
TKP4140 Process Control
Department of Chemical Engineering NTNU

Autumn 2018 - Exam

Solution

Problem 1: Feedforward Control

a) The block diagram for feedforward control is shown in Figure 1. Gmd is the transfer
function for the measured disturbance, and Cff is the ideal controller.

G +

Gd

Gmd

Cff

u

d

y

Figure 1: Block diagram for feedforward control

b) Feedforward is recommended for processes with delays in measuring y or with a large
delay from the disturbance d to the process output y. If there is a delay in measuring
d, then this is a disturbance for feedforward.

c) The transfer function for a perfect controller is given in Eq. 1.

Cff,ideal(s) = − Gd(s)

G(s)Gmd(s)
(1)

The conditions for a perfect realizable feedforward controller is that Gd has a large time
delay and at least as many than G, which may not always be the case. Comment Eq.
1 is derived starting from:

y = Gu+Gdd (2)

where u is given by
u = CffGmdd (3)

By substituting Eq. 3 into Eq. 2, and assuming perfect control (i.e. y = 0), we obtain

y = 0 = GCffd+Gdd (4a)

0 = (GCff +Gd)d (4b)

Cff = −Gd
G

(4c)

Note that all variables and transfer function are in Laplace domain, and s is omitted
for simplicity.
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d) We assume perfect measurement, Gmd = 1. Cff,ideal is obtained by substituting G and
Gd into Eq. 1:

Cff,ideal = − 3

5(5s+ 1)
(5)

In this case, Cff,ideal is realizable so we have

Cff = Cff,ideal = − 0.6

5s+ 1
(6)

e) The response in the output y to a step in d for the three cases is illustrated in Figure
2. We can observe that in the case of no model error (orange ) the process is perfectly
controlled and the output y is 0. With a model error (purple), we get y = − 2.8

5s+1d (see
below), and the output is almost the same as without control (u = 0), but with the
opposite sign.
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Figure 2: Comparison of step response for open loop, feedforward with no model error and
feedforward with model error.

Mode details. We have:

i) with no control,

y = G · 0 +Gd· = Gd =
3

5s+ 1
d (7)

ii) with no model error

y = (GCff +Gd)d (8a)

= (−GGd(s)
G(s)

+Gd)d (8b)

= 0 (8c)
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iii) with model error

y = (GerrorCff +Gd,error)d (9a)

= (−8
0.6

5s+ 1
+

2

5s+ 1
)d (9b)

= − 2.8

5s+ 1
d (9c)
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Problem 2. Size of mixing tank for disturbance rejection

a) Assumptions:

• perfect level control, i.e. the mass in the tank is constant, and the mass flow int is
equal to the mass flow out, Fin = Fout = F

• constant density (it follows that the volumetric flows are also equal, i.e. qin =
qout = q)

• cv ≈ cp ≈ constant

• the reference temperature is Tref = 0K.

The dynamic energy balance for the tank is written as:

dH

dt
= hin − hout (10a)

d(mcpT )

dt
= Fcp(TF − Tref︸︷︷︸

=0

)− Fcp(T − Tref︸︷︷︸
=0

) (10b)

d(mcpT )

dt
= Fcp(TF − T ) (10c)

mcp
dT

dt
= Fcp(TF − T ) (10d)

V ρcp
dT

dt
= qρcp(TF − T ) | : V ρcp (10e)

dT

dt
=

q

V
(TF − T ) (10f)

dT

dt
=

1

τ
(TF − T ) (10g)

where, τ = V
q is the residence time of the tank.

This equation is already linear. Introducing deviation variables and taking the Laplace
transform of Eq. 10g gives Eq. 11. Note that all Laplace variables (T and TF ) are in
deviation from the nominal point, but we drop the ∆ notation.

sT (s) =
1

τ
(TF (s)− T (s)) (11a)

T (s) =
1

τs+ 1
TF (11b)

Conclusion. The transfer function from TF to T is g(s) = k
τs+1 with k = 1.

b) The period of oscillations P is given by

P =
2π

ω
=

2π

4
= 1.57min (12)

c) The block diagram for the process with input u and output y is shown in Figure 3.
We have TF (t) = A0 sin(ωt) with A0 = 5 and ω = 4 rad/min. We want T (t) =
A(ω) sin(ωt+ φ), with A(ω) = 1.
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1
τs+1

u = A0 sin(ωt) y = AR ·A0 sin(ωt+ φ)

Figure 3: Block diagram for feedforward control

Here, A(ω) = AR(ω)A0, where AR(ω) is the frequency dependent gain of 1
τs+1 . We

have

AR(ω) =
1√

ω2τ2 + 12
(13a)

At frequency ω = 4 rad/s we haveAR ·A0 = 1, so

5

42τ2 + 1
= 1 (13b)

16τ2 + 1 = 52 = 25 (13c)

τ =

√
25− 1

16
= 1.225 (13d)

V = τq = 1.225 m3 (13e)

This result may be tested by doing a simulation of the process, shown in Figure 4.
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Figure 4: Simulation
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Problem 3. SIMC and disturbance rejection

a) The closed-loop transfer functions:

i From the disturbance d to the output y:

M(s) =
y(s)

d(s)
(14a)

M(s) =
”direct loop”

1 + ”closedloop”
(14b)

M(s) =
gd

1 + cg
(14c)

ii From the disturbance d to the input u is:

N(s) =
u(s)

d(s)
(15a)

N(s) =
”direct loop”

1 + ”closedloop”
(15b)

N(s) = − cgd
1 + cg

(15c)

b) The half rule approximation of g(s) to get a first-order model is:

k = 10 (16a)

τ = 6 + 6/2 = 9 (16b)

θ = −0.3 + 6/2 = 3.3 (16c)

gapp(s) ≈
10e−3.3s

9s+ 1
(16d)

The PI-controller tuning are found by applying the SIMC tuning method to gapp(s).
For “tight control“, we select τC = θ = 3.3.

Kc =
1

k

τ

τC + θ
(17a)

Kc =
1

10

9

2 · 3.3
(17b)

Kc = 0.136 (17c)

τI = min(τ, 4(τC + θ)) = τI = min(9, 4(2 · 3.3)) = 9 (17d)

c(s) = Kc

(τIs+ 1

τIs

)
(17e)

c(s) = 0.136
(9s+ 1

9s

)
PI-controller (17f)

c) i To plot |gd| we identify that there is a break frequnecy at ω = 16 = 0.0167 rad/s,
here the slope changes from 0 to -2 (on a log-log scale). The low gain frequency is
|gd(0)| = 10. The time delay has no effect on the gain.

|gd| =
10

(
√

(6ω)2 + 1)
2 =

10

36ω2 + 1
(18)
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Figure 5: Magnitude plot of gd

The magnitude of gd is shown in Figure 5.

ii Let g(s) = gd(s). Quick solution. Note that N(s) = −T (s), where T (s) is the
closed loop setpoint response, T (s) = g

1+gc . The steady-state gain of N(s) is -1
(N(s=0) = -1), beause T(0) = 1 with integral action.

With SIMC, we design T (s) = e(−θs
τCs+1 , so with τC = θ = 3.3, we get a first-order

response with a delay of 3.3 and time constant of 3.3.
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Figure 6: Magnitude plot of gd

d) The speed of response is limited by the frequency ωd (i.e. where |gd| = 1 for a scaled
model), but also by the effective time delay, according to:

ωd ≤ ωC ≤ 1/θ (19)

where, ωC = 1/θ = 1/3.3 = 0.3
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and, ωd ≈ 0.5, read from the Bode plot in Figure 5. which leads to

0.5 ≤ ωC ≤ 0.3 (20)

which does not have a feasible solution. We conclude that it is not possible to design a
PI-controller to make y(t) acceptable.
For a PID-controller, τC = 0.3 and ωC = 1/0.3 = 3.3, and it is possible to find τC such
that:

ωd ≤ ωC ≤ 1/θ (21a)

0.5 ≤ ωC = 1/τC ≤ 3.3 (21b)

For “tight control“, τC = 0.3 is a solution of Eq. 21a.

The output response to a step disturbance with magnitude 1 both for PI and PID
controllers is shown in Figure 7. For the PI-controller, max(y(t) ≈ 4, while for the PID
controller, max(y(t) ≈ 0.5, which is more acceptable. Note. For the PID controller
implemented in series form, the filter time constant is τF = 0.01.
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Figure 7: Output response to a step disturbance of magnitude 1 for PI (purple) and PID
(orange)
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 you should answer this from the controllability analysis (the Matab simulation is just there to confirm, and you are not supposed do this during the exam):

From the controllability analysis we have the wd = 0.5.

For PI-control the effective delay is 3.3,  so with tight control we get tauc=3.3  or wc=1/tauc=0.3 .

But we need to have wc > wd, so we conclude that we cannot have sufficiently gast control.




For PID-control the effective delay is  equal to the original delay of 0.3, 

so with tight control we get tauc=0.3  or wc=1/tauc=3.3, and we have wc >> wd so there is no problem :-)




Is there any way to easily calculate y(t) or to see the peak of y(t) from the transfer function or anything else? 

No, not that I know.,
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Problem 4. Mixing tank with changing control objectives

a) Total mass balance (at steady-state):

F1 + F2 = F3 (22)

Component S mass balance at steady-state

F1xS1 + F2xS2 = F3xS3 (23)

F2 is pure water → xS2 = 0, so we get:

F1xS1 = F3xS3 (24)

At the nominal point xS1 = 0.1. Substituting in Eq. a), and solving for F3 gives:

F3 =
F1xS1
xS3

=
1 · 0.5

0.1
= 5 kg/s (25)

F2 is calculated from the total mass balance:

F2 = F3 − F1 = 5− 1 = 4 kg/s (26)

xE3 is calculated from the component E mass balance:

F1xE1 + F2xE2 = F3xE3 (27a)

F1xE1 = F3xE3 (27b)

xE3 =
F1xE1

F3
(27c)

xE3 =
1 · 0.002

5
(27d)

xE3 = 0.0004 (27e)

At steady-state, xE3 = 0.0004, and both requirements for sugar (xS3 = 0.1) and E
concentration (xE3 =≤ 0.001) in the product stream are fulfilled.

b) We consider the response from u = F2 and d = F1, so we can assume that Note that
xS1 and xE1 are constant. eq. 22 is always linear, and becomes in terms of deviation
variables:

∆F1 + ∆F2 = ∆F3 ⇒ ∆F3 = u+ d (28)

Linearizing Eq. 24 yields (noting that xS1 is constant and xS2 = 0).

∆F1x
∗
S1 = F ∗

3 ∆xS3 + ∆F3x
∗
S3 (29a)

∆xS3 =
∆F1x

∗
S1 −∆F3x

∗
S3

F ∗
3

(29b)

Substituting the nominal values gives: y1 =
0.5 · d− 0.1 · (u+ d)

5
(29c)

The linear model becomes: y1 = −0.02u+ 0.08d (29d)
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The steady-state gain from u to y1 is ku,y1 = −0.02.

Similarly, linearizing for component E mass balance gives:

∆xE3 =
∆F1x

∗
E1 −∆F3x

∗
E3

F ∗
3

(30a)

y2 =
0.002 · d− 0.0004 · (u+ d)

5
(30b)

y2 = −0.00008u+ 0.00032d (30c)

The steady-state gain from u to y2 is ku,y2 = −0.00008.

c) At the nominal point, y2 = xE1 is well below the maximum concentration allowed, and
we only need to control y1 = xS3 at its specification. We use u F2 to control the sugar
content in the product stream, as shown in the block diagram in Figure 8.

CC

F2

F1

F3

xS3
sp

 = 0.1 xS3 
 

F2
sp

Figure 8: Control structure for the nominal point

d) For a pure I-controller, the setting are calculated by applying the SIMC tunings rules
to the transfer function from u to y1 given Eq. 29d. There are no dynamics, that is
τ ≈ 0, but there is a measurement delay of 8 seconds which has to be accounted for in
designing the controller, that is θ = 8 s. We get

KC =
1

k

τ

τC + θ
= 0 (31a)

τI = min(τ, 4(τC + θ)) = τ = 0 (31b)

(31c)

Since τI = 0, we get

c(s) =
Kc(τIs+ 1)

τIs
=
Kc

τIs
=
KI

s
(32)

which is a pure I-controller. The value of KI using the SIMC rules is:

KI =
1

k

τ

τC + θ

1

τ
=

1

k

1

τC + θ
(33)

Assuming “tight control“ (τC = θ = 0) gives,
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KI = − 1

0.02

1

8 + 8
= −3.125 (34)

e) If xE1 = 0.006, and F2 = 4 kg/s (at the nominal point), then using the steady state
component E mass balance (Eq. 29b gives,

xE3 =
0.0006

5
= 0.0012 > 0.001

. This exceeds the allowed values, so we need to add extra water and give up controlling
y1 = xS3 = 0.1.

Recalculating the stream F2 needed to keep the requirement xE3 ≤ 0.001:

F3 =
xE1F1

xE3
=

0.006

0.001
= 6 kg/s = 6− 1 = 5 kg/s (35)

The corresponding steady-state concentration of sugar in the product stream is

xS3 =
xS1F1

F3
=

0.5

6
= 0.0833 (36)

which as expected is not at setpoint, but this is the closest we an get.

f) In the extreme case of a high disturbance xE1, xE3 goes beyond its specification. Note
that it is required to keep xE3 ≤ 0.001, but it is desired xS3 = 0.1, meaning that it
is more important to keep xE3 at its specification than xS3.

Thus, in such “extreme case“, we need to give up controlling xS3, and instead use u = F2

to control y2 = xE3 at its specification. Since there is a single manipulated variables
and two control variables, we need to use a selector to decide which controller is active
(i.e. which concentration is controlled at its specification).

Yes, we always need to use anti-windup for all controllers when using a selector. The
controller that is not selected keeps on integrating the error, because the input u it is
calculating is not applied to the plant, and therefore there will be an error between the
setpoint (e.g. xspE3) and the uncontrolled process value (e.g.xE3).

The control structure for this case is shown in Figure 9. We use a max selector because
in the extreme cases of xE3 = 0.006, F2 has to be increase from its normal value to
dilute the product, and reach the required specification for xE3.

Extra (not required).
The simulation results for a step disturbance xE1 = 0.006 given at t = 0 s using the
control structure is Figure 9 are shown in Figure 10. Note that the I-controller for E
was tuned based on the extreme case.
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Figure 9: Control structure that handles both the nominal and the extreme cases
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Figure 10: Simulation results for a step disturbance F1 = 1.5 kg/s at t = 10 s and xE1 = 0.006
at t = 100 s (extreme case). The black dotted lines show the concentration specification for
xS3 and xE3 respectively. In the normal case, the controller is controlling y1 = xS3 at
y1s = 0.1, while in the extreme case, the controller is controlling y2 = xE3 at y2s = 0.001.
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