃𝜃+1

10𝜃𝜃
4𝜃𝜃+1
0.4𝜃𝜃+1

C 𝑠𝑠 = 2 1 + 1
10𝜃𝜃

+ 4𝑠𝑠
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L(s) = 20s+ 1
s(100s+ 1) (2s+ 1)

EXAMPLE

L(s)=G(s)C(S): 
Loop transfer function for
SIMC PI-control with τc=4 for 
G(s) = 1/(100s+1)(2s+1)

Example: Typical L=GC



Slope=-1

-90o

-180o

-2
L(s) = 20s+ 1

s(100s+ 1) (2s+ 1)

-1

-2

-90o
ω=0.01 ω =0.05 ω =0.5

-180o

L(s): SIMC PI-control with τc=4 for g(s) = 1/(100s+1)(2s+1)

Slope
Help lines

-2

-1

SOLUTION

Asymptotes: Start at low frequency, ω→0:
|L(jω)| = 1/ω. So: |L|=103 at ω=10-3 



Electrical engineers (and Matlab) use decibel for gain

• |G| [dB] =  20 log10|G|
|G| |G| [dB]

0.1 -20 dB

1 0 dB

2 6 dB

10 20 dB

100 40 dB

1000 60 dB

s=tf('s')
g = 10*(100*s+1)/[(10*s+1)*(s+1)]
bode(g) % gives AR in dB*

0

10

20

30

40

M
ag

ni
tu

de
 (d

B)

10-4 10-3 10-2 10-1 100 101 102
-90

-45

0

45

90

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/s)

GM=2 is same as GM = 6dB

Other way: |G| = 10|G|(dB)/20

*To change magnitude from dB to abs: Right click + properties + units (absolute, log scale)

*



Bode stability condition
(Closed-loop stability condition from analyzing loop L(s) = G C Gm)

Proof 
Starting point: Stability is a system property for linear systems, so if the 
system is stable for one signal it’s stable for all signals.

– Consider a particular signal: Sinusoid  with frequency ω180 (frequency 
where frequency shift around loop L(s) is -180o = -π rad).    𝑒𝑒 𝑟𝑟 = sin(𝜔𝜔180 𝑟𝑟)

– With negative feedback, the total phase shift around the loop is -
360o, so this sinusoid comes «back in phase»

– If the gain around the loop is less than 1, the sinusoid will die out.
– Conclusion: The closed-loop system is stable if and only if |L(jω)|<1 

at frequency ω180



p
 

30

c

c

180

180

Sigurd’s preferred notation in red 

|L(jω)| =

Å L(jω )=

Time delay margin (DM), Δθ= PM[rad]/ωc

GM = 1/|L(jω180)|
ω180 = frequency where phase shift around 
                the loop is -180o = - π rad.

Å L(jω180) = -180o = - π rad

PM = Å L(jω c) + 180o 

= Å L(jω c) + π [rad]
ωc = frequency where loop gain is  1.
          |L(jωc)| = 1

GM (dB)

Question: For SIMC, is ωc=1/τc?  No, but it’s related. In many cases  ωc=1/(θ+τc)



• L = gcgm = loop  transfer function with negative 
feedback

• Bode’s stability condition: |L(jω180)|<1|
– Limitations

• Open-loop stable (L(s) stable)
• Phase of L crosses -180o only once

– Stability margins
• GM = 1/|L(jω180)|,         where Å L(jω180)|=-180o

• PM = Å L(jωc) + 180o ,  where |L(jωc)|=1
• How much delay will “eat up” the PM? 

Answer: PM= ωc Δθ [rad] ⇒ DM = Δθ= PM[rad]/ωc

• The same but more general: Nyquist stability 
condition:

Locus of L(jω ) should encircle  the
(-1)-point P times in the anti-clockwise
direction (where P = no. of unstable 
poles in L).

Summary: CLOSED-LOOP STABILITY IN FREQUENCY DOMAIN

Stable plant (P=0): Closed-loop stable if  L has no encirclements  of -1
(=Bode’s stability condition)

GM = gain margin (>1 for stability; typicall want >3)
PM = phase margin (>0 for stability; typically want > 50o)
DM = delay margin (>0 for stability; typically want > 2θ)



• Example 1. P-control of delay process, 
g(s)=ke-θs. For what Kc is system stable?

• Example 2. I-control of delay process. For 
what KI is system stable? 

Solution. Stable if and only if
1. P-control: kKc < 1
2. I-control: kKI < π

2
1
θ

 



• Example 2, continued. I-control of delay 
process 

• what is ωc, ω180, GM, PM and DM & give for 
SIMC (analytical)

Solution
For any KI:
wc=k’ KI, w180=(pi/2)(1/theta). 
GM = w180/k’KI = (pi/2)/(k’KI theta),
PM=(pi/2)- k’KI*theta, 
DM = PM/wc = (pi/2)/k’KI - theta 

SIMC with τc=θ gives k’KI = 1
2θ

, so 

wc = 1
2θ

, w180= = π
2θ

GM =π = 3.14. 
PM = (pi-1)/2 = 1.07 rad = 61.5o

DM = (pi-1)*theta = 2.14 theta

General SIMC-PID for 2nd order delay process (with τI= τ1) gives: L(s) =  1
θ+τc

𝑒𝑒−θ𝜃𝜃

𝜃𝜃
                                                               
                                                                DM = (GM-1)θ



L(s) = 20s+ 1
s(100s+ 1) (2s+ 1)

EXAMPLE 3

L(s): SIMC PI-control with τc=4 for 
g(s) = 1/(100s+1)(2s+1)



-180o

L(s) = 20s+ 1
s(100s+ 1) (2s+ 1)

L(s): SIMC PI-control with τc=4 for g(s) = 1/(100s+1)(2s+1)

PM=57o

GM=1/0 = ∞

ω c = 0.19 rad/s ω 180 =  ∞

SOLUTION

1



With added delay, e-θs with θ=2
No change in gain

With added delay, e-θs with θ=2.
Contribution to phase is:
-5.7o at ω =0.1/θ = 0.05
-57o at ω =1/µ = 0.5

10
-3

10
-2

10
-1

10
0

10
1

-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

-180o

GM=1/0,4=2.5

PM=35o

= 0.61 rad

ω c = 0.19 ω 180 = 0.4

EXAMPLE3’: ADD 2 UNITS OF DELAY

Now phase crosses -180o so
GM is no longer infinity

Phase addition from delay = -ωθ
        At ωc:  - -ωcθ= 0.19*2 = - 0.38 rad (-22o)
        So new PM = 57o (old) – 22o = 35o 



Example 4. PI-control of integrating process 
with delay. Compare ZN and SIMC*

• g(s) =k’e-θs/s
• ZN: Use P-control and increase Kc until instability. 

• Find: Pu = 4θ and Ku = (π /2)/(k’θ)

• Derivation: 𝐿𝐿 𝑠𝑠 = 𝐾𝐾𝑐𝑐𝑘𝑘′𝑒𝑒−𝜃𝜃𝜃𝜃

𝜃𝜃
,∠𝐿𝐿 𝑗𝑗𝜔𝜔 = −𝜋𝜋

2
− 𝜔𝜔𝜔𝜔 𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿 𝑗𝑗𝜔𝜔 = 𝐾𝐾𝑐𝑐𝑘𝑘′

𝜔𝜔 
, 

– so: ∠𝐿𝐿 𝑗𝑗𝜔𝜔180 = −𝜋𝜋
2
− 𝜔𝜔180𝜔𝜔 = −𝜋𝜋 ⇒ 𝜔𝜔180 = 𝜋𝜋

2𝜃𝜃
⇒  Pu = 2𝜋𝜋

𝜔𝜔180
= 4𝜔𝜔,

– and at limit to instability: 𝐿𝐿 𝑗𝑗𝜔𝜔180 = 𝐾𝐾𝑢𝑢𝑘𝑘′

𝜔𝜔180 
= 1 ⇒ 𝐾𝐾𝑢𝑢 = 𝜔𝜔180

𝑘𝑘𝑘
= 𝜋𝜋 
2

1 
𝑘𝑘′𝜃𝜃

• PI-controller, c(s) = Kc (1+1/(τIs))
Kc τI

Ziegler-Nichols 0.45Ku = 0.707/(k’ θ) Pu/1.2=3.33θ

SIMC  (τc=θ) 0.5/(k’ θ) 8θ

*Task: Compare Bode-plot (L=gc), robustness and simulations (use k’=1, θ=1).
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Bode Diagram
Gm = 2.96  (at 1.49 rad/s) ,  Pm = 46.9 deg (at 0.515 rad/s)

Frequency  (rad/s)

GM PM Delay margin, Δθ
Ziegler-Nichols 1.87 24.9o 0.57 s

SIMC  (τc=θ) 2.97 46.9o 1.88 s

Ziegler-Nichols PI SIMC-PI

Δθ= PM[rad]/ω c
ZN: Δθ = 24.9*(3.14/180)/0.76 = 0.572s
SIMC: Δθ = 46.9*(3.14/180)/0.515 = 1.882s

SIMC is a lot more robust:

s=tf('s')
g = exp(-s)/s
Kc=0.707, taui=3.33
c = Kc*(1+1/(taui*s))
L1 = g*c
figure(1), margin(L1) % Bode-plot with margins
% To change magnitude from dB to abs: Right click + properties + units
Kc=0.5, taui=8
c = Kc*(1+1/(taui*s))
L2 = g*c
figure(2), margin(L2)
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Bode Diagram
Gm = 1.87  (at 1.35 rad/s) ,  Pm = 24.9 deg (at 0.76 rad/s)
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Delay = 1
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Conclusion: Ziegler-Nichols (ZN) responds faster to the input disturbance,
but is much less robust. 
• ZN goes unstable if we increase delay from 1s to 1.57s.
• SIMC goes unstable if we increase delay from 1s to 2.88s.

t=0: setpoint change,   t=20: input disturbance

Simulink file: tunepid4
s=tf('s')
g = exp(-s)/s
Kc=0.707, taui=3.33, taud=0 % ZN
sim('tunepid4')
plot(Tid,y,'red',Tid,u,'red')
Kc=0.5, taui=8, taud=0 % SIMC
sim('tunepid4')
hold
plot(Tid,y,'blue',Tid,u,'blue')
hold off
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ZN is almost unstable when the delay is increased from 1s to 1.5s.
SIMC does not change very much

SIMC

ZN

t=0: setpoint change,   t=20: input disturbance

OUTPUT, y

INPUT, u



Bode stability condition.
Why may D-action help in some cases?
• Some unstable processes, for example a double integrating process, may 

need D-action for stabilization. The reason is to add positive phase and 
therefore stabilize the system. Why does this help?
– Recall the Bode stability condition. It says that the loop gain should be less 

than 1 at the frequency where the phase shift around the loop -180 degrees.
– Another statement is that phase shift should be less than -180o at the 

frequency where the loop gain is 1. 
– So for stability and robustness we want as little phase shift as possible (to 

improve the phase margin). The things that add negative phase shift are time 
delay (the worst), poles and RHP-zeros.

– LHP-zeros (D-action, (Td*s +1)) have the opposite (positive) effect on the 
phase, and this is why they may be added for stabilization in difficult cases, for 
example, an unstable process. Of course, zeros will also affect the loop gain, 
but at frequencies up to the break frequency, 1/Td, the positive effect on the 
phase is most important.

– So why don’t we always add D-action? One reason is that it increases the 
controller gain and therefore the input usage. However, the main reason is 
probably that it does not help very much in most cases and it makes the 
controller design more complicated (and easier to do mistakes).



Closed-loop frequency response

10-2 10-1 100 101
10-3

10-2

10-1

100

101

ZN
SIMC

w = logspace(-2,1,1000);
[mag1,phase]=bode(1/(1+L1),w);
[mag2,phase]=bode(1/(1+L2),w);
figure(1), loglog(w,mag1(:),'red',w,mag2(:),'blue',w,1,'-.') 
axis([0.01,10,0.001,10])

!

SIMC: Ms=1.70
ZN:     Ms = 2.93

Control:    GOOD BAD NO EFFECT

e

|S|
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