
SOLUTION FOR EXAM IN Process control (TKP4140). December 2022 
 

The text in red is not required at the exam. It is mainly included to show that the theory works in 
practice. 

Problem 1 (15%) 
a) Approximate 3𝑠𝑠+1

2𝑠𝑠+1
 as 3

2
, according to Rule T1 (T0=3>tauo=2>tauc=1).  

This leads to 𝐺𝐺2(𝑠𝑠) = 1.5𝑒𝑒−0.5𝑠𝑠

(7𝑠𝑠+1)(0.8𝑠𝑠+1). Applying the half rule to obtain 𝐺𝐺(𝑠𝑠) = 𝑘𝑘𝑒𝑒−𝜃𝜃𝜃𝜃

𝜏𝜏𝜏𝜏+1
 leads to: 

 
 𝑘𝑘 = 1.5, 𝜏𝜏 = 7 + 0.8

2
= 7.4, 𝜃𝜃 = 0.5 + 0.8

2
= 0.9 

 
b) With tauc=1 we get the following SIMC PI tunings: 

 
𝐾𝐾𝑐𝑐 = 1

𝑘𝑘
𝜏𝜏

𝜏𝜏𝑐𝑐+𝜃𝜃
= 1

1.5
7.4

1+0.9
= 2.5965, 𝜏𝜏𝐼𝐼 = min(4 × (1 + 0.9), 7.4) = min(7.6, 7.4) = 7.4. 

 
c) For this system, PI is probably ok, at least if we insist on using tauc=1.  

From G2, we see that tau2=0.8 > theta=0.5, so PID will give some performance 
improvement, but then we need to reduce tauc, for example, to tauc=theta=0.5. 
 
The suggested PI-tunings work OK (see blue response below), but are not necessarily the 
optimal. The “problem” is that the approximation of the zero using rules T1-T3 is not always 
“optimal”  
 
Looking at response with the “original” PI-controller (see the blue response below), we see that 
the settling towards steady state is rather slow. Therefore, it seems that the integral time is too 
long. One approach would be select a lower tauc. This what I normally recommend if the model is 
good but this is not the best in this case, as it also increases Kc. A simpler approach is to just 
reduce taui and keep Kc unchanged. I tried reducing taui from 7.4 to 5. This works well: It gives a 
faster settling (see red curve below) and the robustness is still very good (with GM=4.4 and 
DM=2.37s). Note that the peak of the disturbance response is the same since Kc is unchanged, 
 
PI (original, tauc=1)   Kc=2.60, taui=7.4       (GM=13.3 dB = 4.6, PM=71o (1.24 rad) at wc=0.433 rad/s, DM=2.86 s) 
PI with smaller taui:   Kc=2.60, taui=5          (GM=12.8 dB = 4.4, PM=62o (1.08 rad) at wc=0.455 rad/s, DM=2.37 s) 
 
Comment: It doesn’t help deriving PI-tunings using the alternative approximation (3s+1)/(7s+1) ~= 
0.714/(2s+1) according to Rule T3. With tauc=1 it gives Kc=1.27 and taui=3. The resulting 
response (orange curve) is not very good  (but it is very robust with GM=7.9 and DM=3.57s). 
 
The simulations below compare the three PI-controllers when applied to the original process 
G0(s). 
 



 
 
%The setpoint response and the robustness margins can be generated using sisotool 
s=tf('s') 
g = (3*s+1)*exp(-0.5*s)/((7*s+1)*(2*s+1)*(0.8*s+1)) 
Kc=2.6, taui=7.4 
c=Kc*(1+1/(taui*s)) 
sisotool(g,c) 

  

Blue is “original” PI with Kc=2.6 and taui=7.4 

Red is “improved” PI with Kc=2.6 and taui = 5. 

Orange is “bad” PI with Kc=1.27 and taui=3. 

Setpoint change at t=0, unit input disturbance at t=20  

y(t) 



Problem 2 (20%) 
 

a) Without control we have y=Gd d. The amplitude of the output for a sinusoidal disturbance 
is |y|=|Gd(jω)| |d|.  
 
Analytical expression with |d|=2: (time delay is irrelevant here): 
 |𝑦𝑦| =  |𝐺𝐺𝑑𝑑(𝑗𝑗𝑗𝑗)| 2 = 6/�(12𝜔𝜔)2 + 1  

           The corresponding Bode magnitude plot of |y|=2 Gd(jω) is shown below  

 

b) To keep |y|<ymax=0.5, we need control up the frequency 𝜔𝜔𝑑𝑑 where 
                     |𝐺𝐺𝑑𝑑  (𝑗𝑗𝜔𝜔𝑑𝑑)|  = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚/𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5/2 = 0.25.  
We find: 

3

�(12𝜔𝜔𝑑𝑑)2 + 1
= 0.25 → (12𝜔𝜔𝑑𝑑)2 = 143 → 𝜔𝜔𝑑𝑑 ≈ 1 → 𝜏𝜏𝑐𝑐 = 1/𝜔𝜔𝑑𝑑 = 1 

Let 𝜔𝜔𝑐𝑐 = 1
𝜏𝜏𝑐𝑐

 where 𝜏𝜏𝑐𝑐 is the closed-loop time constant. Then we must require that 
𝜔𝜔𝑐𝑐 >  𝜔𝜔𝑑𝑑  or 𝜏𝜏{𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚} = 1/𝜔𝜔𝑑𝑑.  Thus, we select 𝜏𝜏𝑐𝑐 = 1/𝜔𝜔𝑑𝑑 = 1. 

Comment (An alternative more exact analysis). The same result could be obtained from analyzing |𝑆𝑆 𝐺𝐺𝑑𝑑|, where 
𝑆𝑆(𝑠𝑠) = 𝜏𝜏𝑐𝑐𝑠𝑠/(𝜏𝜏𝑐𝑐𝑠𝑠 + 1) provided we use SIMC-tunings with tauI=tau1=2 (which we will show is satisfied). The 
requirement is to have |y| = |S Gd d| < ymax=0.5 at all frequencies. If we plot |S Gd| as a function of frequency, then 
we see that has it has a flat peak region between the disturbance break frequency  at 1/12 and the S break frequency 
at 1/𝜏𝜏𝑐𝑐. In this region, |𝑆𝑆 𝐺𝐺𝑑𝑑| = 𝜏𝜏𝑐𝑐 3/12, so to get |S Gd d| < ymax we must require require that 𝜏𝜏𝑐𝑐3/12 < 0.5/2  𝜏𝜏𝑐𝑐 <
1. This is the slowest control we can accept for acceptable disturbance rejection, so tauc-max = 1.  

              For 𝜏𝜏𝑐𝑐=1, the SIMC tuning rules give: 

𝐾𝐾𝑐𝑐 =
1

1.5
2
𝜏𝜏𝑐𝑐

= 1.33, 𝜏𝜏𝐼𝐼 = min(4 𝜏𝜏𝑐𝑐 , 2) = 2 

ymax=0.5 

 

𝜔𝜔𝑑𝑑   

|y| 
 

 



Comment: The simulation to a step disturbance of magnitude 2 is shown below. It confirms the above 
analysis and design as we see that y(t) peaks at 0.4 and thus stays just below ymax=0.5. (Yes, I know 
that it is stated that we should consider a sinusoid, but from the simulation we see that the frequency 
analysis is also useful also for step responses. ) 

For comparison is also shown the input u(t), both for the PI-controller and for the ideal feedforward 
controller (designed in part c). Note that the PI-controller will give about the same y(t) even with model 
error, but this is not the case with the feedforward controller. For example, if the gain of Gd is changed 
from 3 to 2.5 (not a large change), then the feedforward controller will overreact and y(t) will go to (2.5-
3)*2 = -1 at steady-state.    

 

c) Ideal feedforward controller (u = cFF d): 

𝑐𝑐𝐹𝐹𝐹𝐹 = −
𝐺𝐺𝑑𝑑
𝐺𝐺

= −
3𝑒𝑒−2𝑠𝑠

12𝑠𝑠+ 1
1.5

2𝑠𝑠+ 1
=
−2 𝑒𝑒−2𝑠𝑠 (2𝑠𝑠+ 1)

12𝑠𝑠+ 1  

This controller is realizable, and no further simplification is necessary. Therefore, if the model 
(G, Gd) and the disturbance measurement is perfect, we get 𝑦𝑦(𝑡𝑡) = 0.  

Also note that there is no problem with input saturation since to reject the disturbance d=2 at 
steady-state (which requires the largest input) we need |u|= 4, which is less than umax=10 (see 
simulation above). However, note that feedforward control is always sensitive to model 
uncertainty. 

  

y(t) with PI-control for 
step disturbance of 
magnitude 2 at t=0 

u(t) for step disturbance of 
magnitude 2 at t=0. 

Blue: Feedback (PI-control) 

Red: feedforward (gives y=0) 

With u=0, y(t) would go to 6. 

 

 

 



Problem 3 (20%) 
 

 

a) Consider first the red box:  

𝑣𝑣 = 𝐾𝐾𝑐𝑐  𝑒𝑒 +
1

𝜏𝜏1𝑠𝑠 + 1
𝑣𝑣 ⇒  �1−

1
𝜏𝜏1𝑠𝑠 + 1

� 𝑣𝑣 =
𝜏𝜏1𝑠𝑠

𝜏𝜏1𝑠𝑠 + 1
 𝑣𝑣 = 𝐾𝐾𝑐𝑐  𝑒𝑒 ⇒   𝑣𝑣 = 𝐾𝐾𝑐𝑐 �1 +

1
𝜏𝜏1𝑠𝑠

� 𝑒𝑒 

We then get: 

𝑢𝑢 = 𝑣𝑣 +  𝐾𝐾𝑐𝑐
𝜏𝜏2𝑠𝑠

𝜏𝜏3𝑠𝑠 + 1
𝑒𝑒 + 𝐶𝐶𝑓𝑓𝑓𝑓𝑑𝑑 = 𝐾𝐾𝑐𝑐 �1 +

1
𝜏𝜏1𝑠𝑠

+
𝜏𝜏2𝑠𝑠

𝜏𝜏3𝑠𝑠 + 1
� 𝑒𝑒 + 𝐶𝐶𝑓𝑓𝑓𝑓𝑑𝑑  

                       ⇒   𝐶𝐶(𝑠𝑠) = 𝐾𝐾𝑐𝑐 �1 + 1
𝜏𝜏1𝑠𝑠

+ 𝜏𝜏2𝑠𝑠
𝜏𝜏3𝑠𝑠+1

�  
𝜏𝜏1: integral action time constant 
𝜏𝜏2: derivative action time constant 
𝜏𝜏3: time constant for filter in derivative action 
 

b) Using algebra: 

𝑦𝑦 = 𝐺𝐺 𝑢𝑢 + 𝐺𝐺𝑑𝑑  𝑑𝑑 = 𝐺𝐺 �𝐶𝐶 𝑒𝑒 + 𝐶𝐶𝑓𝑓𝑓𝑓 𝑑𝑑� + 𝐺𝐺𝑑𝑑  𝑑𝑑 = 𝐺𝐺 𝐶𝐶 (𝑟𝑟 − 𝑦𝑦) + �𝐺𝐺 𝐶𝐶𝑓𝑓𝑓𝑓 + 𝐺𝐺𝑑𝑑� 𝑑𝑑 

⇒   (1 + 𝐺𝐺 𝐶𝐶) 𝑦𝑦 = 𝐺𝐺 𝐶𝐶 𝑟𝑟 + �𝐺𝐺𝑑𝑑 + 𝐺𝐺 𝐶𝐶𝑓𝑓𝑓𝑓� 𝑑𝑑 ⇒   𝑦𝑦 = 𝐺𝐺 𝐶𝐶
1+𝐺𝐺 𝐶𝐶

 𝑟𝑟 + 𝐺𝐺𝑑𝑑+𝐺𝐺 𝐶𝐶𝑓𝑓𝑓𝑓
1+𝐺𝐺 𝐶𝐶

 𝑑𝑑  

⇒ 𝑇𝑇(𝑠𝑠) =
𝐺𝐺 𝐶𝐶

1 + 𝐺𝐺 𝐶𝐶
 , 𝑇𝑇𝑑𝑑(𝑠𝑠) =

𝐺𝐺𝑑𝑑 + 𝐺𝐺 𝐶𝐶𝑓𝑓𝑓𝑓
1 + 𝐺𝐺 𝐶𝐶

 

 
Alternatively, we can derive T(s) and Td(s) directly using the rule “direct/(1+loop)”. 
 

c) In general, the requirement of perfect control (no offset) at steady-state requires that  
𝑇𝑇(𝑠𝑠 = 0) = 1 and 𝑇𝑇𝑑𝑑(𝑠𝑠 = 0) = 0. This will be satisfied in our case because C(s) has  
integral action.  

  

C(s)  



Problem 4 (20%) 
 

The poles are the roots of the denominator polynomials. We get: 

0.04 𝑠𝑠2 + 0.12 𝑠𝑠 + 1: 

Δ = 0.122 − 4 ⋅ 0.04 = −0.1456  →    𝑝𝑝1,2 = −0.12±𝑖𝑖 √0.1456
2 ⋅ 0.04

= −1.5 ± 4.77 𝑖𝑖  

0.24 𝑠𝑠2 +  𝑠𝑠 + 1: 

Δ = 12 − 4 ⋅ 0.24 = 0.04  →    𝑝𝑝1,2 =
−1 ± √0.04

2 ⋅  0.24
→    𝑝𝑝1 = −1.667, 𝑝𝑝2 = −2.5 

0.6 𝑠𝑠2 + 1.6 𝑠𝑠 + 1: 

Δ = 1.62 − 4 ⋅ 0.6 = 0.16  →    𝑝𝑝1,2 =
−1.6 ± √0.16

2 ⋅  0.6
→   𝑝𝑝1 = −1, 𝑝𝑝2 = −1.667 

 

TF Poles Zeros Steady-state gain Initial slope Conclusion 

𝐺𝐺1(𝑠𝑠) −1.5 ± 4.77𝑖𝑖 
(oscillates) -5 1 5 D 

𝐺𝐺2(𝑠𝑠) −1.667,−2.5 -0.625 1 6.667 C 

𝐺𝐺3(𝑠𝑠) −1,−1.667 –  1 0 F 

𝐺𝐺4(𝑠𝑠) −1.5 ± 4.77𝑖𝑖 
(oscillates) 8 1.6 -5 A 

𝐺𝐺5(𝑠𝑠) −1.667,−2.5 5 1 -0.833 E 

𝐺𝐺6(𝑠𝑠) −1,−1.667 -2 1.6 1.333 B 

 
  



Problem 5  (25%) 
 

a) Model equations and assumptions. 

(1) is the mass balance for the pipeline section [kg/s]  

(2) is the ideal gas equation on mass basis with the temperature T is assumed constant. 

(3) and (4) are the assumed valve equations. Note that we have assumed a linear valve 
characteristic.  

Variables: 

𝐹𝐹1: inlet flow 
𝐹𝐹2: outlet flow 
𝑧𝑧1: inlet valve opening 
𝑧𝑧2: outlet valve opening 
𝐶𝐶1: inlet valve constant 
𝐶𝐶2: outlet valve constant 
𝑚𝑚: mass of gas in the pipeline 
𝑝𝑝: pressure of gas in the pipeline 
𝑝𝑝1: pressure of gas at the inlet 
𝑝𝑝2: pressure of gas at the outlet 
𝑉𝑉: volume of pipeline 
𝑇𝑇: temperature of the system 
𝑅𝑅: ideal gas constant 
𝑀𝑀𝑤𝑤: molar mass of gas 
 

b) At steady state, 𝐹𝐹1 = 𝐹𝐹2, and therefore: 

𝐶𝐶1 =
𝐹𝐹1

𝑧𝑧1�𝑝𝑝1 − 𝑝𝑝
=

1
0.5 × √2 − 1.88

= 5.773 𝑘𝑘𝑘𝑘/𝑠𝑠 ⋅ 𝑏𝑏𝑏𝑏𝑟𝑟1/2  

𝐶𝐶2 =
𝐹𝐹2

𝑧𝑧2�𝑝𝑝 − 𝑝𝑝2
=

1
0.5 × √1.88 − 1.8

= 7.071 𝑘𝑘𝑘𝑘/𝑠𝑠 ⋅ 𝑏𝑏𝑏𝑏𝑟𝑟1/2  

𝑘𝑘𝑝𝑝 =
𝑉𝑉𝑀𝑀𝑤𝑤

𝑅𝑅𝑅𝑅
=

130 × 18 × 10−3

8.31 × 300
𝑚𝑚3 × 𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 𝐾𝐾  𝐾𝐾
= 9.386 × 10−4 𝑘𝑘𝑘𝑘/𝑃𝑃𝑃𝑃 = 93.86 𝑘𝑘𝑘𝑘/𝑏𝑏𝑏𝑏𝑏𝑏 

𝑚𝑚 = 𝑘𝑘𝑝𝑝 𝑝𝑝 = 93.86 × 1.88 = 176.457 𝑘𝑘𝑘𝑘 

Residence time: 𝑡𝑡𝑅𝑅 = 𝑚𝑚/𝐹𝐹1 = 176.457 𝑠𝑠 

c) Linearizing the model. First linearize the two static valve equations (3) and (4): 
                 y1 =  Δ𝐹𝐹1 = �𝐶𝐶1�𝑝𝑝1 − 𝑝𝑝��

∗
Δ𝑧𝑧1 + �− 𝐶𝐶1𝑧𝑧1

2√𝑝𝑝1−𝑝𝑝
��
∗
Δ𝑝𝑝 = 2 Δ𝑧𝑧1 − 4.166 Δ𝑝𝑝 

Δ𝐹𝐹2 = �𝐶𝐶2�𝑝𝑝 − 𝑝𝑝2��∗Δ𝑧𝑧2 + �
𝐶𝐶1𝑧𝑧2

2�𝑝𝑝 − 𝑝𝑝2
��
∗

Δ𝑝𝑝 =  2 Δ𝑧𝑧2 +  6.250 Δ𝑝𝑝 

 



From (2) the mass balance (1) becomes kp dp/dt = F1 – F2  which gives the linearized model for 
𝑦𝑦2 =  Δ𝑝𝑝: 

                      𝑘𝑘𝑝𝑝
𝑑𝑑Δ𝑝𝑝
𝑑𝑑𝑑𝑑

= Δ𝐹𝐹1 − Δ𝐹𝐹2 =  2 Δ𝑧𝑧1 − 2 Δ𝑧𝑧2 − 10.416 Δ𝑝𝑝   

⇒ 93.86
𝑑𝑑Δ𝑝𝑝
𝑑𝑑𝑑𝑑

+ 10.416 Δ𝑝𝑝 = 2 Δ𝑧𝑧1 − 2 Δ𝑧𝑧2 

⇒ 9.011
𝑑𝑑Δ𝑝𝑝
𝑑𝑑𝑑𝑑

+ Δ𝑝𝑝 = 0.192 Δ𝑧𝑧1 − 0.192 Δ𝑧𝑧2 

Applying the Laplace transform to the last expression gives the transfer function for 𝑦𝑦2 =  Δ𝑝𝑝: 

Δ𝑝𝑝(𝑠𝑠) =
0.1925

9.011 𝑠𝑠 + 1
Δ𝑧𝑧1 −

0.1925
9.011 𝑠𝑠 + 1

Δ𝑧𝑧2 

The expression for 𝑦𝑦1 =  Δ𝐹𝐹1 then becomes 

Δ𝐹𝐹1 = �2 − 4.166 ×
0.1925

9.011 𝑠𝑠 + 1�  Δ𝑧𝑧1 − 4.166 × �
− 0.1925

9.011 𝑠𝑠 + 1�  Δ𝑧𝑧2 

= �
2 × (9.011 𝑠𝑠 + 1) −  4.166 × 0.1925

9.011 𝑠𝑠 + 1 �  Δ𝑧𝑧1 +
0.800

9.011 𝑠𝑠 + 1  Δ𝑧𝑧2 

= �
18.022 𝑠𝑠 +  1.200

9.011 𝑠𝑠 + 1 �  Δ𝑧𝑧1 +
0.8

9.011 𝑠𝑠 + 1  Δ𝑧𝑧2 = 1.2 �
15.018 𝑠𝑠 + 1
9.011 𝑠𝑠 + 1 �  Δ𝑧𝑧1 +

0.8
9.011 𝑠𝑠 + 1  Δ𝑧𝑧2 

Conclusion 

� Δ𝑝𝑝Δ𝐹𝐹1
� = 𝐺𝐺(𝑠𝑠) �Δ𝑧𝑧1Δ𝑧𝑧2

� , 𝐺𝐺(𝑠𝑠) = �

0.1925
9.011 𝑠𝑠 + 1

− 0.1925
9.011 𝑠𝑠 + 1

1.2 �
15.018 𝑠𝑠 + 1
9.011 𝑠𝑠 + 1

�
0.8

9.011 𝑠𝑠 + 1

� 

Note that the time constant of 9s is much smaller than the residence time of 176s. This is typical 
for gas systems. Also note that u1=z1 has a direct effect on y2=F1(as expected from physics:; 
see also element g21 in step response below which has an overshoot because of the zero). 

 
 

s=tf('s') 
g11=0.1925/(9*s+1); g12=-g11; 
g21=1.2*(15*s+1)/(9*s+1); 
g22=0.8/(9*s+1); 
G=[g11 g12; g21 g22];  
step(G*exp(-10*s)) % To make plot 
clearer I put in a delay so that step is 
at t=10  
 



d)  

Steady-state gain matrix: 𝐺𝐺(0) = �0.1925 −0.1925
1.2 0.8 �   

steady-state RGA matrix: Λ = � 𝜆𝜆 1 − 𝜆𝜆
1 − 𝜆𝜆 𝜆𝜆 �   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜆𝜆 = 0.1925×0.8

0.1925×0.8+0.1925×1.2
= 0.4. 

From the steady-state RGA, the recommended pairing is then the off-diagonal pairing, that is, 
𝐹𝐹1 − 𝑧𝑧1 and 𝑝𝑝 − 𝑧𝑧2. This happens to coincide with the intuitive pairing (“pair-close rule”) since z1 
has a direct effect on F1. It also agrees with what we get from the RGA if we consider the initial 
response (high frequency).  

 

 

However, high steady-state interaction is to be expected, since Λ is far from the ideal case 
(identity matrix). Possible solutions are the implementation of a decoupler (probably steady-
state decoupler is OK), or separating the timescales of the two loops.  

Since the flow control has a direct effect from z1 to F1, this should probably be the fast loop, 
and then the pressure loop can be about 5 times slower.  But if both loops should be equally 
fast, a decoupler is preferred. 

What about the tuning of the flow loop? What model should we use? We have that 

𝐺𝐺0(𝑠𝑠) = 1.2 �
15𝑠𝑠 + 1
9 𝑠𝑠 + 1

� 

Note that T0=15 > tau0=9. How should we approximate this as a first-order with delay model? It 
will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get.  

Small tauc (tauc<9):   (15s+1)/(9s+1) ≈  15/9  (Rule T1)    ⇒   G(s)=1.2*15/9 = 2 
Intermediate tauc (9<taux<15):   (15s+1)/(9s+1) ≈  15/tauc  (Rule T1a)  ⇒  G(s)=18/tauc 
Large  tauc (tauc>15) . (15s+1)/(9s+1) ≈  1  (Rule T1b)     ⇒  G(s)=1.2 

In all these three case the SIMC PI-controller becomes a pure I-controller C(s)=KI/s with KI = 
1/(k*tauc). Note that for the intermediate tauc we get KI=1/18 (independent of Kc). 

e) This is a trick question, because it will not work. This control strategy would not be 
consistent, as we can see that that is does not follow the radiation rule. In  general, the 
control of pressures that are external to the process is equivalent to a flow specification 
(TPM), which in this case would conflict with the specification of 𝐹𝐹1. 
 



 

Comment: One may think that it does not work since 𝑝𝑝 is left uncontrolled, which may lead to 
blow-up of the pipeline. However, the fact that p is uncontrolled does not by itself mean that we 
have a problem. In most cases, pressures are left uncontrolled as we rely on self-regulation, for 
example, valve 2 may be kept fully open to minimize pressure drop. Thus, the problem is not 
that p is left uncontrolled, but rather that p2 is controlled.  

If we try implementing the proposed unworkable control structure, then we will see that one of 
the valves, z1 or z2 goes fully open and we loose control of either flow or pressure. We will 
loose control of the variable (CV) for which the setpoint is asking for the largest flow. 
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