
Chapter 21

Process Monitoring

In industrial plants, large numbers of process variables

must be maintained within specified limits in order for

the plant to operate properly. Excursions of key vari-

ables beyond these limits can have significant conse-

quences for plant safety, the environment, product

quality, and plant profitability. Earlier chapters have

indicated that industrial plants rely on feedback and

feedforward control to keep process variables at or

near their set points. A related activity, process moni-
toring, also plays a key role in ensuring that the plant

performance satisfies the operating objectives. In this

chapter, we introduce standard monitoring techniques

as well as newer strategies that have gained industrial

acceptance in recent years. In addition to process moni-

toring, the related problem of monitoring the perfor-

mance of the control system itself is also considered.

The general objectives of process monitoring are:

1. Routine Monitoring. Ensure that process variables

are within specified limits.

2. Detection and Diagnosis. Detect abnormal process

operation and diagnose the root cause.

3. Preventive Monitoring. Detect abnormal situa-

tions early enough that corrective action can be

taken before the process is seriously upset.

Abnormal process operation can occur for a variety of

reasons, including equipment problems (heat exchanger

fouling), instrumentation malfunctions (sticking control

valves, inaccurate sensors), and unusual disturbances

(reduced catalyst activity, slowly drifting feed composi-

tion). Severe abnormal situations can have serious con-

sequences, even forcing a plant shutdown. It has been

estimated that improved handling of abnormal situa-

tions could result in savings of $10 billion each year to

the U.S. petrochemical industry (ASM, 2009). Thus,

process monitoring and abnormal situation management

are important activities.

The traditional approach for process monitoring is to

compare measurements against specified limits. This limit
checking technique is a standard feature of computer

control systems and is widely used to validate measure-

ments of process variables such as flow rate, temperature,

pressure, and liquid level. Process variables are measured

quite frequently with sampling periods that typically are

much smaller than the process settling time (see Chapter

17). However, for most industrial plants, many important

quality variables cannot be measured on-line. Instead,

samples of the product are taken on an infrequent basis

(e.g., hourly or daily) and sent to the quality control labo-

ratory for analysis. Due to the infrequent measurements,

standard feedback control methods like PID control can-

not be applied. Consequently, statistical process control

techniques are implemented to ensure that the product

quality meets the specifications.

The terms statistical process control (SPC) and sta-
tistical quality control (SQC) refer to a collection of

statistically–based techniques that rely on quality control
charts to monitor product quality. These terms tend to be

used on an interchangeable basis. However, the term

SPC is sometimes used to refer to a broader set of statis-

tical techniques that are employed to improve process

performance as well as product quality (MacGregor,

1988). In this chapter, we emphasize the classical SPC

techniques that are based on quality control charts

(also called control charts). The simplest control chart, a

Shewhart chart, merely consists of measurements plotted

vs. sample number, and control limits that indicate the

upper and lower limits for normal process operation.

The major objective in SPC is to use process data and

statistical techniques to determine whether the process

operation is normal or abnormal. The SPC methodology

is based on the fundamental assumption that normal

process operation can be characterized by random varia-

tions about a mean value. If this situation exists, the

process is said to be in a state of statistical control (or in
control), and the control chart measurements tend to be

normally distributed about the mean value. By contrast,

frequent control chart violations would indicate abnor-

mal process behavior or an out-of-control situation.

Then, a search would be initiated to attempt to identify
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the root cause of the abnormal behavior. The root cause

is referred to as the assignable cause or the special cause
in the SPC literature, while the normal process variabil-

ity is referred to as common cause or chance cause. From

an engineering perspective, SPC is more of a monitoring

technique than a control technique because no auto-

matic corrective action is taken after an abnormal situa-

tion is detected. A brief comparison of conventional

feedback control and SPC is presented in Section 21.2.4.

More detailed comparisons are available elsewhere

(MacGregor, 1988; Box and Luceño, 1997).

The basic SPC concepts and control chart methodol-

ogy were introduced by Shewhart (1931). The current

widespread interest in SPC techniques began in the

1950s when they were successfully applied first in Japan

and then in North America, Europe, and the rest of the

world. Control chart methodologies are now widely

used in discrete-parts manufacturing and in some sec-

tors of the process industries, especially for the produc-

tion of semiconductors, synthetic fibers, polymers, and

specialty chemicals. SPC techniques are also widely

used for product quality control and for monitoring

control system performance (Shunta, 1995). The basic

SPC methodology is described in introductory statistics

texts (Montgomery and Runger, 2007) and books on

SPC (Ryan 2000; Montgomery, 2009).

SPC techniques played a key role in the renewed in-

dustrial emphasis on product quality that is sometimes

referred to as the Quality Revolution. During the 1980s,

Deming (1986) had a major impact on industrial man-

agement in North America by convincing corporations

that quality should be a top corporate priority. He ar-

gued that the failure of a company to produce quality

products was largely a failure in management rather

than a shortcoming of the plant equipment or employ-

ees. His success led to the establishment of many process

and quality improvement programs, including the Six
Sigma methodology that is considered in Section 21.3.

In this chapter, we first introduce traditional process

monitoring techniques (Section 21.1) that are based on

limit checking of measurements and process perfor-

mance calculations. In Section 21.2, the theoretical basis

of SPC monitoring techniques and the most widely used

control charts are considered. We also introduce process
capability indices and compare SPC with standard auto-

matic feedback control. Traditional SPC monitoring

techniques consider only a single measured variable at a

time, a univariate approach. But when the measured

variables are highly correlated, improved monitoring can

be achieved by applying the multivariate techniques that

are introduced in Section 21.4. In addition to monitoring

process performance, it can be very beneficial to assess

control system performance. This topic is considered in

Section 21.5.

Monitoring strategies have been proposed based on

process models, neural networks, and expert systems

(Davis et al., 2000; Chiang et al., 2001). However, these

topics are beyond the scope of this book.

21.1 TRADITIONAL MONITORING
TECHNIQUES

In this section, we consider two relatively simple but

very effective process monitoring techniques: limit

checking and performance calculations.

21.1.1 Limit Checking

Process measurements should be checked to ensure

that they are between specified limits, a procedure re-

ferred to as limit checking. The most common types of

measurement limits are (see Chapter 9):

1. High and low limits

2. High limit for the absolute value of the rate of

change

3. Low limit for the sample variance

The limits are specified based on safety and environ-

mental considerations, operating objectives, and equip-

ment limitations. For example, the high limit on a

reactor temperature could be set based on metallurgi-

cal limits or the onset of undesirable side reactions. The

low limit for a slurry flow rate could be selected to

avoid having solid material settle and plug the line.

Sometimes a second set of limits serves as warning limits.

For example, in a liquid storage system, when the level

drops to 15% (the low limit), a low-priority alarm sig-

nal could be sent to the operator. But when the level

decreases to 5% (the low-low limit), a high-priority

alarm would be generated for this more serious situa-

tion. Similarly, in order to avoid having the tank over-

flow, a high limit of 85% and a high-high limit of 95%

level could be specified. The high-high and low-low

limits are also referred to as action limits.

In practice, there are physical limitations on how

much a measurement can change between consecutive

sampling instants. For example, we might conclude that

a temperature in a process vessel cannot change by more

than 2 �C from one sampling instant to the next, based

on knowledge of the energy balance and the process dy-

namics. This rate-of-change limit can be used to detect an

abnormal situation such as a noise spike or a sensor fail-

ure. (Noise-spike filters were considered in Chapter 17.)

A set of process measurements inevitably exhibits

some variability, even for “steady-state operation.” This

variability occurs as a result of measurement noise, tur-

bulent flow near a sensor, and other process distur-

bances. However, if the amount of variability becomes
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unusually low, it could indicate an abnormal situation

such as a “dead sensor” or a sticking control valve. Con-

sequently, it is common practice to monitor a measure of

variability such as the variance or standard deviation of

a set of measurements. For example, the variability of a

set of n measurements can be characterized by the sam-
ple standard deviation, s, or the sample variance, s2,

(21-1)

where xi denotes the ith measurement and is the sam-

ple mean:

(21-2)

For a set of data, indicates the average value, while s
and s2 provide measures of the spread of the data.

Either s or s2 can be monitored to ensure that it is

above a threshold that is specified based on process

operating experience.

The flow rate data in Fig. 21.1 includes three noise

spikes and a sensor failure. The rate of change limit

would detect the noise spikes, while an abnormally low

sample variance would identify the failed sensor. After

a limit check violation occurs, an alarm signal can be

sent to the plant operator in a number of different

ways. A relatively minor alarm might merely be

“logged” in a computer file. A more important alarm

could be displayed as a flashing message on a computer

terminal and require operator acknowledgment. A crit-

ical alarm could result in an audible sound or a flashing

warning light in the control room. Other alarm options

are available, as discussed in Chapter 9.

21.1.2 Performance Calculations

A variety of performance calculations can be made to

determine whether the process and instrumentation are

working properly. In particular, steady-state mass and

energy balances are calculated using data that are 
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averaged over a period of time (for example, one hour).

The percent error of closure for a total mass balance

can be defined as

(21-3)

A large error of closure may be caused by an equip-

ment problem (e.g., a pipeline leak) or a sensor problem.

Data reconciliation based on a statistical analysis of the

errors of closure provides a systematic approach for

deciding which measurements are suspect (Romagnoli

and Sanchez, 2000).

Both redundant measurements and conservation

equations can be used to good advantage. A process

consisting of two units in a countercurrent flow config-

uration is shown in Fig. 21.2. Three steady-state mass

balances can be written, one for each unit plus an

overall balance around both units. Although the three

balances are not independent, they provide useful in-

formation for monitoring purposes. Figure 21.2 indi-

cates that the error of closure is small for the overall

balance but large for each individual balance. This sit-

uation suggests that the flow rate sensor for one of the

two interconnecting streams, q2 or q5, may be faulty.

Process performance calculations also are very useful

for diagnostic and monitoring purposes. For example, the

thermal efficiency of a refrigeration unit or the selectivity

of a chemical reactor could be calculated on a regular

basis. A significant decrease from the normal value could

indicate a process change or faulty measurement.

21.2 QUALITY CONTROL CHARTS

Industrial processes inevitably exhibit some variability in

their manufactured products regardless of how well the

processes are designed and operated. In statistical

process control, an important distinction is made be-

tween normal (random) variability and abnormal (non-

random) variability. Random variability is caused by the

cumulative effects of a number of largely unavoidable

phenomena such as electrical measurement noise, turbu-

lence, and random fluctuations in feedstock or catalyst

preparation. The random variability can be interpreted

as a type of “background noise” for the manufacturing

operation. Nonrandom variability can result from process

changes (e.g., heat exchanger fouling, loss of catalyst 
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Figure 21.1 Flow rate measurement.

Unit 1 Unit 2

q1

q6

q2

q5

q3

q4

Mass balances: Errors of closure
• Unit 1
• Unit 2
• Overall (1 & 2)

25%
–34%

4%
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activity), faulty instrumentation, or human error. As

mentioned earlier, the source of this abnormal variability

is referred to as a special cause or an assignable cause.

21.2.1 Normal Distribution

Because the normal distribution plays a central role in

SPC, we briefly review its important characteristics.

The normal distribution is also known as the Gaussian
distribution.

Suppose that a random variable x has a normal dis-

tribution with a mean � and a variance �2 denoted by

N(�, �2). The probability that x has a value between

two arbitrary constants, a and b, is given by:

(21-4)

where P(�) denotes the probability that x lies within the

indicated range and f(x) is the probability density func-

tion for the normal distribution:

(21-5)

The following probability statements are valid for the

normal distribution (Montgomery and Runger, 2007):

(21-6)

A graphical interpretation of these expressions is

shown in Fig. 21.3 where each probability corresponds

to an area under the f(x) curve. Equation 21-6 and

Fig. 21.3 demonstrate that if a random variable x is

normally distributed, there is a very high probability

(0.9973) that a measurement lies within 3� of the mean �.

This important result provides the theoretical basis

for widely used SPC techniques. Similar probability

statements can be formulated based on statistical tables

 P(� - 3� 6 x 6 � + 3�) = 0.9973

 P(� - 2� 6 x 6 � + 2�) = 0.9545

 P(� - � 6 x 6 � + �) = 0.6827

f(x) = 1

�22�
 exp c- 

(x - �)2

2�2
d

P(a 6 x 6 b) = 
L

b

a
 f(x)dx

for the normal distribution. For the sake of generality,

the tables are expressed in terms of the standard nor-
mal distribution, N(0, 1), and the standard normal vari-
able, z (x � �)/�.

It is important to distinguish between the theoretical

mean � and the sample mean . If measurements of a

process variable are normally distributed, N(�, �2), the

sample mean is also normally distributed. Of course, for

any particular sample, is not necessarily equal to �.

21.2.2 The Control Chart

In statistical process control, Control Charts (or Quality

Control Charts) are used to determine whether the

process operation is normal or abnormal. The widely used

control chart is introduced in the following example.

This type of control chart is often referred to as a 

Shewhart Chart, in honor of the pioneering statistician,

Walter Shewhart, who first developed it in the 1920s.

EXAMPLE 21.1

A manufacturing plant produces 10,000 plastic bottles per

day. Because the product is inexpensive and the plant opera-

tion is normally satisfactory, it is not economically feasible to

inspect every bottle. Instead, a sample of n bottles is ran-

domly selected and inspected each day. These n items are

called a subgroup, and n is referred to as the subgroup size.

The inspection includes measuring the toughness x of each

bottle in the subgroup and calculating the sample mean .

The control chart in Fig. 21.4 displays data for a 30-day pe-

riod. The control chart has a target (T), an upper control limit
(UCL), and a lower control limit (LCL). The target (or center-
line) is the desired (or expected) value for , while the region

between UCL and LCL defines the range of typical variability,

as discussed below. If all of the data are within the control

limits, the process operation is considered to be normal, or “in a

state of control.” Data points outside the control limits are con-

sidered to be abnormal, indicating that the process operation is

out of control. This situation occurs for the twenty-first sample.

A single measurement located slightly beyond a control limit is

not necessarily a cause for concern. But frequent or large chart

violations should be investigated to determine a special cause.
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Figure 21.3 Probabilities associated with the normal

distribution. From Montgomery and Runger (2007).
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advantage for hand calculations. However, the standard

deviation approach is now preferred because it uses all

of the data, instead of only two points in each subgroup.

It also has the advantage of being less sensitive to

outliers (i.e., bad data points). However, for small values

of n, the two approaches tend to produce similar control

limits (Ryan, 2000). Consequently, we will only consider

the standard deviation approach.

The average sample standard deviation for the N
subgroups is

(21-11)

where the standard deviation for the ith subgroup is

(21-12)

If the x data are normally distributed, then is related

to by

(21-13)

where c4 is a constant that depends on n (Montgomery

and Runger, 2007) and is tabulated in Table 21.1.

21.2.3 The s Control Chart

In addition to monitoring average process performance,

it is also advantageous to monitor process variability.

The variability within a subgroup can be characterized

by its range, standard deviation, or sample variance.

Control charts can be developed for all three statistics,

but our discussion will be limited to the control chart for

the standard deviation, the s control chart.
The centerline for the s chart is , which is the aver-

age standard deviation for the test set of data. The con-

trol limits are

(21-14)

(21-15)LCL = B3s

UCL = B4s

s
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1
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The concept of a rational subgroup plays a key role in

the development of quality control charts. The basic idea

is that a subgroup should be specified so that it reflects

typical process variability but not assignable causes.

Thus, it is desirable to select a subgroup so that a special

cause can be detected by a comparison of subgroups, but

it will have little effect within a subgroup (Montgomery,

2009). For example, suppose that a small chemical plant

includes six batch reactors and that a product quality

measurement for each reactor is made every hour. If the

monitoring objective is to determine whether overall

production is satisfactory, then the individual reactor

measurements could be pooled to provide a subgroup

size of n � 6 and a sampling period of 	t � 1 h. On the

other hand, if the objective is to monitor the perfor-

mance of individual reactors, the product quality data

for each reactor could be plotted on an hourly basis 

(n � 1) or averaged over an eight-hour shift (n � 8 and

	t � 8 h). When only a single measurement is made at

each sampling instant, the subgroup size is n � 1 and the

control chart is referred to as an individuals chart.
The first step in devising a control chart is to select a

set of representative data for a period of time when the

process operation is believed to be normal, rather than

abnormal. Suppose that these test data consist of N
subgroups that have been collected on a regular basis

(for example, hourly or daily) and that each subgroup

consists of n randomly selected items. Let xij denote the

jth measurement in the ith subgroup. Then, the sub-

group sample means can be calculated:

(21-7)

The grand mean is defined to be the average of the

subgroup means:

(21-8)

The general expressions for the control limits are

(21-9)

(21-10)

where is an estimate of the standard deviation for

and c is a positive integer; typically, c � 3. The choice

of c � 3 and Eq. 21-6 imply that the measurements will

lie within the control chart limits 99.73% of the time,

for normal process operation. The target T is usually

specified to be either or the desired value of .

The estimated standard deviation can be calculated

from the subgroups in the test data by two methods: (1)

the standard deviation approach and (2) the range ap-

proach (Montgomery and Runger, 2007). By definition,

the range R is the difference between the maximum and

minimum values. Historically, the R approach has been

emphasized, because R is easier to calculate than s, an

�N x

xx
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Table 21.1 Control Chart Constants

Estimation of � s Chart

n c4 B3 B4

2 0.7979 0 3.267

3 0.8862 0 2.568

4 0.9213 0 2.266

5 0.9400 0 2.089

6 0.9515 0.030 1.970

7 0.9594 0.118 1.882

8 0.9650 0.185 1.815

9 0.9693 0.239 1.761

10 0.9727 0.284 1.716

15 0.9823 0.428 1.572

20 0.9869 0.510 1.490

25 0.9896 0.565 1.435

Source: Adapted from Ryan (2000).
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Constants B3 and B4 depend on the subgroup size n, as

shown in Table 21.1.

The control chart limits for the and s charts in Eqs.

21-9 to 21-15 have been based on the assumption that

the x data are normally distributed.

When individual measurements are plotted (n � 1),

the standard deviation for the subgroup does not exist.

In this situation, the moving range (MR) of two succes-

sive measurements can be employed to provide a mea-

sure of variability. The moving range is defined as the

absolute value of the difference between successive

measurements. Thus, for the kth sampling instant,

MR(k) � �x(k) � x(k�1)�. The and s control charts

are also applicable when the sample size n varies from

one sample to the next.

Example 21.2 illustrates the construction of and s
control charts.

EXAMPLE 21.2

In semiconductor processing, the photolithography process is

used to transfer the circuit design to silicon wafers. In the first

step of the process, a specified amount of a polymer solution,

photoresist, is applied to a wafer as it spins at high speed on a

turntable. The resulting photoresist thickness x is a key

process variable. Thickness data for 25 subgroups are shown

in Table 21.2. Each subgroup consists of three randomly 

x

x

x

selected wafers. Construct and s control charts for these test

data and critically evaluate the results.

SOLUTION

The following sample statistics can be calculated from the data

in Table 21.2: � 199.8 Å, � 10.4 Å. For n � 3 the required

constants from Table 21.1 are c4 � 0.8862, B3 � 0, and B4 �
2.568. Then the and s control limits can be calculated from

Eqs. 21-9 to 21-15. The traditional value of c � 3 is selected for

Eqs. 21-9 and 21-10. The resulting control limits are labeled as

the “original limits” in Fig. 21.5.

Figure 21.5 indicates that sample #5 lies beyond the UCL

for both the and s control charts, while sample #15 is very

close to a control limit on each chart. Thus, the question

arises whether these two samples are “outliers” that should

be omitted from the analysis. Table 21.2 indicates that sam-

ple #5 includes a very large value (260.0), while sample #15

includes a very small value (150.0). However, unusually

large or small numerical values by themselves do not justify

discarding samples; further investigation is required.

Suppose that a more detailed evaluation has discovered a

specific reason as to why measurements #5 and #15 should be

discarded (e.g., faulty sensor, data misreported, etc.). In this

situation, these two samples should be removed and the con-

trol limits should be recalculated based on the remaining 23

samples. These modified control limits are tabulated below as

well as in Fig. 21.5.

Original Modified Limits

Limits (omit samples #5 and #15)

Chart Control Limits
UCL 220.1 216.7

LCL 179.6 182.2

s Chart Control Limits
UCL 26.6 22.7

LCL 0 0

x

x

x

sx

x
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Table 21.2 Thickness Data (in Å) for Example 21.2

No. x Data s

1 209.6 207.6 211.1 209.4 1.8

2 183.5 193.1 202.4 193.0 9.5

3 190.1 206.8 201.6 199.5 8.6

4 206.9 189.3 204.1 200.1 9.4

5 260.0 209.0 212.2 227.1 28.6

6 193.9 178.8 214.5 195.7 17.9

7 206.9 202.8 189.7 199.8 9.0

8 200.2 192.7 202.1 198.3 5.0

9 210.6 192.3 205.9 202.9 9.5

10 186.6 201.5 197.4 195.2 7.7

11 204.8 196.6 225.0 208.8 14.6

12 183.7 209.7 208.6 200.6 14.7

13 185.6 198.9 191.5 192.0 6.7

14 202.9 210.1 208.1 207.1 3.7

15 198.6 195.2 150.0 181.3 27.1

16 188.7 200.7 207.6 199.0 9.6

17 197.1 204.0 182.9 194.6 10.8

18 194.2 211.2 215.4 206.9 11.2

19 191.0 206.2 183.9 193.7 11.4

20 202.5 197.1 211.1 203.6 7.0

21 185.1 186.3 188.9 186.8 1.9

22 203.1 193.1 203.9 200.0 6.0

23 179.7 203.3 209.7 197.6 15.8

24 205.3 190.0 208.2 201.2 9.8

25 203.4 202.9 200.4 202.2 1.6l

x
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Figure 21.5 The and s control charts for Example 21.2.x



process changes will not be detected as quickly as they

would be for smaller c values. Thus, the choice of c in-

volves a classical engineering compromise between

early detection of process changes (low value of c) and

reducing the frequency of false alarms (high value of c).

Standard SPC techniques are based on the four

assumptions listed above. However, because these as-

sumptions are not always valid for industrial processes,

standard techniques can give misleading results. In

particular, the implications of violating the normally

distributed and IID assumptions have received con-

siderable theoretical analysis (Ryan, 2000). Although

modified SPC techniques have been developed for

these nonideal situations, commercial SPC software

is usually based on these assumptions.

Industrial plant measurements are not normally

distributed. However, for large subgroup sizes 

(n � 25), is approximately normally distributed even

if x is not, according to the famous Central Limit The-
orem of statistics (Montgomery and Runger, 2007).

Fortunately, modest deviations from “normality” can

be tolerated. In addition, the standard SPC tech-

niques can be modified so that they are applicable to

certain classes of nonnormal data (Jacobs, 1990).

In industrial applications, the control chart data are

often serially correlated, because the current measure-

ment is related to previous measurements. For example,

the flow rate data in Fig. 21.1 are serially correlated.

Standard control charts such as the and s charts can

provide misleading results if the data are serially corre-

lated. But if the degree of correlation is known, the con-

trol limits can be adjusted accordingly (Montgomery,

2009). Serially correlated data also can be modeled

using time-series analysis, as described in Section 17.6.

21.2.5 Pattern Tests and the Western 
Electric Rules

We have considered how abnormal process behavior

can be detected by comparing individual measurements

with the and s control chart limits. However, the pat-

tern of measurements can also provide useful informa-

tion. For example, if 10 consecutive measurements are

all increasing, then it is very unlikely that the process is

in a state of control.
A wide variety of pattern tests (also called zone

rules) can be developed based on the IID and normal

distribution assumptions and the properties of the nor-

mal distribution. For example, the following excerpts

from the Western Electric Rules (Western Electric

Company, 1956; Montgomery and Runger, 2007) indi-

cate that the process is out of control if one or more of

the following conditions occur:

1. One data point is outside the 3� control limits.

2. Two out of three consecutive data points are

beyond a 2� limit.

x

x

x
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21.2.4 Theoretical Basis for Quality Control Charts

The traditional SPC methodology is based on the as-

sumption that the natural variability for “in control”

conditions can be characterized by random variations

around a constant average value,

(21-16)

where x(k) is the measurement at time k, x* is the true

(but unknown) value, and e(k) is an additive random

error. Traditional control charts are based on the fol-

lowing assumptions:

1. Each additive error, {e(k), k � 1, 2, . . .}, is a zero-

mean, random variable that has the same normal

distribution, N(0, �2).

2. The additive errors are statistically independent

and thus uncorrelated. Consequently, e(k) does

not depend on e(j) for j � k.

3. The true value x* is constant.

4. The subgroup size n is the same for all of the sub-

groups.

The second assumption is referred to as independent
and identically distributed (IID).

Consider an ideal individuals control chart for x with

x* as its target and “3� control limits”:

(21-17)

(21-18)

These control limits are a special case of Eqs. 21-9

and 21-10 for the idealized situation where � is

known, c � 3, and the subgroup size is n � 1. The

typical choice of c � 3 can be justified as follows. Be-

cause x is N(0, �2), the probability p that a measure-

ment lies outside the 3� control limits can be

calculated from Eq. 21-6: p � 1 � 0.9973 � 0.0027.

Thus on average, approximately three out of every

1,000 measurements will be outside of the 3� limits. The

average number of samples before a chart violation oc-

curs is referred to as the average run length (ARL). For

the normal (“in control”) process operation,

(21-19)

Thus, a Shewhart chart with 3� control limits will have

an average of one control chart violation every 370 sam-

ples, even when the process is in a state of control.
This theoretical analysis justifies the use of 3� limits

for and other control charts. However, other values

of c are sometimes used. For example, 2� warning lim-

its can be displayed on the control chart in addition to

the 3� control limits. Although the 2� warning limits

provide an early indication of a process change, they

have a very low average run length value of ARL � 22.

In general, larger values of c result in wider chart limits

and larger ARL values. Wider chart limits mean that

x

ARL !
1

p
 = 1

0.0027
 = 370

LCL ! x* - 3�

UCL ! x* + 3�

x(k) = x* + e(k)



3. Four out of five consecutive data points are

beyond a 1� limit and on one side of the centerline.

4. Eight consecutive points are on one side of the

centerline.

Note that the first condition corresponds to the fa-

miliar Shewhart chart limits of Eqs. 21-9 and 21-10 with

c � 3. Additional pattern tests are concerned with

other types of nonrandom behavior (Montgomery,

2009). Pattern tests can be used to augment Shewhart

charts. This combination enables out-of-control behav-

ior to be detected earlier, but the false alarm rate is

higher than that for a Shewhart chart alone.

21.2.6 CUSUM and EWMA Control Charts

Although Shewhart charts with 3� limits can quickly de-

tect large process changes, they are ineffective for small,

sustained process changes (for example, changes in �
smaller than 1.5�). Two alternative control charts have

been developed to detect small changes: the CUSUM and

EWMA control charts. They also can detect large process

changes (for example, 3� shifts), but detection is usually

somewhat slower than for Shewhart charts. Because the

CUSUM and EWMA control charts can effectively de-

tect both large and small process shifts, they provide vi-

able alternatives to the widely used Shewhart charts.

Consequently, they will now be considered. The cumula-
tive sum (CUSUM) is defined to be a running summation

of the deviations of the plotted variable from its target. If

the sample mean is plotted, the cumulative sum, C(k), is

(21-20)

where T is the target for . During normal process op-

eration, C(k) fluctuates around zero. But if a process

change causes a small shift in , C(k) will drift either

upward or downward.

The CUSUM control chart was originally devel-

oped using a graphical approach based on V-masks
(Montgomery, 2009). However, for computer calcula-

tions, it is more convenient to use an equivalent alge-

braic version that consists of two recursive equations,

(21-21)

(21-22)

where C
 and C� denote the sums for the high and low

directions and K is a constant, the slack parameter. The

CUSUM calculations are initialized by setting C
(0) �
C�(0) � 0. A deviation from the target that is larger

than K increases either C
 or C�. A control limit viola-

tion occurs when either C
 or C� exceeds a specified

control limit (or threshold), H. After a limit violation

occurs, that sum is reset to zero or to a specified value.

The selection of the threshold H can be based on con-

siderations of average run length. Suppose that we want

C-(k) = max[0,  (T - K) - x(k) + C -(k - 1)]

C+(k) = max[0,  x(k) - (T + K) + C+(k - 1)]

x

x

C(k) = a
k

j=1

 (x(j) - T)

to detect whether the sample mean has shifted from

the target by a small amount, �. The slack parameter K
is usually specified as K � 0.5 �. For the ideal situation

where the normally distributed and IID assumptions

are valid, ARL values have been tabulated for specified

values of �, K, and H (Ryan, 2000; Montgomery, 2009).

Table 21.3 summarizes ARL values for two values

of H and different values of �. (The values of � are

usually expressed as multiples of .) The ARL val-

ues indicate the average number of samples before a

change of � is detected. Thus, the ARL values for 

� � 0 indicate the average time between “false

alarms,” that is, the average time between successive

CUSUM alarms when no shift in has occurred.

Ideally, we would like the ARL value to be very

large for � � 0, and small for � � 0. Table 21.3 shows

that as the magnitude of the shift � increases, ARL

decreases, and thus the CUSUM control chart detects

the change faster. Increasing the value of H from 4�
to 5� increases all of the ARL values and thus pro-

vides a more conservative approach.

CUSUM control charts also are constructed for mea-

sures of variability such as the range or standard devia-

tion (Ryan, 2000; Montgomery, 2009).

EWMA Control Chart

Information about past measurements can also be in-

cluded in the control chart calculations by exponen-

tially weighting the data. This strategy provides the

basis for the exponentially weighted moving-average
(EWMA) control chart. Let denote the sample mean

of the measured variable and z denote the EWMA 

of . A recursive equation is used to calculate z(k),

(21-23)

where � is a constant, 0 
 � 
 1. Note that Eq. 21-23 has

the same form as the first-order (or exponential) filter

that was introduced in Chapter 17. The EWMA control

chart consists of a plot of z(k) vs. k, as well as a target and

upper and lower control limits. Note that the EWMA

control chart reduces to the Shewhart chart for � � 1. The

EWMA calculations are initialized by setting z(0) � T.

z(k) = �x(k) + (1 - �)z(k - 1)

x

x

x

�N x

x
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Table 21.3 Average Run Lengths for CUSUM 

Control Charts

Shift from Target ARL for ARL for

(in multiples of ) H � 4 H � 5

0 168.0 465.0

0.25 74.2 139.0

0.50 26.6 38.0

0.75 13.3 17.0

1.00 8.38 10.4

2.00 3.34 4.01

3.00 2.19 2.57

Source: Adapted from Ryan (2000).

�N x�N x�N x
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If the measurements satisfy the IID condition, the

EWMA control limits can be derived. The theoretical

3� limits are given by

(21-24)

where is determined from a set of test data taken

when the process is in a state of control (Montgomery,

2009). The target T is selected to be either the desired

value of or the grand mean for the test data, . Time-

varying control limits can also be derived that provide

narrower limits for the first few samples, for applications

where early detection is important (Montgomery, 2009;

Ryan, 2000). Tables of ARL values have been developed

for the EWMA method, similar to Table 21.3 for the

CUSUM method (Ryan, 2000).

The EWMA performance can be adjusted by speci-

fying �. For example, � � 0.25 is a reasonable choice,

because it results in an ARL of 493 for no mean shift

(� � 0) and an ARL of 11 for a mean shift of (� � 1).

EWMA control charts can also be constructed for

measures of variability such as the range and standard

deviation.

EXAMPLE 21.3

In order to compare Shewhart, CUSUM, and EWMA control

charts, consider simulated data for the tensile strength of a

phenolic resin. It is assumed that the tensile strength x is nor-

mally distributed with a mean of � � 70 MPa and a standard

deviation of � � 3 MPa. A single measurement is available at

each sampling instant. A constant (� � 0.5� � 1.5) was added to

x(k) for k � 10 in order to evaluate each chart’s ability to de-

tect a small process shift. The CUSUM chart was designed

using K � 0.5� and H � 5�, while the EWMA parameter was

specified as � � 0.25.

The relative performance of the Shewhart, CUSUM, and

EWMA control charts is compared in Fig. 21.6. The Shewhart

�x

xx

�N x

B �

2 - �
�NxT ; 3

x chart fails to detect the 0.5� shift in x. However, both the

CUSUM and EWMA charts quickly detect this change, be-

cause limit violations occur about 10 samples after the shift

occurs (at k � 20 and k � 21, respectively). The mean shift

can also be detected by applying the Western Electric Rules

in the previous section.

21.3 EXTENSIONS OF STATISTICAL
PROCESS CONTROL

Now that the basic quality control charts have been

presented, we consider several other important topics

in statistical process control.

21.3.1 Process Capability Indices

Process capability indices (or process capability ratios)

provide a measure of whether an “in control” process is

meeting its product specifications. Suppose that a qual-

ity variable x must have a volume between an upper
specification limit (USL) and a lower specification limit
(LSL) in order for product to satisfy customer require-

ments. The Cp capability index is defined as

(21-25)

where � is the standard deviation of x. Suppose that

Cp � 1 and x is normally distributed. Based on Eq. 21-6,

we would expect that 99.73% of the measurements sat-

isfy the specification limits. If Cp � 1, the product spec-

ifications are satisfied; for Cp � 1, they are not.

A second capability index Cpk is based on average

process performance ( ), as well as process variability (�).

It is defined as

(21-26)

Although both Cp and Cpk are used, we consider Cpk to

be superior to Cp for the following reason. If 

� T, the process is said to be “centered” and Cpk �
Cp. But for � T, Cp does not change, even though the

process performance is worse, while Cpk decreases. For

this reason, Cpk is preferred.

If the standard deviation � is not known, it is re-

placed by an estimate in Eqs. 21-25 and 21-26. For

situations where there is only a single specification

limit, either USL or LSL, the definitions of Cp and Cpk
can be modified accordingly (Ryan, 2000).

In practical applications, a common objective is to

have a capability index of 2.0, while a value greater

than 1.5 is considered to be acceptable (Shunta, 1995).

If the Cpk value is too low, it can be improved by mak-

ing a change that either reduces process variability or

causes to move closer to the target. These improve-

ments can be achieved in a number of ways, including

better process control, better process maintenance, 

x

�N

x
x

Cpk !
min[x - LSL, USL - x ]

3�

x

Cp !
USL - LSL

6�
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Figure 21.6 Comparison of Shewhart (top), CUSUM (middle),

and EWMA (bottom) control charts for Example 21.3.



reduced variability in raw materials, improved operator

training, and changes in process operating conditions.

Three important points should be noted concerning

the Cp and Cpk capability indices:

1. The data used in the calculations do not have to

be normally distributed.

2. The specification limits, USL and LSL, and the

control limits, UCL and LCL, are not related. The

specification limits denote the desired process per-

formance, while the control limits represent actual

performance during normal operation when the

process is in control.
3. The numerical values of the Cp and Cpk capability

indices in (21-25) and (21-26) are only meaningful

when the process is in a state of control. However,

other process performance indices are available to

characterize process performance when the process

is not in a state of control. They can be used to eval-

uate the incentives for improved process control

(Shunta, 1995).

EXAMPLE 21.4

Calculate the average values of the Cp and Cpk capability in-

dices for the photolithography thickness data in Example 21.2.

Omit the two outliers (samples #5 and #15), and assume that

the upper and lower specification limits for the photoresist

thickness are USL � 235 Å and LSL � 185 Å.

SOLUTION

After samples #5 and #15 are omitted, the grand mean is �
199 Å, and the standard deviation of (estimated from 

Eq. 21-13 with c4 � 0.8862) is

From Eqs. 21-25 and 21-26,

Note that Cpk is much smaller than the Cp, because is

closer to the LSL than the USL.

21.3.2 Six Sigma Approach

Product quality specifications continue to become

more stringent as a result of market demands and in-

tense worldwide competition. Meeting quality require-

ments is especially difficult for products that consist of

a very large number of components and for manufac-

turing processes that consist of hundreds of individual

steps. For example, the production of a microelectron-

ics device typically requires 100 to 300 batch process-

ing steps. Suppose that there are 200 steps, and that

x

 Cpk =  
min[199.5 - 185, 235 - 199.5]

3(5.75)
 = 0.84

 Cp = 235 - 185

6(5.75)
 = 1.45

= s

c42n
 = 8.83

0.886223
 = 5.75 Å�N x

x
x

each one must meet a quality specification in order for

the final product to function properly. If each step, is

independent of the others and has a 99% success rate,

the overall yield of satisfactory product is (0.99)200 �
0.134, or only 13.4%. This low yield is clearly unsatis-

factory. Similarly, even when a processing step meets

3� specifications (99.73% success rate), it will still re-

sult in an average of 2,700 “defects” for every million

produced. Furthermore, the overall yield for this 200-

step process is still only 58.2%.

These examples demonstrate that for complicated

products or processes, 3� quality is no longer adequate,

and there is no place for failure. These considerations

and economic pressures have motivated the development

of the six sigma approach (Pande et al., 2000). The statis-

tical motivation for this approach is based on the proper-

ties of the normal distribution. Suppose that a product

quality variable x is normally distributed, N(�, �2). As in-

dicated on the left portion of Fig. 21.7, if the product

specifications are � � 6�, the product will meet the speci-

fications 99.999998% of the time. Thus, on average, there

will only be two defective products for every billion pro-

duced. Now suppose that the process operation changes

448 Chapter 21 Process Monitoring
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Figure 21.7 The Six Sigma Concept (Montgomery and

Runger, 2007). Top: No shift in the mean. Bottom: 1.5� shift.
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so that the mean value is shifted from � � to either �
� � 1.5� or � � � 1.5�, as shown on the right side of

Fig. 21.7. Then the product specifications will still be sat-

isfied 99.99966% of the time, which corresponds to 3.4

defective products per million produced.

In summary, if the variability of a manufacturing op-

eration is so small that the product specification limits

are equal to � � 6�, then the limits can be satisfied

even if the mean value of x shifts by as much as 1.5�.

This very desirable situation of near perfect product

quality is referred to as six sigma quality.

The six sigma approach was pioneered by the Mo-

torola and General Electric companies in the early

1980s as a strategy for achieving both six sigma quality

and continuous improvement. Since then, other large

corporations have adopted companywide programs that

apply the six sigma approach to all of their business

operations, both manufacturing and nonmanufacturing.

Thus, although the six sigma approach is “data-driven”

and based on statistical techniques, it has evolved into a

broader management philosophy that has been imple-

mented successfully by many large corporations. Six

sigma programs have also had a significant financial

impact. Large corporations have reported savings of

billions of dollars that were attributed to successful six

sigma programs.

In summary, the six sigma approach based on statisti-

cal monitoring techniques has had a major impact on

both manufacturing and business practice during the

past two decades. It is based on SPC concepts but has

evolved into a much broader management philosophy

and corporatewide activity. Improved process control

can play a key role in a six sigma project by reducing

the variability in controlled variables that have a signif-

icant economic impact.

21.3.3 Comparison of Statistical Process Control
and Automatic Process Control

Statistical process control and automatic process control

(APC) are complementary techniques that were devel-

oped for different types of problems. As indicated in ear-

lier chapters, APC takes corrective action when a

controlled variable deviates from the set point. The cor-

rective action tends to change at each sampling instant.

Thus, for APC there is an implicit assumption that the

cost of making a corrective action is not significant. APC

is widely used in the process industries, because no infor-

mation is required about the sources and types of process

disturbances. APC is most effective when the measure-

ment sampling period is relatively short compared to the

process settling time, and when the process disturbances

tend to be deterministic (that is, when they have a sus-

tained nature such as a step or ramp disturbance).

In statistical process control, the objective is to decide

whether the process is behaving normally, and to identify

x
xx a special cause when it is not. In contrast to APC, no

corrective action is taken when the measurements are

within the control chart limits. This philosophy is appro-

priate when there is a significant cost associated with

taking a corrective action, such as when shutting down a

process unit or taking an instrument out of service for

maintenance. From an engineering perspective, SPC is

viewed as a monitoring, rather than a control, strategy.

It is very effective when the normal process operation

can be characterized by random fluctuations around a

mean value. SPC is an appropriate choice for monitor-

ing problems where the sampling period is long com-

pared to the process settling time and the process

disturbances tend to be random rather than determinis-

tic. SPC has been widely used for quality control in both

discrete-parts manufacturing and the process industries.

In summary, SPC and APC should be regarded as

complementary rather than competitive techniques.

They were developed for different types of situations

and have been successfully used in the process indus-

tries. Furthermore, a combination of the two methods

can be very effective. For example, in model-based

control such as model predictive control (Chapter 20),

APC can be used for feedback control, while SPC is

used to monitor the model residuals, the differences

between the model predictions and the actual values.

21.4 MULTIVARIATE STATISTICAL
TECHNIQUES

In Chapters 12 and 16, we have emphasized that many

important control problems are multivariable in nature

because more than one process variable must be con-

trolled and more than one variable can be manipulated.

Similarly, for common SPC monitoring problems, two

or more quality variables are important, and they can

be highly correlated. For example, 10 or more quality

variables are typically measured for synthetic fibers

(MacGregor, 1996). For these situations, multivariable

SPC techniques can offer significant advantages over

the single-variable methods discussed in Section 21.2.

In the statistics literature, these techniques are referred

to as multivariate methods, while the standard Shewhart

and CUSUM control charts are examples of univariate
methods. The advantage of a multivariate monitoring

approach is illustrated in Example 21.5.

EXAMPLE 21.5

The effluent stream from a wastewater treatment process is

monitored to make sure that two process variables, the biologi-

cal oxidation demand (BOD) and the solids content, meet

specifications. Representative data are shown in Table 21.4.

Shewhart charts for the sample means are shown in parts (a)

and (b) of Fig. 21.8. These univariate control charts indicate

that the process appears to be in-control because no chart 
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Table 21.4 Wastewater Treatment Data

Sample BOD Solids

Number (mg/L) (mg/L)

1 17.7 1380
2 23.6 1458
3 13.2 1322
4 25.2 1448
5 13.1 1334
6 27.8 1485
7 29.8 1503
8 9.0 1540
9 14.3 1341

10 26.0 1448
11 23.2 1426
12 22.8 1417
13 20.4 1384
14 17.5 1380
15 18.4 1396
16 16.8 1345
17 13.8 1349
18 19.4 1398
19 24.7 1426
20 16.8 1361
21 14.9 1347
22 27.6 1476
23 26.1 1454
24 20.0 1393
25 22.9 1427
26 22.4 1431
27 19.6 1405
28 31.5 1521
29 19.9 1409
30 20.3 1392
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Figure 21.8 Confidence regions for Example 21.5. 

Univariate in (a) and (b), bivariate in (c).

1If two random variables are correlated and normally distributed,

the confidence limit is in the form of an ellipse and can be cal-

culated from the well-known F distribution (Montgomery and

Runger, 2007).

violations occur for either variable. However, the bivariate

control chart in Fig. 21.8c indicates that the two variables are

highly correlated, because the solids content tends to be large

when the BOD is large, and vice versa. When the two variables

are considered together, their joint confidence limit (e.g., at the

99% confidence level) is an ellipse, as shown in Fig. 21.8c.1

Sample #8 lies well beyond the 99% limit, indicating an out-of-

control condition. By contrast, this sample lies within the She-

whart control chart limits for both individual variables.

This example has demonstrated that univariate SPC

techniques such as Shewhart charts can fail to detect abnor-

mal process behavior when the process variables are highly

correlated. By contrast, the abnormal situation was readily

apparent from the multivariate analysis.

Figure 21.9 provides a general comparison of uni-

variate and multivariate SPC techniques (Alt et al.,

1998). When two variables, x1 and x2, are monitored in-

dividually, the two sets of control limits define a rectan-

gular region, as shown in Fig. 21.9. In analogy with

Example 21.5, the multivariate control limits define the

dark, ellipsoidal region that represents in-control be-

havior. Figure 21.9 demonstrates that the application of

univariate SPC techniques to correlated multivariate

data can result in two types of misclassification: false

alarms and out-of-control conditions that are not de-

tected. The latter type of misclassification occurred at

sample #8 for the two Shewhart charts in Fig. 21.8.

In the next section, we consider some well-known

multivariate monitoring techniques.

21.4.1 Hotelling’s T2 Statistic

Suppose that it is desired to use SPC techniques to

monitor p variables, which are correlated and normally

distributed. Let x denote the column vector of these p
variables, x � col [x1, x2, . . . , xp]. At each sampling in-

stant, a subgroup of n measurements is made for each

variable. The subgroup sample means for the kth sam-

pling instant can be expressed as a column vector: (k) �
col [ (k), (k), . . . , (k)]. Multivariate control 

charts are traditionally based on Hotelling’s T 2 statistic
(Montgomery, 2009).

(21-27)

where T 2(k) denotes the value of the T 2 statistic at

the kth sampling instant. The vector of grand means x

T 2(k) ! n[x(k) - x ]T S-1 [x(k) - x ]

xpx2x1

x
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and the covariance matrix S are calculated for a test

set of data for in-control conditions. By definition Sij,

the (i, j)-element of matrix S, is the sample covariance

of xi and xj:

(21-28)

In Eq. 21-28 N is the number of subgroups, and 

denotes the mean for .

Note that T 2 is a scalar, even though the other quan-

tities in Eq. 21-27 are vectors and matrices. The inverse

of the sample covariance matrix, S�1, scales the p vari-

ables and accounts for correlation among them.

A multivariate process is considered to be out-of-

control at the kth sampling instant if T 2(k) exceeds an

upper control limit (UCL). (There is no target or lower

control limit.) The UCL values are tabulated in statis-

tics books and depend on the number of variables p
and the subgroup size n. The T 2 control chart consists

of a plot of T 2(k) vs. k and an UCL. Thus, the T 2 con-

trol chart is the multivariate generalization of the 

chart introduced in Section 21.2.2. Multivariate gener-

alizations of the CUSUM and EWMA charts are also

available (Montgomery, 2009).

EXAMPLE 21.6

Construct a T 2 control chart for the wastewater treatment

problem of Example 21.5. The 99% control chart limit is T 2 �
11.63. Is the number of T 2 control chart violations consistent

with the results of Example 21.5?

SOLUTION

The T 2 control chart is shown in Fig. 21.10. All of the T 2 val-

ues lie below the 99% confidence limit except for sample #8.

This result is consistent with the bivariate control chart in

Fig. 21.8c.

x

xi

xi

Sij !
1

N
 a

N

k=1

 [xi(k) - xi] [xj(k) - xj]

21.4.2 Principal Component Analysis and
Partial Least Squares

Multivariate monitoring based on Hotelling’s T 2 statistic

can be effective if the data are not highly correlated and

the number of variables p is not large (for example, p � 10).

For highly correlated data, the S matrix is poorly condi-

tioned and the T 2 approach becomes problematic. For-

tunately, alternative multivariate monitoring techniques

have been developed that are very effective for monitor-

ing problems with large numbers of variables and highly

correlated data. The Principal Component Analysis
(PCA) and Partial Least Squares (PLS) methods have

received the most attention in the process control com-

munity. Both techniques can be used to monitor process

variables (e.g., temperature, level, pressure, and flow

measurements) as well as product quality variables.

These methods can provide useful diagnostic informa-

tion after a chart violation has been detected. Although

the PCA and PLS methods are beyond the scope of this

book, excellent books (Jackson, 1991; Piovoso and

Khosanovich, 1996;  Montgomery, 2009), survey articles

(Kourti, 2002) and a special issue of a journal (Piovoso

and Hoo, 2002) are available.

21.5 CONTROL PERFORMANCE
MONITORING

In order to achieve the desired process operation, the

control system must function properly. As indicated

in Chapter 11, industrial surveys have reported that

many control loops perform poorly and even increase

variability in comparison with manual control. Con-

tributing factors include poor controller tuning and

control valves that are incorrectly sized or tend to

Figure 21.9 Univariate and bivariate confidence regions for two

random variables, x1 and x2 (modified from Alt et al., 1998).

In control area correctly indicated by both types of charts.

In control area incorrectly indicated as out of control by the
univariate charts.
Out of control area incorrectly indicated as in control by the
univariate charts.
Out of control area correctly indicated by both types of charts.
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Figure 21.10 T2 control chart for Example 21.5.
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stick due to excessive frictional forces. In large pro-

cessing plants, each plant operator is typically respon-

sible for 200 to 1,000 loops. Thus, there are strong

incentives for automated control (or controller) per-
formance monitoring (CPM). The overall objectives

of CPM are (1) to determine whether the control sys-

tem is performing in a satisfactory manner and (2) to

diagnose the cause of any unsatisfactory performance.

21.5.1 Basic Information for Control
Performance Monitoring

In order to monitor the performance of a single stan-

dard PI or PID control loop, the basic information in

Table 21.5 should be available.

Service factors should be calculated for key compo-

nents of the control loop such as the sensor and final

control element. Low service factors and/or frequent

maintenance suggest chronic problems that require at-

tention. The fraction of time that the controller is in the

automatic mode is a key metric. A low value indicates

that the loop is frequently in the manual mode and thus

requires attention. Service factors for computer hard-

ware and software should also be recorded.

Simple statistical measures such as the sample mean

and standard deviation can indicate whether the con-

trolled variable is achieving its target and how much

control effort is required. An unusually small standard

deviation for a measurement could result from a faulty

sensor with a constant output signal, as noted in Sec-

tion 21.1. By contrast, an unusually large standard devi-

ation could be caused by equipment degradation or

even failure, for example, inadequate mixing caused by

a faulty vessel agitator.

A high alarm rate can be indicative of poor control

system performance (see Section 9.2). Operator log-

books and maintenance records are valuable sources of

information, especially if this information has been

captured in a computer database.

21.5.2 Control Performance Monitoring
Techniques

Chapters 5 and 11 introduced traditional control loop

performance criteria such as rise time, settling time,

overshoot, offset, degree of oscillation, and integral

error criteria. CPM methods have been developed

based on these and other criteria, and commercial

CPM software is available. A comprehensive review of

CPM techniques and industrial applications has been

reported by Jelali (2006).

If a process model is available, then process monitor-

ing techniques based on monitoring the model residuals

can be employed (Chiang et al., 2001; Davis et al., 2000;

Cinar et al., 2007). Simple CPM methods have also been

developed that do not require a process model. Control

loops that are excessively oscillatory or very sluggish can

be identified using correlation or frequency response

techniques (Hägglund, 1999; Miao and Seborg, 1999,

Tangirala et al., 2005), or by evaluating standard devia-

tions (Rhinehart, 1995; Shunta, 1995). A common prob-

lem, control valve stiction, can be detected from routine

operating data (Shoukat Choudhury et al., 2008).

Control system performance can be assessed by com-

parison with a benchmark. For example, historical data

representing periods of satisfactory control can be used

as a benchmark. Alternatively, the benchmark could be

an ideal control system performance, such as minimum
variance control. As the name implies, a minimum vari-

ance controller minimizes the variance of the controlled

variable when unmeasured, random disturbances

occur. This ideal performance limit can be estimated

from closed-loop operating data; then the ratio of mini-

mum variance to the actual variance is used as the mea-

sure of control system performance. This statistically

based approach has been commercialized, and many

successful industrial applications have been reported

(Kozub, 1997; Desborough and Miller, 2002; Harris and

Seppala, 2002; Hoo et al., 2003; Paulonis and Cox,

2003). 

Additional information on statistically-based CPM

is available in a tutorial (MacGregor, 1988), survey

articles (Piovoso and Hoo, 2002; Kourti, 2005), and

books (Box and Luceño, 1997; Huang and Shah,

1999; Cinar et al., 2007). Extensions to MIMO con-

trol problems, including MPC, have also been re-

ported (Huang et al., 2000; Qin and Yu, 2007; Cinar

et al., 2007).

452 Chapter 21 Process Monitoring

Table 21.5 Basic Data for Control Loop Monitoring

• Service factors (time in use/total time period)

• Mean and standard deviation for the control error 

(set point � measurement)

• Mean and standard deviation for the controller output

• Alarm summaries

• Operator logbooks and maintenance records

SUMMARY

Process monitoring is essential to ensure that plants oper-

ate safely and economically while meeting environmental

standards. In recent years, control system performance

monitoring has also been recognized as a key component

of the overall monitoring activity. Process variables are

monitored by making simple limit and performance 
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calculations. Statistical process control (SPC) techniques

based on control charts are monitoring techniques widely

used for product quality control and other applications

where the sampling periods are long relative to process

settling times. In particular, Shewhart control charts

are used to detect large shifts in mean process behavior,

while CUSUM and EWMA control charts are better 

at detecting small, sustained changes. Multivariate

monitoring techniques such as PCA and PLS can offer

significant improvements over these traditional univari-

ate methods when the measured variables are highly cor-

related. SPC and APC are complementary techniques

that can be used together to good advantage. Control

performance monitoring techniques have been devel-

oped and commercialized, especially methods based on

on-line, statistical analysis of operating data.
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s � 0.05, respectively. When the process is operating nor-

mally, what is the probability that a pH measurement will

exceed 5.9?

21.3 In a computer control system, the high and low warning

limits for a critical temperature measurement are set at the

“2-sigma limits,” � 2 , where is the nominal tempera-

ture and is the estimated standard deviation. If the process

operation is normal and the temperature is measured every

minute, how many “false alarms” (that is,  measurements that

exceed the warning limits) would you expect to occur during

an eight-hour period?

21.4 In order to improve the reliability of a critical control

loop, it is proposed that redundant sensors be used. Suppose

that three independent sensors are employed and each sensor

works properly 95% of the time. 

(a) What is the probability that all three sensors are func-

tioning properly?

(b) What is the probability that none of the sensors are func-

tioning properly?

(c) It is proposed that the average of the three measure-

ments be used for feedback control. Briefly critique this

strategy. 

Hint: See Appendix J for a review of basic probability

concepts.

21.5 In a manufacturing process, the impurity level of the

product is measured on a daily basis. When the process

is operating normally, the impurity level is approxi-

mately normally distributed with a mean value of

0.800% and a standard deviation of 0.021%. The laboratory

measurements for a period of eight consecutive days are

shown below. From an SPC perspective, is there strong evi-

dence to believe that the mean value of the impurity has

shifted? Justify your answer.

Day Impurity (%) Day Impurity (%)

1 0.812 5 0.799

2 0.791 6 0.833

3 0.841 7 0.815

4 0.814 8 0.807

21.6 A drought in southern California resulted in water ra-

tioning and extensive discussion of alternative water

supplies. Some people believed that this drought was the

worst one ever experienced in Santa Barbara County.

But was this really true? Rainfall data for a 120-year period are

shown in Table E21.6. In order to distinguish between normal

and abnormal drought periods, do the following.

�NT

T�NTT

EXERCISES

21.1 A standard signal range for electronic instrumentation is

4–20 mA. For purposes of monitoring instruments using limit

checks, would it be preferable to have an instrument range of

0–20 mA? Justify your answer.

21.2 An analyzer measures the pH of a process stream every

15 minutes. During normal process operation, the mean and

(a) Consider the data before the year 1920 to be a set of

“normal operating data.” Use these data to develop the tar-

get and control limits for a Shewhart chart. Determine if any

of the data for subsequent years are outside the chart limits.

(b) Use the data prior to 1940 to construct an s chart that is

based on a subgroup of 10 data points for each decade. How

many chart violations occur for subsequent decades?

21.7 Develop CUSUM and EWMA charts for the rainfall

data of Exercise 21.6 considering the data for 1900 to

1930 to be the “normal operating data.” Use the fol-

lowing design parameters: K � 0.5, H � 5, � � 0.25.

Based on these charts, do any of the next three decades ap-

pear to be abnormally dry or wet?

21.8 An SPC chart is to be designed for a key process vari-

able, a chemical composition, which is also a controlled vari-

able. Because the measurements are very noisy, they must be

filtered before being sent to a PI controller. The question

arises whether the variable plotted on the SPC chart should

be the filtered value or the raw measurement. Are both alter-

natives viable? If so, which one do you recommend? (Briefly

justify your answers.)

21.9 For the BOD data of Example 21.5, develop CUSUM

and EWMA charts. Do these charts indicate an “abnor-

mal situation”? Justify your answer. For the CUSUM

chart, use K � 0.5s and H � 5s where s is the sample

standard deviation. For the EWMA chart, use � � 0.25.

21.10 Calculate the average values of the Cp and Cpk capabil-

ity indices for the BOD data of Example 21.5, assum-

ing that LSL � 5 mg/L and USL � 35 mg/L. Do these

values of the indices indicate that the process perfor-

mance is satisfactory?

21.11 Repeat Exercise 21.10 for the solids data of Example

21.5, assuming that USL � 1,600 mg/L and LSL �
1,200 mg/L.

21.12 Consider the wastewater treatment problem of

Examples 21.5 and 21.6 and five new pairs of measure-

ments shown below. Calculate the value of Hotelling’s

T2 statistic for each pair using the information for Ex-

ample 21.6, and plot the data on a T2 chart. Based on the

number of chart violations for the new data, does it appear

that the current process behavior is normal or abnormal?

Sample BOD Solids
Number (mg/L) (mg/L)

1 18.1 1281

2 36.8 1430

3 16.0 1510

4 28.2 1343

5 31.0 1550

Note: The required covariance matrix S in Eq. 21-27 can be

calculated using either the cov command in MATLAB or the

covar command in EXCEL.

454 Chapter 21 Process Monitoring

standard deviation for the pH measurement are � 5.75 andx

c21ProcessMonitoring.qxd  11/12/10  7:10 PM  Page 454



Exercises 455

Table E21.6 Rainfall Data, 1870–1990

Year Rain (in) Year Rain (in) Year Rain (in)

1870 10.47 1911 31.94 1951 11.29

1871 8.84 1912 16.35 1952 31.20

1872 14.94 1913 12.78 1953 12.98

1873 10.52 1914 31.57 1954 15.37

1874 14.44 1915 21.46 1955 17.07

1875 18.71 1916 25.88 1956 19.58

1876 23.07 1917 21.84 1957 13.89

1877 4.49 1918 21.66 1958 31.94

1878 28.51 1919 12.16 1959 9.06

1879 13.61 1920 14.68 1960 10.82

1880 25.64 1921 14.31 1961 9.99

1881 15.23 1922 19.25 1962 28.22

1882 14.27 1923 17.24 1963 15.73

1883 13.41 1924 6.36 1964 10.19

1884 34.47 1925 12.26 1965 18.48

1885 13.79 1926 15.83 1966 14.39

1886 24.24 1927 22.73 1967 24.96

1887 12.96 1928 13.48 1968 13.67

1888 21.73 1929 14.54 1969 30.47

1889 21.04 1930 13.91 1970 12.03

1890 32.47 1931 14.99 1971 14.02

1891 17.31 1932 22.13 1972 8.64

1892 10.75 1933 6.64 1973 23.33

1893 27.02 1934 13.43 1974 17.33

1894 7.02 1935 21.12 1975 18.87

1895 16.34 1936 18.21 1976 8.83

1896 13.37 1937 25.51 1977 16.49

1897 18.50 1938 26.10 1978 41.71

1898 4.57 1939 13.35 1979 21.74

1899 12.35 1940 14.94 1980 24.59

1900 12.65 1941 45.71 1981 15.04

1901 15.40 1942 12.87 1982 15.11

1902 14.21 1943 24.37 1983 38.25

1903 20.74 1944 17.95 1984 14.70

1904 11.58 1945 15.23 1985 14.00

1905 29.64 1946 11.33 1986 22.12

1906 22.68 1947 13.35 1987 11.45

1907 27.74 1948 9.34 1988 15.45

1908 19.00 1949 10.43 1989 8.90

1909 35.82 1950 13.15 1990 6.57

1910 19.61
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