
Ch 11.4
Stability

NOTE: Stability of a linear system is a SYSTEM property, that is, 
independent of the input signal (sine or step, etc.) and of where it  
enters the system (input or disturbance, etc.)

Stability is a very important issue for control systems



Linear system. Is g(s) stable?
• g(s) = n(s)/d(s).    Poles are solutions s=pi to d(s)=0.

• Example:   G(s) = 1/(s-1)(s+2). Get p1=1 (unstable pole), p2=-2 (stable pole)

• So time response contains term ept

• Example:   G(s) = 1/(s-1), p=1
– Step response is: y(t) = -1(1-et) = et – 1 (unstable)

• From this we see that for a polynomial system g(s)=n(s)/d(s) (no time delay): 
Stability , Re(pi)<0   (all poles have negative real part)

, All poles in left half plane (LHP)

– Applies also to the linear system dx/dt = Ax + Bu, but here the poles (pi) are the eigenvalues of A 
(see proof below)

Repetition



Poles = Eigenvalue of A-matrix
Linear system in deviation variables (state space form)

dx/dt = A x + B u
y = C x + D u

Laplace. Get transfer function  from u to y

G(s) = C (sI-A)-1 B + D = n(s)/d(s)

From mathematics: (sI-A)-1  = adj(sI-A)/det(sI-A), so

d(s) = det(sI-A) = pole polynomial

But det(sI-A)=0 is also the formula for finding the eigenvalues of A

Conclusion: Solutions to d(s)=0 are the poles which are identical to the 
eigenvalues of A

pi = eig(A)

Repetition



Pole in right half plane (RHP): UNSTABLE

Unstable

Stable

Stable
Oscillations

Unstable
Oscillations

G(s) = n(s)/d(s) where
d(s) = (s-p1)(s-p2)

Real pole p: Get term ept .

For Re(p)>0 (RHP-pole):
Unstable since  ept! 1  (as t! 1 )

Complex pole pair (p12 = p § jω)
Gives oscillations:
c1 ep1t + c2ep2t = c ept sin(ωt + Á)
Which are unstable if Re(p)>0

Repetition
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(p1,2=0±10i, borderline)

(p1,2=0.5 ±3.12i, unstable)

(p1,2=-0.5 ±3.12i, stable)

Repetition



Stability of closed-loop systems

• Closed-loop transfer functions, T(s) = n(s)/d(s)
– n(s) = direct path
– d(s) = 1 + loop(s) 

• where loop(s) =  g(s) gm(s) c(s)

• Same d(s) for any input (disturbance)/output!
– Makes sense because stability is a system property

• Conclusion: Closed-loop poles are given by 
solutions to “closed-loop characteristic equation” 

• d(s) = 1 + loop(s) = 0

Repetition



What about time delay?

• Can use Pade approximation, for example, order 
n:

• Comment: More exact for stability of closed-loop system with delay: Frequency 
response and Bode criterion (later)

Repetition



How do we test for stability? 
T(s) = n(s)/d(s)

Method 1. Compute poles p (roots of d(s)=0) = eigenvalues  of A-matrix for system 
T(s), p=λ(A).

• Stable if and only if all poles are in left half plane, Re(p)<0
• OK numerically (for given system), but difficult to find poles p analytically

Method 2 (much simpler). Look at coefficients ai in d(s), 
d(s)= a0 + a1s + … + ansn

Good for analytical results. Don’t need to find poles p
Test 1. All a’s must have same sign* for stability (necessary condition)
Test 2. Routh array (Routh-Hurwitz condition): Necessary and sufficient**

Method 3. Closed-loop system. Frequency analysis (see later)
• Don’t use poles
• Consider loop transfer function, L = GC
• Bode stability test for stability: Loop gain|L| < 1 at frequency ω180

• Can include time delay (exact)

* Necessary and sufficient for 2nd order system (n=2)
** The detailed formulas are no longer in the book by Seborg, but it remains part of your syllabus. 
See also Exercise 11. You will get the formulas if you need it on the exam.



Important

• The only way we can change dynamics (move
poles) and stabilize is by feedback

• So: Stabilization with feedforward does NOT work
– Example: level control 

• G(s) = k’/s
• Integrating process with pole at s=0. At the limit to instability
• It is practically impossible to control level by trying to set 

qout=qin using feedforward. 
• We get «internal instability»: Level will eventually go out of 

bound
• But we need to be careful: Feedback often causes 

oscillations and even instability



Example 1
• Unstable plant  (reactor): g(s) =1/(s-1)
• P-controller: c(s)=Kc

• For what Kc is system stable?
• Method 1 (poles), 
• Method 2 (sign coefficients), 
• Root locus (plot location of closed-loop poles as function of Kc)

Re(p)

Im(p)Root locus for s=1-Kc
= Location of pole s for increasing gain

-3       -2      -1        0       1        2

Kc=2 (stable)
Kc=1 (limit to instability)

Kc increases
(more stable for large Kc) Kc=0 (unstable)



Method 1. Analytic solution using poles. 
A lot of work*!

Analytic dolution with Matlab: 
syms s Kc
g=1/(6*s+1)
gm=(-s+1)/(s+1)
clpoles=solve(1+Kc*g*gm==0)
solve(real(clpoles(1))==0)
solve(real(clpoles(2))==0)

Solution:
g =1/(6*s + 1)
gm =-(s - 1)/(s + 1)
clpoles =
Kc/12 + (Kc^2 - 38*Kc + 25)^(1/2)/12 - 7/12

Kc/12 - (Kc^2 - 38*Kc + 25)^(1/2)/12 - 7/12
ans =-1.0
ans =7.0

Method 2 (simpler). Coefficients
Test 1. Check signs of Char. Eq..: 

d(s) = 1 + loop = 1 + Kc*(-s+1)/[(s+1)(6s+1)]=0
6s^2 + (7-Kc)s + (1+Kc) = 0

Stable -> all coefficients positive ->
Kc>-1 (lower limit for positive feedback)
Kc<7   (upper limit because of RHP-zero)

(necessary and sufficient for 2nd order system)

* Difficult for order 3, very difficult for order 4,
Impossible for order 5 or higher (Abel)

EXAMPLE 2

Kc=7: Poles cross into RHP
and we have instabiliy

Kc=0: Start at 
open-loop poles
(-1 and -1/6)

Root locus:



Complete Routh array
b1 = (17*8-10*(1+Kc)) / 17
b2 = 0
c1 = (1+Kc)
Stability: Elements in first column > 0.
Conclusion: 
b1>0 -> Kc<12.6
c1>0 -> Kc>-1

Test 2. ROUTH array: Find location (RHP/LHP) of poles without actually having to find them
“Advanced version of looking at sign of coefficients in pole polynomial d(s)” 

Example 3. g(s) = 1
(5s+ 1) (2s+ 1) ; gm = 1

s+ 1 , P-cont ro

Kc
-1 12.6

STABLEUNSTABLE UNSTABLE

From old edition of Seborg book:



Root locus: How do the closed-loop poles depend on the controller gain Kc?

Example 3. g(s) = 1
(5s+ 1) (2s+ 1) ; gm = 1

s+ 1 , P-cont rol

s=tf('s')
Kc=12.6  % limit to instability)
loop = Kc/[(5*s+1)*(2*s+1)*(s+1)]
sisotool(loop) %  root locus Kc=0 (root locus starts at the poles x in g)

Kc large



Root locus: How do the 
closed-loop poles depend 
on the controller gain Kc?

Kc=0

Example 4
c(s) = K c

g(s) = 4
(s+ 1)(s+ 2)(s+ 3) = 4=6

(s+ 1)(0:5s+ 1)(0:33s+ 1)

Kc=0: Open-loop poles
Kc=0.1: Starts oscillating
Kc=15: Goes unstable
Step response for Kc=1.62:
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s=tf('s')
Kc=1.62
g = 4/[(s+1)*(s+2)*(s+3)]
loop =  Kc*g
sisotool(loop) %  root locus, etc.

PI-control

(11-104)

EXAMPLE 11.12

11.5

Figure 11.27

(11-105)

/

All coefficients in d(s)=1+L(s) are always positive but still the 
system goes unstable for Kc>15 (can use Routh Array to find this 
value)  


	Ch 11.4�Stability
	Linear system. Is g(s) stable?
	Poles = Eigenvalue of A-matrix
	Pole in right half plane (RHP): UNSTABLE
	Slide Number 5
	Stability of closed-loop systems
	What about time delay?
	How do we test for stability? �T(s) = n(s)/d(s)
	Important
	Example 1
	Method 1. Analytic solution using poles. �A lot of work*!
	Slide Number 12
	Root locus: How do the closed-loop poles depend on the controller gain Kc?�
	Slide Number 14

