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Chapter 23

Dynamics and Control 
of Biological Systems

Previous chapters have emphasized the design of con-

trollers for chemical process systems, as well as for

biomedical systems (Chapter 22). In this chapter, we

consider the analysis of intrinsically closed-loop sys-

tems that exist in biological circuits, from gene level

through cellular level. There is no external controller

to be synthesized; rather, the tools that were devel-

oped in the first half of this textbook are applied to

the analysis of networks that exploit principles of

feedback and feedforward control. These biophysical

networks display the same rich character as those en-

countered in process systems engineering: multivari-

able interactions, complex dynamics, and nonlinear

behavior. Examples are drawn from gene regulatory

networks, as well as from protein signal transduction

networks, with an emphasis on the role of feedback. A

glossary of key technical terms is provided at the end

of the chapter.

23.1 SYSTEMS BIOLOGY

Biophysical networks are remarkably diverse, cover a

wide spectrum of scales, and are characterized by a

range of complex behaviors. These networks have at-

tracted a great deal of attention at the level of gene reg-

ulation, where dozens of input connections may

characterize the regulatory domain of a single gene in a

eukaryote, as well as at the protein level, where hun-

dreds to thousands of interactions have been mapped in

protein interactome diagrams that illustrate the poten-

tial coupling of pairs of proteins (Campbell and Heyer,

2007; Barabasi, 2004). However, these networks also

exist at higher levels, including the coupling of individ-

ual cells via signaling molecules, the coupling of organs

via endocrine signaling, and, ultimately, the coupling of

organisms in ecosystems. The biochemical notion of sig-

naling is discussed in Section 23.3. To elucidate the

mechanisms employed by these networks, biological

experimentation and intuition by themselves are insuffi-

cient. Instead, investigators characterize dynamics via

mathematical models and apply control principles, with

the goal of guiding further experimentation to better

understand the biological network (Kitano, 2002). In-

creased understanding can facilitate drug discovery and

therapeutic treatments.

A simple example that illustrates the roles of feed-

back and feedforward control in nature is the heat

shock response exhibited by simple bacteria (El-Samad

et al., 2006), as illustrated in Fig. 23.1. When the organ-

ism experiences an increase in temperature, it leads to

the misfolding of protein, which disrupts a number of

metabolic processes. One of the immediate effects of a

heat disturbance is the feedforward activation of a

component, �32, which turns on the transcription

process for a pair of genes (FtsH and DnaK) that facili-

tates the repair mechanism for a misfolded protein. In

particular, the FtsH gene is a protease, which catalyzes

the destruction of the improperly folded protein. In

parallel, and independently, the protein product of one

of those genes (DNAK) monitors the state of protein

misfolding. It binds to �32 and releases � 32 when mis-

folded protein is detected, leading to feedback activa-

tion of DnaK transcription.

A second example of networked biological control is

the circadian clock, which coordinates daily physiologi-

cal behaviors of most organisms. The word circadian
comes from the Latin for “approximately one day,”

and the circadian clock is vital to regulation of meta-

bolic processes in everything from simple fungi to hu-

mans. The mammalian circadian master clock resides

in the hypothalamus region of the brain (Reppert and

Weaver, 2002). It is a network of multiple autonomous

noisy oscillators, which communicate via neuropeptides

to synchronize and form a coherent oscillator (Herzog 

et al., 2004; Liu et al., 2007). At the core of the clock is a

gene regulatory network, in which approximately six

classes of genes are regulated through an elegant array of



time-delayed negative feedback circuits (see Figure

23.2, which illustrates two of those six gene classes).

The activity states of the proteins in this network are

modulated (activated/inactivated) through a series of

chemical reactions, including phosphorylation and

dimerization. These networks exist at the subcellular

level. Above this layer is the signaling that leads to a

synchronized response from the population of thou-

sands of clock neurons in the brain. Ultimately, this

coherent oscillator then coordinates the timing of daily

behaviors, such as the sleep/wake cycle. An interesting

property of the clock is that, under conditions of con-

stant darkness, the clock free-runs, with a period of ap-

proximately 24 h (i.e., “circa”), such that its internal

time, or phase, drifts away from that of its environ-

ment. However, in the presence of an entraining cue

(i.e., forcing signal, such as the rising and setting of the

sun), the clock locks on to the period of that cue (Boulos

et al., 2002; Dunlap et al., 2004; Daan and Pittendrigh,

1976). This gives rise to a precise 24-h period for the

oscillations in protein concentrations for the feedback

circuit in Fig. 23.2.

The Central Dogma tenet that most students learn

in high school biology is a good starting point to un-

derstand these complex networks. Information in the

cell is encoded in the DNA, and that information is

expressed by the gene to produce messenger RNA.

The mRNA is translated into a protein, which is one

of the key building blocks of cells and which plays a

critical role in cellular regulation. This form of the

Central Dogma suggests a serial process, or a feedfor-

ward process, in which the genetic code influences

the outcome (protein level and protein function). In

some of the early publicity surrounding the Human

Genome project, this type of logic was pervasive, and

there was an understanding in some circles that the

“parts list” (genetic code) would illuminate the cause

of diseases. An engineer immediately recognizes the

flaw in this logic: by analogy, if one were provided

with the raw materials list for an aircraft (sheet

metal, nuts, bolts, rivets, etc.), it would be an impossi-

ble leap to conclude anything about the principles of

aerodynamics. Critical missing elements are the man-

ner in which the parts are arranged into a network

and, more important, how the components are con-

trolled (or regulated). The same reasoning applies

equally to biological networks as well, and this notion

of the systems perspective has driven current research

in systems biology.

According to the Central Dogma tenet, the addi-

tional layers of control and regulation that are men-

tioned in the preceding paragraph can be incorporated

schematically, as shown in Fig. 23.3. Feedback control

plays a key role in (i) regulation of the transcription

event; (ii) processing of the RNA, including its stability

and potential silencing via RNA interference; (iii) reg-

ulation of the ribosomal machinery that accomplishes

translation; and (iv) modulation of the activity state 

of protein, through, for example, degradation, confor-

mation changes, and phosphorylation. Recalling the

circadian clock schematic in Fig. 23.2, the process of
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Figure 23.1 Feedback and feedforward control loops that

regulate heat shock in bacteria (modified from El-Samad,

et al., 2006) (positive feedback is common in biological

systems).

Figure 23.2 The gene regulatory circuit

responsible for mammalian circadian rhythms

(by convention, italics and lowercase refer to

genes, uppercase refers to proteins).
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controlling the concentration of a phosphorylated form

of the PER protein can be broken down into each of

the elementary steps indicated by the Central Dogma

schematic in Fig. 23.3.

Systems biology holds great promise to revolutionize

the practice of medicine, enabling a far more predictive

and preventative capability (Hood et al., 2004). As sci-

entists and engineers begin to understand the complex

networks of genes and proteins that are regulated

through feedback and feedforward control, it is possible

to develop novel therapies through systematic modifica-

tion of these closed-loop systems. These modification

sites are referred to as targets, and they are opportuni-

ties for the design of drugs by the pharmaceutical sec-

tor. A drug may target a particular gene, or a protein,

or an activity state of a protein (e.g., phosphorylated

form), suggesting that there are multiple intervention

points in the Central Dogma process, as depicted in 

Fig. 23.3. In control terminology, they are potential

manipulated variables to restore a healthy state to the

network. Likewise, medical scientists and engineers are

looking for markers that reveal the pattern of a disease

in the signature of the network response. Again, they

are understood in control terms as novel sensors that

form the basis of an inferential strategy to monitor the

status of an unmeasurable disease state. Just as process

control engineers test the efficacy of their control system

designs through simulation, systems biologists evaluate

these new drug targets through extensive simulations of

patient populations.

23.2 GENE REGULATORY CONTROL

As described in the previous section, genes are regu-

lated through complex feedback control networks.

These networks exhibit a remarkable degree of 

robustness, because the transcription of critical genes

is reliable and consistent, even in the face of distur-

bances from both within the cell and external to the

organism. One of the very compelling features of

gene regulatory networks is the recurring use of 

circuit elements that occur in engineering networks.

It has been shown that groups of two to four genes

exhibit recurring connection topologies, so-called

motifs, which have direct analogs in digital electronic

circuits (several examples are illustrated in Fig. 23.4).

Thus, nature employs these fundamental building

blocks in constructing a wide array of gene regulatory

networks.

There are a couple of technical terms associated

with gene regulatory networks that require explana-

tion. A gene is a portion of the DNA sequence of an

organism, which has two primary subregions that are

relevant for feedback control: (i) the regulatory or

noncoding region can be considered as the input for

transcription feedback, and (ii) the coding region de-

termines the products of the expression process, in

other words, the output of transcription. The noncod-

ing region can be further divided into discrete regions

of separate regulation, called promoters, to which

transcription factors bind, leading to activation or inhi-

bition of the expression of the gene (the transcription

process). The combination of transcription factors and

promoter regions are the controller for the gene tran-

scription process.

There are three dominant network motifs found 

in E. coli (Shen-Orr et al., 2002): (i) a feedforward loop,

in which one transcription factor regulates another 

factor, and, in turn, the pair jointly regulates a third

transcript factor; (ii) a single-input multiple-output

(SIMO) block architecture; and (iii) a multiple-input

multiple-output (MIMO) block architecture, referred to

as a densely overlapping regulon by biologists.
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Figure 23.3 The layers of feedback control in the Central Dogma (modified from Alberts

et al., 1998)
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23.2 Gene Regulatory Control 473

A completely different organism, S. cerevisiae, has six

closely related network motifs (Lee et al., 2002): (i) an

autoregulatory motif, in which a regulator binds to the

promoter region of its own gene; (ii) a feedforward

loop; (iii) a multicomponent loop, consisting of a feed-

back closed-loop with two or more transcription factors;

(iv) a regulator chain, consisting of a cascade of serial

transcription factor interactions; (v) a single-input mul-

tiple-output (SIMO) module; and (vi) a multiple-input

multiple-output (MIMO) module. These motifs are

illustrated in Fig. 23.4.

In effect, these studies prove that, in both eukary-

otic and prokaryotic systems, cell function is con-

trolled by complex networks of control loops, which

are cascading and interconnected with other (tran-

scriptional) control loops. The complex networks that

underlie biological regulation appear to be constructed

of elementary systems components, not unlike a digital

circuit. This lends credibility to the notion that analysis

tools from process control are relevant in systems 

biology.

Some of the analogies between process control con-

cepts and biological control concepts are summarized

in Table 23.1, at the level of gene transcription. Keep in

mind that there are many levels of analysis in biological

circuits, and one can draw comparisons to engineering

circuits at each of these levels.

Table 23.1 Analogies between process control concepts and

gene transcription control concepts

Process Control Concept Biological Control Analog

Sensor Concentration of a protein

Set point Implicit: equilibrium 

concentration of protein

Controller Transcription factors

Final control element Transcription apparatus; 

ribosomal machinery for 

protein translation

Process Cellular homeostasis

EXAMPLE 23.1

The control strategy of gene regulatory circuits can often be

approximated using simple logic functions, much like the

functions employed in Chapter 18 for batch recipe control.

Consider the logic underlying the regulation of the lacZ gene,

which is involved in sugar metabolism (Ptashne and Gann,

2002). This gene codes for the enzyme �-galactosidase, which

is responsible for cleaving lactose, a less efficient source of

energy for a bacterium than the preferred glucose supply.

The state of the gene (activated or inhibited) is determined

by the transcription factors that bind to the regulatory

domain of the gene. One of those transcription factors,

catabolite activator protein (CAP), binds to the appropriate

promoter domain when glucose is absent and lactose is

present, leading to the activation of lacZ. The other

transcription factor, rep (short for Lac repressor), binds to

the appropriate promoter domain in the absence of lactose.

Once bound, rep inhibits the expression of the gene. If

neither rep nor CAP is present, you may assume that only a

very small (basal) rate of gene expression occurs.

(a) Develop a logic table for the permutations in outcome

(transcription of gene lacZ) as a function of the two input

signals, CAP and rep.

(b) Write a simple logic rule for the expression of the lacZ
gene as a function of the presence of lactose and glucose

(ignore the basal state).

SOLUTION

(a) The logic table is given in Table 23.2.

Regulator chain

Autoregulation

G1

TF1

Multi-component
loop

G1

TF1

TF2

G2

Feedforward
loop

G1TF1

TF2

G2

SIMO module

TF1

G1 G2 G3

MIMO module

TF1 TF2

G1 G2 G3

TF1 G1 TF2 G2 TF3 G3

Figure 23.4 Examples of circuit motifs in yeast (adapted

from Lee et al., 2002). The rectangles denote promoter re-

gions on a gene (G1, G2, etc.), and the circles are transcrip-

tion factors (TF1, TF2, etc.).

Table 23.2 Logic table for activity state of gene lacZ as a

function of input signals CAP and rep

CAP rep lacZ state

� � off

� � basal

� � activated

� � off
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(b) A simple rule for the expression logic is given as:

lacZ � lactose AND (NOT(glucose))

because the gene (and its enzyme product) are only required

when the primary sugar source (glucose) is not present and

the secondary source (lactose) is present.

23.2.1 Circadian Clock Network

Recall from the previous section that the circadian

clock orchestrates a number of important metabolic

processes in an organism. It does this by regulating the

concentration of key proteins in a cycle manner, with a

period of (approximately) 24 h. Consider a simplified

model of the Drosophila melanogaster circadian clock

involving two key genes: the period gene (denoted per)

and the timeless gene (denoted tim). Those genes are

transcribed into mRNA, exported from the nucleus,

and translated into their respective proteins (denoted

in Fig. 23.5 by the uppercase convention as PER and

TIM). The protein monomers form a dimer, and the

dimers of both PER and TIM combine to form a het-

eromeric complex that reenters the nucleus and sup-

presses the rate of transcription of the two genes via

negative feedback. The kinetic mechanisms for the

phosphorylation events are assumed to be Michaelis-

Menten form, and the kinetic mechanism for gene 

regulation (inhibition) follows a Hill mechanism (with

a Hill coefficient of 2).

For the assumptions made by Tyson et al. (1999), the

two genes can be lumped together, as well as their cor-

responding proteins and the nuclear and cytoplasmic

forms of the dimer. Finally, assuming rapid equilibrium

between the monomer and dimer, a second-order set of

balances can be developed for the mRNA state M and

the protein state P. The resulting pair of differential

equations captures the dynamics of the feedback-

controlled circuit:

(23-1)

(23-2)

An additional algebraic relationship introduces a more

complex dependence of the transcription rate on the

protein concentration P:

(23-3)

The model parameters and their definitions are a result

of the work of Tyson et al. (1999) and are summarized

in Table 23.3.

q = 
2

1 + 21 + 8KeqP

 
dP
dt

 = �pM 
kp1Pq + kp2P

Jp + P
 -  kp3P

 
dM
dt

  =  
�m

1 + (P(1 - q)>2Pcrit)
2
 -  kmM
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Figure 23.5 Schematic of negative feedback control of

Drosophila circadian clock (adapted from Tyson et al., 1999):

detailed system (top), and simplified model (bottom).
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Table 23.3 Parameter values for circadian clock circuit in 

Figure 23.5 (Cm denotes transcript concentration and Cp de-

notes protein concentration).

Parameter Value Units Description

vm 1 Cmh�1 Maximum rate of mRNA 

synthesis

km 0.1 h�1 First-order constant for 

mRNA degradation

vp 0.5 CpCmh�1 Rate constant for 

translation of mRNA

kpl 10 Cph�1 Vmax for monomer 

phosphorylation

kp2 0.03 Cph�1 Vmax for dimer 

phosphorylation

kp3 0.1 h
�1 First-order rate constant 

for proteolysis

keq 200 Cp
�1 Equilibrium constant for 

dimerization

Pcrit 0.1 Cp Dimer concentration at 

half-maximum 

transcription rate

Jp 0.05 Cp Michaelis constant for 

protein kinase
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23.2 Gene Regulatory Control 475

Using a computer package, such as Simulink/MAT-

LAB, the gene regulatory circuit using these defined

parameters can be simulated with initial values of M
and P equal to [2.0; 2.0]. A 100-h simulation is shown in

Fig. 23.6; the period can be calculated from either the

mRNA (M) or the Protein (P) trajectory (e.g., time be-

tween peaks) and is 23.2 h (i.e., approximately 24 h or

“circadian”).

A common property of biological closed-loop cir-

cuits is that they exhibit remarkable robustness to dis-

turbances and fluctuations in operating conditions.

For example, the clock should maintain a nearly 24-hr

period, even though the organism is exposed to tem-

perature changes, which affect the rates of biochemi-

cal reactions. The model circadian clock can be

simulated by perturbing values of the kinetic con-

stants. The same clock simulation is evaluated for the

following values of the parameter �m: [1.0; 1.1; 1.5;

2.0; 4.0]. The period of the clock lengthens as �m is in-

creased, as shown in Fig. 23.7. The period increases as

follows: [23.2; 23.5 25.5; 26.4] corresponding to the

first four values of �m. At the extreme value of 4.0, os-

cillations are no longer observed, and the system set-

tles to a stable equilibrium. The stability of the

oscillations is quite remarkable for such large pertur-

bations in �m (over 100%).

Another important feature of the circadian clock is

its ability to entrain (i.e., track) an external signal

(sunlight), so that the period of the oscillations of

mRNA and Protein match exactly the period of the

external signal. In this manner, the organism’s clock

is reset to a period of precisely 24 h. Tyson et al.

(1999) show that this can be simulated in the present

model by switching the value of Keq to emulate 

dark–light cycles (i.e., using a square wave with even

intervals of light and dark in a 24-h period). In the

fly, sunlight appears to modulate the rate of degrada-

tion of one of the key proteins in the circuit. This

can be achieved in the same simulation model 

by altering Keq, between 100 and 200, and observing

the period of the driven system. Fig. 23.8 illustrates

that the oscillations in mRNA and Protein do indeed

exhibit a period equal to the forcing signal (in this

case, 20 h).

Figure 23.6 Simulation of the circadian clock model.
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Figure 23.7 Simulation of circadian clock model for varying

values of �m [1.0 (solid), 1.1 (dashed), 1.5 (dash-dot), 2.0 (dot-

ted), 4.0 (asterisk)].

Figure 23.8 Simulation of circadian clock model for entrain-

ing signal with period of 20 h.
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23.3 SIGNAL TRANSDUCTION
NETWORKS

The gene regulatory networks of the previous section

are often activated by cues or signals that originate

from outside the cell. This is of tremendous importance

for unicellular organisms that must sense the environ-

ment for survival, but it is also of critical importance

for multicellular organisms that require robust coordi-

nated behavior from, for example, a group of cells that

constitute a tissue or an organ. A particularly relevant

set of such cues are ligands (from the Latin “to bind”),

which are molecules that bind to proteins that typically

span the surface membrane of a cell. These ligands,

called receptors, induce particular responses within the

cell, depending on the conditions. They include a number

of interesting stimulus-response mechanisms (Lauffen-

burger and Linderman, 1993):

• Growth factors n cell division

• Necrosis factor n programmed cell death (apoptosis)

• Chemoattractant n chemotaxis

• Insulin n glucose uptake

• Neurotransmitter n secretion by nerve cell

• Extracellular matrix (ECM) protein n adhesion

Once the ligand binds to the receptor, it initiates a series

of biochemical reactions that induce a short-term re-

sponse (e.g., phosphorylation state of an intermediate

protein) and/or a longer-term response as a result of a

regulated gene response. These networks respond rela-

tively rapidly, exhibiting dynamics with characteristic time

scales of seconds to minutes. A cell is often presented

with multiple, competing cues, and it processes that infor-

mation in rich signal transduction networks, to result in

the appropriate cellular fate, depending on the context.

In this section, we highlight several signal transduction

cascades, to illustrate the rich processing dynamics mani-

fested by these networks.

23.3.1 Chemotaxis

The process of chemotaxis is the directed motion of a

cell or cellular organism toward a chemical source, typ-

ically a food molecule. This mechanism is also invoked

in the response to a detected toxin (i.e., motion away

from that source) and is involved in more complex

processes, such as development. The process is initiated

by the detection of a ligand (e.g., a food molecule) at

the cell surface, which invokes a signal transduction

cascade and results in the alteration of the motor appa-

ratus responsible for moving the cell.

A simplified version of the biochemical pathway that

underlies chemotaxis in E. coli is shown in Fig. 23.9. The

binding of an attractant molecule (ligand) to the recep-

tor complex CheW-CheA (denoted as W-A) induces the

phosphorylation of protein CheY (Y), and the phospho-

rylated form (Yp) invokes a tumbling motion from the

bacteria’s flagella. This tumbling motion allows the or-

ganism to reorient and search the surrounding space;

otherwise, the organism proceeds in a straight run. The

ability of CheW-CheA to phosphorylate CheY depends

on the methylation state of that complex, which is fine-

tuned by the proteins CheR (R) and the phosphorylated

form of CheB (Bp), as illustrated in the figure. Feedback

is evident in Fig. 23.9, because CheB phosphorylation is

mediated by the CheW-CheA complex.
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Figure 23.9 Schematic of chemo-

taxis signaling pathway in E. coli
(adapted from Rao et al., 2004).
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23.3 Signal Transduction Networks 477

The signal transduction system that mediates chemo-

taxis exhibits a type of adaptation in which the response

to a persistent stimulus is reset to the pre-stimulus

value, thereby enabling an enhanced sensitivity. Several

mechanistic explanations can be postulated for this ro-

bust behavior, including the following: (i) precise fine-

tuning of several parameters to yield a consistent (robust)

response under varied conditions, or (ii) inherent regula-

tion that yielded this robust behavior. Utilizing process

control principles, it has been demonstrated that the regu-

latory system exploits integral feedback control to achieve

the robust level of adaptation exhibited in chemotaxis

(Yi et al., 2000). The chemotaxis network can be reduced

to the simple block diagram in Fig. 23.10, in which u de-

notes the chemoattractant, y denotes the receptor activity,

and –x denotes the methylation level of the receptors. It

is left as an exercise to show that this circuit ensures that

perfect adaptation is achieved (i.e., the receptor activity

always resets to zero asymptotically).

This understanding suggests that many seemingly

complex biological networks may employ redundancy

and other structural motifs or modules to achieve rela-

tively simple overall system behavior.

23.3.2 Insulin-Mediated Glucose Uptake

Muscle, liver, and fat cells in the human body take up

glucose as an energy source in response to, among

other signals, the hormone insulin, which is secreted by

the pancreas. As discussed in Chapter 22, the release of

insulin is regulated in a feedback manner by the blood

glucose level. In Type 2 diabetes, the insulin signal

transduction network is impaired such that insulin does

not lead to glucose uptake in these cells. A simplified

model of the insulin signaling network can be decom-

posed into three submodules, as shown in Fig. 23.11.

The first submodule describes insulin receptor dynam-

ics: insulin binds to insulin receptor, causing subse-

quent receptor autophosphorylation. The receptor can

also be recycled, introducing additional dynamics in the

network. The second submodule describes the phos-

phorylation cascade downstream from the insulin re-

ceptor. The final submodule describes the activation of

movement and fusion of specialized glucose transporter

(GLUT4) storage vesicles with the plasma membrane

by the intermediate proteins from the second module.

These GLUT4 transporters allow glucose molecules to

enter the cell. Each of the three modules contains sub-

modules that consist of layers of feedback.

23.3.3 Simple Phosphorylation 
Transduction Cascade

In signal transduction, a receptor signal is processed in a

cascaded pathway, to yield a cellular response. For the

example considered here, the processing consists of a

sequence of kinase- and phosphatase-catalyzed reaction

steps, consisting of phosphorylation and dephosphory-

lation, respectively. The key performance attributes of

such a system are (i) the speed at which a signal arrives

to the destination, (ii) the duration of the signal, and

(iii) the strength of the signal. Under conditions of weak

activation (low degree of phosphorylation), the individ-

ual steps in the signal transduction cascade can be mod-

eled as a set of linear ODEs (Heinrich et al., 2002):

(23-4)

where 	i is a pseudo first-order rate constant for phos-

phorylation, �i is the rate constant for dephosphoryla-

tion, and Xi is the phosphorylated form of the kinase

(i). Assume that the cascade consists of four stages

(levels of phosphorylation), that the corresponding rate

constants are equal for all stages (	i � 	; �i � �), and

that the receptor inactivation is approximated as an ex-

ponential decay with time constant 1/
 (see Fig. 23.12).

The resulting cellular response can be written in the

Laplace domain as,

(23-5)Y(s) = a
s

1

s + 1

ba
	4

(s + �)4
bR(s)

dXi

dt
  = 	iXi - 1 - �iXi

+
+

+
+ K

u y

y0

–1
s

–x

Figure 23.10 Integral control feedback circuit representation

of chemotaxis (adapted from Yi et al., 2000).

Cell membrane 

Insulin

CheZ

Receptor

Signal
transduction

cascade

Glucose
transporter

biomechanics

GLUT4

Insulin
receptor

dynamics 

Figure 23.11 Simplified insulin signaling pathway for glucose

uptake.
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where R(s) is the receptor input and Y(s) is the cellular

response.

If the signaling time is defined as the average

time to activate a kinase, a suitable expression in the

time domain for this quantity is:

(23-6)Tsig = 
L

q

0

ty(t)dt

L

q

0

y(t)dt

Tsig
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Receptor (R)

Cellular response

Kinase1 Kinase1~P(X1)

�

�1

�1

Kinase2 Kinase2~P(X2)
�2

�2

Kinasen Kinasen~P(Xn)
�n

�n

Figure 23.12 Schematic of fourth-order signal transduction

cascade for Example 23.3, combined with first-order receptor

activation (adapted from Heinrich et al., 2002).

where y(t) is the unit step response (R(s) � 1/s in (23-5)).

It is possible to derive the analytical expression for the

signaling time for this network. Recalling a few rules

from Laplace transforms (see Appendix A):

(23-7)

and

(23-8)

Then the following expression for the signal time can

be derived:

(23-9)

which simplifies to:

(23-10)

Notice that the average time through the network (i.e.,

the signaling time) is not dependent on the rate of

phosphorylation (�).

Tsig = 
1

�
 +  

4

�

= 
[��4(s + �)-2(s + �)-4  

+
 4��4(s + �)-1(s + �)-5]s = 0

�4>�4

Tsig = 
A- 

d
ds Y(s) B s = 0

Y(0)

�¢
L

q

0

f(t )dt≤  = F(s = 0)

�(tf(t)) = -

d
ds

 F(s)

SUMMARY

In this chapter, a number of biological circuit diagrams

have been introduced that illustrate the rich array of

dynamics and feedback control that exist in all living

organisms. Two particular biological processes were

considered: the regulation of gene transcription and the

protein signal transduction that characterizes cellular

stimulus-response mechanisms. The recurring motifs of

feedback and feedforward control motivated the appli-

cation of process control analysis to these problems, to

shed light on both the healthy functioning state as well

as to promote the investigation of therapies for cases

where the natural circuit is impaired (i.e., a disease state).

The rapidly developing field of systems biology con-

tinues to make great advancements in the area of med-

ical problems, and the increased understanding of the

biological circuits underlying diseases will likely lead to

novel therapeutic strategies, as well to the discovery of

new drugs. More information is available in more spe-

cialized books, including those of Klipp et al. (2005),

Palsson (2006), and Alon (2007).

GLOSSARY

Eukaryote: an organism that is comprised of cells (or

possibly a single cell, as in yeast) that are divided into

substructures by membranes, notably containing a

nucleus. Examples include animals, plants, and fungi.

Kinase: an enzyme that catalyzes the transfer of phos-

phate group to a substrate, leading to phosphorylation

of that substrate.

Prokaryote: an organism that is comprised of a single

cell that does not contain a separate nucleus. Examples

include bacteria and archae.

Promoter: a region of a DNA involved in the regula-

tion of transcription of the corresponding gene.
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EXERCISES

23.1 In this exercise, treat the components as simple (reac-

tive) chemical species and perform the appropriate (dynamic)

material balance. Assume that a messenger RNA (mRNA) is

produced by a constant (basal) expression rate from a partic-

ular gene. In addition, assume that the mRNA degrades ac-

cording to a first-order decay rate.

(a) Write the equation for the dynamics of the mRNA con-

centration as a function of the expression rate (G0) and the

decay rate constant (kd
mRNA).

(b) Assume that each mRNA molecule is translated to form

p copies of a protein product, P. Furthermore, the protein is

subject to first-order degradation, with a decay rate constant

(kP
mRNA). Write the equation for the dynamics of the protein

concentration.

(c) Assume that the system has been operating for some

time at a constant gene expression rate (G0), and then the ex-

pression rate changes instantaneously to a value G1. Derive

an analytical expression for the transient responses for

mRNA and P.

23.2 Consider the block diagram in Fig. E23.2 of the multi-

ple feedback loops involved in the Central Dogma

schematic from Fig. 23.3, namely genetic regulation (C1),

translational regulation (C2), and enzyme inhibition (C3).

Assume that the processes P1, P2, and P3 obey first-order

dynamics, with corresponding gains and time constants

(Ki, �i).

(i) Derive the transfer function from the external input (u)
to the output (y) for each of the three cases shown in

Figure E23.2 (a), (b), (c).

(ii) Assume that the feedback mechanisms operate via pro-

portional control with corresponding controller gains

(Kci). Derive the closed-loop transfer function from the

external input (u) to the output (y) in block diagram (b).

(iii) Consider a simplified biological circuit in which only 

genetic regulation is active (C1). Derive the closed-loop

transfer function and comment on the key differences

between this transfer function and the one from part (b).
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(iv) Give several reasons why the natural feedback architec-

ture with all three controllers operating is more effective

than the control architecture in part (c).

23.3 As a specific biological example for Exercise 23.2 and

Figure E23.2(b),* the synthesis of tryptophan can be de-

scribed by the following set of material balances:

where k1, k2, k3, and k4 represent kinetic rate constants for the

synthesis of free operator, mRNA transcription, translation,

and tryptophan synthesis, respectively. Parameters Ot, �, kd1,

and kd2 refer to total operator site concentration, specific

growth rate of E. coli, degradation rate constants of free op-

erator OR, and mRNA, respectively. E and T represent con-

centrations of enzyme anthranilate synthase and tryptophan,

respectively, in the cell. Kg and g are the half saturation con-

stant and kinetic constant for the uptake of tryptophan for

protein synthesis in the cell. Model parameter values are as

follows: k1 � 50 min–1; k2 � 15 min–1; k3 � 90 min–1; k4 �
59 min–1; Ot � 3.32 nM; kd1 � 0.5 min–1; kd2 � 15 min–1; � �
0.01 min–1; g � 25 �M. min–1; Kg � 0.2 �M. Here, controllers

C1(T), C2(T), and C3(T) represent repression, attenuation,

and inhibition, respectively, by tryptophan and are modeled

d
dt

[T] =  k4C3[T][E] - g 
[T]

[T] + Kg
 -�[T]

d
dt

[E] =  k3 [mRNA] - �[E]

d
dt

 [mRNA] =  k2[OR]C2[T] - kd2[mRNA] - �[mRNA]

d
dt

 [OR] =  k1[Ot]C1[T] - kd1[OR ]- �[OR]

by a particular form of Michaelis-Menten kinetics (the Hill

equation) as follows:

, ,

Ki,1, Ki,2, and Ki,3 represent the half-saturation constants,

with values Ki,1 � 3.53 �M; Ki,2 � 0.04 �M; Ki,3 � 810 �M,

whereas sensitivity of genetic regulation to tryptophan con-

centration, �H � 1.92.

(a) Draw a block diagram, using one block for each of the

four states. Comment on the similarities between this dia-

gram and schematic (b) in Fig. E23.2.

(b) Simulate the response of the system to a step change in

the concentration of the medium (change g from 25 to 0 �M).

(c) Calculate the rise time, overshoot, decay ratio, and set-

tling time for the closed-loop response.

(d) Omit the inner two feedback loops (by setting C2 and C3

to 0) and change the following rate constants: Ki,1 � 8 
 10–8

�M; �H � 0.5. Repeat the simulation described in part (b),

and obtain the new closed-loop properties for this network

(compared to part (c)).

23.4 Consider Section 23.3.3, where the dynamic properties of

a signal transduction were analyzed. Two properties of inter-

est are the signal duration and the amplitude of the signal.

(a) The following definition is used for signal duration:

where Tsig was defined in Section 23.3.3. Use Laplace trans-

forms to derive an expression for the signal duration as a

function of the parameters in the phosphorylation cascade.

Tdur = 

d

L

q

t = 0

t2y(t)dt

L

q

t = 0

 y(t)dt

 - T 2
sig

C3(T ) = 
Ki,3

1.2

Ki,3
1.2 

+
 T1.2

C2(T ) = 
Ki,2

1.72

Ki,2
1.72 

+
 T1.72

C1(T) = 
Ki,1

�H

Ki,1
�H 

+
 T �H
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(a)

(b)

(c) Figure E23.2

*The authors acknowledge Profs. Bhartiya, Venkatesh, and Gayen

for their help with formulating this problem.
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(b) Define the signal amplitude as:

Use Laplace transforms to derive an expression for the signal

amplitude as a function of the parameters in the phosphoryla-

tion cascade.

23.5 Consider the simplified version of the chemotaxis circuit

in Fig. 23.10.

(a) Derive the conditions for the process gain K that ensure

that the receptor activity is always reset to zero and even for

the case of a persistent ligand signal.

(b) Show that the closed-loop transfer function from the

ligand to the receptor activity is equivalent to a first-order

transfer function with numerator dynamics.

(c) Comment on the biological relevance of the result in

part (b), particularly for a ligand signal that is fluctuating.

23.6 An interesting motif in biological circuits is a switch, in

which the system can change from (effectively) one binary

state to another. An analysis of a continuous reaction net-

work reveals a rise to a switchlike response (also referred to

as ultrasensitivity). Consider interconversion of a protein

from its native state P to an activated form P*, catalyzed by

the enzymes E1 and E2:

P + E1 4  PE1 4  P* + E1 4  P* + E2 :  P*E2 :  P + E2

A =  
L

q

t = 0

y(t)dt

2Tdur

(a) Assume that all reaction steps obey mass-action kinetics.

What is the steady-state dependence of P* as a function of the

concentration of E1? (Assume that total amount of E1 E2, and P
are all constant and that P is in excess compared to E1 and  E2.)

(b) Alternate starting point for problem: you should be able

to rearrange the solution as follows:

where V1 is proportional to the total E1 in the system, E2 is

proportional to the total V2 in the system, PT is the total pro-

tein concentration (in all forms), and K1 and K2 are suitable

combinations of the rate constants for the reactions previ-

ously described.

For K1 � 1.0, K2 � 1.0, plot the steady-state locus of solu-

tions for (P*/PT) versus V1/V2.

(c) Assume that the two enzymes operate in a saturated

regime, i.e., the reactions follow zero-order kinetics with re-

spect to the enzymes. Use the expression from part (b) to plot

the steady-state locus for this extreme situation (i.e., K1 � 0,

K2 � 0).

(d) Comment on the difference in shape of the gain functions

in parts (b) and (c). Based on the initial problem description,

explain how biology can produce switchlike behavior in this

system.

V1

V2

 =  
P*/PT11 -  P*/PT + K12

11 -  P*/PT21P
*/PT + K22
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