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Previous chapters have considered the development of

process models and the design of controllers from an

unsteady-state point of view. Such an approach focuses

on obtaining reasonable closed-loop responses for set-

point changes and disturbances. Up to this point, we

have only peripherally mentioned how set points

should be specified for the process. The on-line calcula-

tion of optimal set points, also called real-time opti-
mization (RTO), allows the profits from the process to

be maximized (or costs to be minimized) while satisfy-

ing operating constraints. The appropriate optimization

techniques are implemented in the computer control

system. Steady-state models are normally used, rather

than dynamic models, because the process is intended

to be operated at steady state except when the set point

is changed.

This chapter first discusses basic RTO concepts and

then describe typical applications to process control.

Guidelines for determining when RTO can be advan-

tageous are also presented. Subsequently, set-point 

selection is formulated as an optimization problem, 

involving economic information and a steady-state

process model. Optimization techniques that are used

in the process industries are briefly described. For

more information, see textbooks on optimization

methodology (Ravindran et al., 2006; Griva et al., 2008;

Edgar et al., 2001).

Figure 19.1 is a detailed version of Fig. 1.7, which

shows the five levels in the process control hierarchy

where various optimization, control, monitoring, and

data acquisition activities are employed. The relative

position of each block in Fig. 19.1 is intended to be

conceptual, because there can be overlap in the func-

tions carried out, and often several levels may utilize

the same computing platform. The relative time scale

for each level’s activity is also shown. Process data

(flows, temperatures, pressures, compositions, etc.) as

well as enterprise data, consisting of commercial and

financial information, are used with the methodologies

shown to make decisions in a timely fashion. The high-

est level (planning and scheduling) sets production

goals to meet supply and logistics constraints and 

addresses time-varying capacity and manpower uti-

lization decisions. This enterprise resource planning
(ERP) and the supply chain management in Level 5

refer to the links in a web of relationships involving

retailing (sales), distribution, transportation, and

manufacturing (Bryant, 1993). Planning and schedul-

ing usually operate over relatively long time scales

and tend to be decoupled from the rest of the activi-

ties in lower levels (Geddes and Kubera, 2000). For

example, Baker (1993) and Shobrys and White (2002)

indicate that all of the refineries owned by an oil com-

pany are usually included in a comprehensive plan-

ning and scheduling model. This model can be optimized

to obtain target levels and prices for inter-refinery

transfers, crude oil and product allocations to each 

refinery, production targets, inventory targets, optimal

operating conditions, stream allocations, and blends

for each refinery.

In Level 4, RTO is utilized to coordinate the net-

work of process units and to provide optimal set

points for each unit, which is called supervisory con-
trol. For multivariable control or processes with ac-

tive constraints, set-point changes are performed in

Level 3b (e.g., model predictive control discussed in

Chapter 20). For single-loop or multiloop control the

regulatory control is performed at Level 3a. Level 2

(safety and environmental/equipment protection) in-

cludes activities such as alarm management and

emergency shutdowns. Although software imple-

ments the tasks shown, there is also a separate hard-

wired safety system for the plant, as discussed in

Chapter 9. Level 1 (process measurement and actua-

tion) provides data acquisition and on-line analysis

and actuation functions, including some sensor vali-

dation. Ideally, there is bidirectional communication

between levels, with higher levels setting goals for



lower levels and the lower levels communicating 

constraints and performance information to the

higher levels. The time scale for decision-making 

at the highest level (planning and scheduling) may be

of the order of months, while at lower levels (for 

example, regulatory control), decisions affecting 

the process can be made frequently (e.g., in fractions

of a second). The main focus of this chapter is on

Level 4.

Historically, the focus of optimization in chemical

plants has been during the design phase, but since the

1990s this has changed because plant profitability can

be enhanced by performing optimization of operating

conditions on a repetitive basis. In a large plant, the

improved profits attained with RTO can be substantial

(Bailey et al., 1993; White, 2010). Optimal operating

points can sometimes change markedly from day to

day, or even during the course of one day. For exam-

ple, the price of delivered electrical power can vary 

by a factor of five from highest to lowest price (due 

to time-of-day pricing by electrical utilities). Other

changes that require periodic optimization of operating

conditions include variations in the quality and cost of

feedstocks, processing and storage limits, and product

demands. With recent advances in digital hardware and

optimization software, RTO can be easily incorporated

into computer control systems. The scale at which

industrial RTO can be implemented is impressive.

Problems with over 100,000 variables and equality/

inequality constraints are routinely solved (Georgiou 

et al., 1997).

19.1 BASIC REQUIREMENTS IN 
REAL-TIME OPTIMIZATION

The steady-state model used in RTO typically is 

obtained either from fundamental knowledge of the

plant or from experimental data. It utilizes the plant

operating conditions for each unit such as temperature,

pressure, and feed flow rates to predict properties such

as product yields (or distributions), production rates,

and measurable product characteristics (e.g., purity, 
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Figure 19.1 The five levels of process control and optimization in

manufacturing. Time scales are shown for each level.
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viscosity, and molecular weight). The economic model 

involves the costs of raw materials, values of products,

and costs of production as functions of operating 

conditions, projected sales figures, and so on. An ob-

jective function is specified in terms of these quantities;

in particular, operating profit over some specific period

of time can be expressed as

(19-1)

where

P � operating profit/time

� sum of product flow rates times respective

product values

� sum of feed flow rate times respective unit

cost

OC � operating costs/time

Both the operating and economic models typically will

include constraints on

1. Operating conditions: Process variables must be

within certain limits due to valve ranges (0% to

100% open) and environmental restrictions (e.g.,

furnace firing constraints).

2. Feed and production rates: A feed pump has a

maximum capacity; sales are limited by market

projections.

3. Storage and warehousing capacities: Storage

tank capacity cannot be exceeded during periods

of low demand.

4. Product impurities: A salable product cannot

contain more than the maximum amount of a

specified contaminant or impurity.

Process operating situations that are relevant to maxi-

mizing operating profits include

1. Sales limited by production. In this type of mar-

ket, sales can be increased by increasing produc-

tion. This can be achieved by optimizing operating

conditions and production schedules.

2. Sales limited by market. This situation is suscepti-

ble to optimization only if improvements in effi-

ciency at current production rates can be obtained.

An increase in thermal efficiency, for example,

usually leads to a reduction in manufacturing costs

(e.g., utilities or feedstocks).

3. Large throughput. Units with large production

rates (or throughputs) offer great potential for in-

creased profits. Small savings in product costs per

unit throughput or incremental improvements in

yield, plus large production rates, can result in

major increases in profits.

a
r

FrCr

a
s

FsVs

P = a
s

FsVs - a
r

FrCr - OC

4. High raw material or energy consumption.
These are major cost factors in a typical plant

and thus offer potential savings. For example,

the optimal allocation of fuel supplies and steam

in a plant can reduce costs by minimizing fuel

consumption.

5. Product quality better than specification. If the

product quality is significantly better than the cus-

tomer requirements, it can cause excessive pro-

duction costs and wasted capacity. By operating

closer to the customer requirement (e.g., impurity

level), cost savings can be obtained, but this strat-

egy also requires lower process variability (see

Fig. 1.9).

6. Losses of valuable or hazardous components
through waste streams. The chemical analysis

of plant waste streams, both to air and water,

will indicate whether valuable materials are

being lost. Adjustment of air/fuel ratios in fur-

naces to minimize unburned hydrocarbon losses

and to reduce nitrogen-oxide emissions is one

such example.

Timmons et al. (2000) and Latour (1979) have dis-

cussed opportunities for the application of on-line opti-

mization or supervisory control in refinery operations.

Three general types of optimization problems com-

monly encountered in industrial process operations are

discussed next.

Operating Conditions

Common examples include optimizing distillation col-

umn reflux ratio and reactor temperature. Consider

the RTO of a fluidized catalytic cracker (FCC) 

(Latour, 1979). The FCC reaction temperature largely

determines the conversion of a light gas oil feedstock

to lighter (i.e., more volatile) components. The prod-

uct distribution (gasoline, middle distillate, fuel oil,

light gases) changes as the degree of conversion is in-

creased. Accurate process models of the product dis-

tribution as a function of FCC operating conditions

and catalyst type are required for real-time optimiza-

tion. Feedstock composition, downstream unit capaci-

ties (e.g., distillation columns), individual product

prices, product demand, feed preheat, gas oil recycle,

and utilities requirements must be considered in opti-

mizing an FCC unit. The large throughput of the FCC

implies that a small improvement in yield translates to

a significant increase in profits. Biegler et al. (1997)

have discussed an RTO case study on a hydrocracker

and fractionation plant originally formulated by Bailey

et al. (1993).

Olefins plants in which ethylene is the main prod-

uct are another application where RTO has had a 
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significant impact (Darby and White, 1998; Starks

and Arrieta, 2007). A full plant model can have as

many as 1,500 submodels, based on the development

of fundamental chemical engineering relations for all

unit operations involved, that is, furnaces, distillation

columns, mixers, compressors, and heat exchangers

(Georgiou et al., 1997). In the ExxonMobil olefins

plant (Beaumont, TX), the detailed model contained

about 200,000 variables and equations, and optimiza-

tion is used to obtain the values of about 50 targets or

set points. Although standard approaches are used for

developing separation and heat exchange models, the

furnace models are quite elaborate and are typically

usually proprietary. In the ExxonMobil application, 

12 furnaces are operated in parallel with up to eight

possible gas feeds and five liquid feeds (different hy-

drocarbons) to be cracked, along with three different

coil geometries. The key optimization variables are

conversion, feed rate, and steam/oil ratio, subject to

feedstock availability and equipment constraints. This

particular application has led to benefits in the range of

millions of dollars per year.

Allocation

Allocation problems involve the optimal distribution of

a limited resource among several parallel (alternative)

process units. Typical examples include (Latour, 1979;

Marlin and Hrymak, 1997):

Steam Generators. Optimum load distribution among

several boilers of varying size and efficiency.

Refrigeration Units. Optimum distribution of a

fixed refrigeration capacity among several low-

temperature condensers associated with distilla-

tion columns.

Parallel Distillation Columns. Minimization of “off-

spec” products and utilities consumption while max-

imizing overall capacity.

Planning and Scheduling

Examples of scheduling problems encountered in

continuous plants include catalyst regeneration, fur-

nace decoking, and heat exchanger cleaning, which

deal with the tradeoff between operating efficiency

and lost production due to maintenance. Planning

problems normally entail optimization of continuous

plant operations over a period of months. This ap-

proach is commonly used in refinery optimization. In

batch processing, optimal scheduling is crucial to

match equipment to product demands and to mini-

mize cycle times. In a batch campaign, several

batches of product may be produced using the same

recipe. In order to optimize the production process,

the engineer needs to determine the recipe that satis-

fies product quality requirements; the production

rates to fulfill the product demand; the availability of

raw material inventories; product storage availability;

and the run schedule. Recent examples of optimal

batch scheduling include specialty polymer products

by McDonald (1998) and pharmaceuticals by Schulz

and Rudof (1998). See Chapter 18 for more details on

batch processing.

19.1.1 Implementation of RTO in 
Computer Control

In RTO the computer control system performs all data

transfer and optimization calculations and sends set-

point information to the controllers. The RTO system

should perform all tasks without unduly upsetting plant

operations. Several steps are necessary for implemen-

tation of RTO, including data gathering and validation

(or reconciliation), determination of the plant steady

state, updating of model parameters (if necessary) to

match current operations, calculation of the new (opti-

mized) set points, and implementation of these set

points.

To determine whether a process unit is at steady

state, software in the computer control system moni-

tors key plant measurements (e.g., compositions, prod-

uct rates, flow rates, etc.) and determines whether the

plant operating conditions are close enough to steady

state to start the RTO sequence. Only when all of the

key measurements are within the allowable toler-

ances is the plant considered to be at steady state and

the optimization calculations started; see Cao and

Rhinehart (1995) for a statistical technique that de-

termines the existence of steady-state conditions. The

optimization software screens the measurements for

unreasonable data (gross error detection). Data va-

lidity checking automatically adjusts the model up-

dating procedure to reflect the presence of bad data

or equipment that has been taken out of service.

Data reconciliation based on satisfying material and

energy balances can be carried out using separate 

optimization software (Narasimhan and Jordache,

2000). Data validation and reconciliation is an ex-

tremely critical part of any optimization activity. If

measurement errors resulting from poor instrument

calibration are not considered, the data reconciliation

step or subsequent parameter estimation step will 

not provide meaningful answers (Soderstrom et al.,

2000).

The optimization software can update model para-

meters to match current plant data, using regression

techniques. Typical model parameters include ex-

changer heat transfer coefficients, reactor performance
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parameters, and furnace efficiencies. The parameters

appear in material and energy balances for each unit in

the plant as well as constitutive equations for physical

properties. Parameter updating compensates for plant

changes and degradation of process equipment, al-

though there is a loss of performance when the model

parameters are uncertain or the plant data contain

noise (Perkins, 1998). Considerable plant knowledge

and experience is required in deciding which parame-

ters to update and which data to use for the updates.

After completion of the parameter estimation, the 

information regarding the current plant constraints,

the control status data, and the economic values for

feeds, products, utilities, and other operating costs

are collected. The department in charge of planning

and scheduling updates the economic values on a reg-

ular basis. The optimization software then calculates

the optimum set points. The steady-state condition of

the plant is rechecked after the optimization calcula-

tion. If the individual processes are confirmed to still

be at the same steady state, then the new set points

are transferred to the computer control system for

implementation. Subsequently, the process control

computer repeats the steady-state detection calcula-

tions, restarting the cycle. If the new optimum set

points are not statistically different from the previous

ones, no changes are made (Marlin and Hrymak,

1997).

The combination of RTO and regulatory control

can be viewed as analogous to cascade control. As

shown in Fig. 19.2, the outer RTO loop will operate

more slowly than the inner loop, and a poor design 

of this interaction results in poor performance. The

dynamic controller (or layer 3) handles the transfor-

mation between the steady-state model used in RTO

and the actual dynamic operation of the process. 

If the RTO model and dynamic model have very 

different gains, the resulting combination can per-

form poorly. As in cascade control (cf. Chapter 15), the

inner loop should be faster than the outer loop; oth-

erwise poor closed-loop performance may result

(Marlin and Hrymak, 1997).

19.2 THE FORMULATION AND
SOLUTION OF RTO PROBLEMS

Once a process has been selected for RTO, an appro-

priate problem statement must be formulated and then

solved. As mentioned earlier, the optimization of set

points requires

1. The economic model, an objective function to be

maximized or minimized, that includes costs and

product values

2. The operating model, which includes a steady-

state process model and all constraints on the

process variables

Edgar et al. (2001) have listed six steps that should be

used in solving any practical optimization problem. A

summary of the procedure with comments relevant to

RTO is given below.

Step 1. Identify the process variables. The impor-

tant input and output variables for the process must

be identified. These variables are employed in the

objective function and the process model (see Steps 2

and 3).

Step 2. Select the objective function. Converting a

verbal statement of the RTO goals into a meaning-

ful objective function can be difficult. The verbal

statement often contains multiple objectives and 

implied constraints. To arrive at a single objective

function based on operating profit, the quantity and
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Figure 19.2 A block diagram for RTO and regulatory feedback control.
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quality of each product must be related to the con-

sumption of utilities and the feedstock composition.

The specific objective function selected may vary 

depending on plant configuration as well as the supply/

demand situation. Table 19.1 shows different oper-

ating objectives that may arise for a fluidized cat-

alytic cracker.

Step 3. Develop the process model and con-
straints. Steady-state process models are formu-

lated, and operating limits for the process variables

are identified. The process model can be based 

on the physics and chemistry of the process (see

Chapter 2), or it can be based on empirical rela-

tions obtained from experimental process data (see

Chapter 6). Inequality constraints arise because

many physical variables, such as composition or

pressure, can only have positive values, or there

may be maximum temperature or maximum pres-

sure restrictions. These inequality constraints are a

key part of the optimization problem statement

and can have a profound effect on the optimum 

operating point. In most cases, the optimum lies on

a constraint.

Step 4. Simplify the model and objective function.
Before undertaking any computation, the mathemat-

ical statement developed in steps 1–3 may be simpli-

fied to be compatible with the most effective solution

techniques. A nonlinear objective function and non-

linear constraints can be linearized in order to use a

fast, reliable optimization method such as linear pro-

gramming.

Step 5. Compute the optimum. This step involves

choosing an optimization technique and calculating the

optimum set points. Most of the literature on the sub-

ject of optimization is concerned with this step. Over

the past 20 years, much progress has been made in de-

veloping efficient and robust numerical methods for

optimization calculations (Edgar et al., 2001; Griva

et al., 2008; Nocedal and Wright, 2006). Virtually all

optimization methods are iterative; thus a good 

initial estimate of the optimum can reduce the re-

quired computer time.

Step 6. Perform sensitivity studies. It is useful to

know which parameters in an optimization problem

are the most important in determining the optimum.

By varying model and cost parameters individually

and recalculating the optimum, the most sensitive 

parameters can be identified.

Example 19.1 illustrates the six steps.
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Figure 19.3 A flow diagram of a chemical plant 

(Example 19.1).

EXAMPLE 19.1

A section of a chemical plant makes two specialty products

(E, F) from two raw materials (A, B) that are in limited

supply. Each product is formed in a separate process as

shown in Fig. 19.3. Raw materials A and B do not have to be

totally consumed. The reactions involving A and B are as

follows:

The processing cost includes the costs of utilities and

supplies. Labor and other costs are $200/day for process 1

and $350/day for process 2. These costs occur even if the

production of E or F is zero. Formulate the objective function

as the total operating profit per day. List the equality and

inequality constraints (Steps 1, 2, and 3).

Process 2:  A + 2B : F

Process 1:  A + B : E

Table 19.1 Alternative Operating Objectives for a Fluidized Catalytic Cracker 

(modified from Latour, 1979)

1. Maximize gasoline yield subject to a specified feed rate.

2. Minimize feed rate subject to required gasoline production.

3. Maximize conversion to light products subject to load and compressor/regenerator

constraints.

4. Optimize yields subject to fixed feed conditions.

5. Maximize gasoline production with specified cycle oil production.

6. Maximize feed with fixed product distribution.

7. Maximize FCC gasoline plus olefins for alkylate.
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19.3 Unconstrained and Constrained Optimization 401

Available information

Maximum Available

Raw Material (lb/day) Cost (¢/lb)

A 40,000 15

B 30,000 20

Reactant Maximum

Requirements Production

(lb) per lb Processing Selling Price Level

Process Product Product Cost of Product (lb/day)

1 E 2/3 A, 1/3 B 15 ¢/lb E 40 ¢/lb E 30,000

2 F 1/2 A, 1/2 B 5 ¢/lb F 33 ¢/lb F 30,000

SOLUTION

The optimization problem is formulated using the first three

steps delineated above.

Step 1. The relevant process variables are the mass flow rates

of reactants and products (see Fig. 19.3):

Step 2. In order to use Eq. 19-1 to compute the operating

product per day, we need to specify product sales income,

feedstock costs, and operating costs:

(19-2)

(19-3)

(19-4)

Substituting into (19-1) yields the daily profit:

(19-5) = 0.25x3 + 0.28x4 - 0.15x1 - 0.2x2 - 550

- 0.15x3 - 0.05x4 - 350 - 200

 P = 0.4x3 + 0.33x4 - 0.15x1 - 0.2x2 

+ 350 + 200

+ 0.05x4   Operating costs ($/day) = OC = 0.15x3 

Feedstock costs ($/day) =a
r

FrCr = 0.15x1 + 0.2x2

Sales income ($/day) =a
s

FsVs = 0.4x3 + 0.33x4

x4 = lb/day F produced

x3 = lb/day E produced

x2 = lb/day B consumed

 x1 = lb/day A consumed

Step 3. Not all variables in this problem are unconstrained.

First consider the material balance equations, obtained

from the reactant requirements, which in this case comprise

the process operating model:

(19-6a)

(19-6b)

The limits on the feedstocks and production levels are:

(19-7a)

(19-7b)

(19-7c)

(19-7d)

Equations (19-5) through (19-7) constitute the optimization

problem to be solved. Because the variables appear linearly

in both the objective function and constraints, this formulation

is referred to as a linear programming problem, which is dis-

cussed in Section 19.4.

0 … x4 … 30,000

0 … x3 … 30,000

0 … x2 … 30,000

0 … x1 … 40,000

x2 = 0.333x3 + 0.5x4

x1 = 0.667x3 + 0.5x4

19.3 UNCONSTRAINED AND
CONSTRAINED OPTIMIZATION

Unconstrained optimization refers to the situation

where there are no inequality constraints and all

equality constraints can be eliminated by variable

substitution in the objective function. First we con-

sider single-variable optimization, followed by opti-

mization problems with multiple variables. Because

optimization techniques are iterative in nature, we

focus mainly on efficient methods that can be applied

on-line. Most RTO applications are multivariable

problems, which are considerably more challenging

than single-variable problems.

19.3.1 Single-Variable Optimization

Some RTO problems involve determining the value of

a single independent variable that maximizes (or min-

imizes) an objective function. Examples of single-

variable optimization problems include optimizing the

reflux ratio in a distillation column or the air/fuel ratio

in a furnace. Optimization methods for single-variable



EXAMPLE 19.2

A free radical reaction involving nitration of decane is carried

out in two sequential reactor stages, each of which operates

like a continuous stirred-tank reactor (CSTR). Decane and

nitrate (as nitric acid) in varying amounts are added to each

reactor stage, as shown in Fig. 19.4. The reaction of nitrate

with decane is very fast and forms the following products by

successive nitration: DNO3, D(NO3)2, D(NO3)3, D(NO3)4,

and so on. The desired product is DNO3, whereas dinitrate,

trinitate, etc., are undesirable products.

The flow rates of D1 and D2 are chosen to satisfy 

temperature requirements in the reactors, while N1 and N2

are optimized to maximize the amount of DNO3 produced

from stage 2, subject to satisfying an overall level of nitration.

In this case, we stipulate that (N1 � N2)/(D1 � D2) � 0.4.
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This equation can be derived from the steady-state equa-

tions for a continuous stirred reactor with the assumption that

all reaction rate constants are equal.

Formulate a one-dimensional search problem in r1 that will

permit the optimum values of r1 and r2 to be found. Employ

quadratic interpolation using an initial interval of 0 � r1 � 0.8.

Use enough iterations so that the final value of fDNO3 is

within � 0.0001 of the maximum.

SOLUTION

The six steps described earlier are used to formulate the 

optimization problem.

Step 1. Identify the process variables. The process variables

to be optimized are N1 and N2, the nitric acid molar flow rates

for each stage. Because D1 and D2 are specified, we can just

as well use r1 and r2, because the conversion model is stated

in terms of r1 and r2.

Step 2. Select the objective function. The objective is to

maximize production of DNO3 which can be made into use-

ful products, while other nitrates cannot. We assume that

the unwanted byproducts have a value of zero. The objec-

tive function f is given in (19-9). We do not need to state it

explicitly as a profit function, as in Eq. 19-1, because the

economic value (selling price) of DNO3 is merely a multi-

plicative constant.

Step 3. Develop models for the process and constraints. The

values of N1 and N2 are constrained by the overall 

nitration level:

(19-10)

which can be expressed in terms of r1 and r2 as

(19-11)
r1D1 + r2D1 + r2D2

D1 + D2
 = 0.4

N1 + N2

D1 + D2
 = 0.4

problems are typically based on the assumption that

the objective function f(x) is unimodal with respect

to x over the region of the search. In other words, a

single maximum (or minimum) occurs in this region.

To use these methods, it is necessary to specify upper

and lower bounds for xopt, the optimum value of x, by

evaluating f(x) for trial values of x within these

bounds and observing where f(x) is a maximum (or

minimum). The values of x nearest this apparent

optimum are specified to be the region of the search.

This region is also referred to as the interval of uncer-
tainty or bracket, and is used to initiate the formal 

optimization procedure.

Efficient single-variable (or one-dimensional) opti-

mization methods include Newton and quasi-Newton

methods and polynomial approximation (Edgar et al.,

2001). The second category includes quadratic interpo-

lation, which utilizes three points in the interval of un-

certainty to fit a quadratic polynomial to f(x) over this

interval. Let xa, xb, and xc denote three values of x in

the interval of uncertainty and fa, fb and fc denote the

corresponding values of f(x). Then a quadratic polyno-

mial, , can be fit to these data

to provide a local approximation to f(x). The resulting

equation for can be differentiated, set equal to

zero, and solved for its optimum value, which is denoted

by x*. The expression for x* is

(19-8)

After one iteration, x* usually is not equal to xopt, 

because the true function f(x) is not necessarily qua-

dratic. However, x* is expected to be an improvement

over xa, xb, and xc. By saving the best two of the three

previous points and finding the actual objective func-

tion at x*, the search can be continued until conver-

gence is indicated.

x* = 1

2
 

(x2
b - x2

c) fa + (x2
c - x2

a) fb + (x2
a - x2

b) fc

(xb - xc) fa + (xc - xa) fb + (xa - xb) fc

fN (x)

fN(x) = a0 + a1x + a2x2

1 2
F1 F2

D1

Ni = mol/s nitric acid (to stage i)

Di = mol/s decane (to stage i)

Fi = mol/s reactor product (from stage i)

D2

N1 N2

Figure 19.4 A schematic diagram of a two-stage nitration

reactor.

There is an excess of D in each stage, and D1 � D2 �
0.5 mol/s. A steady-state reactor model has been developed

to maximize selectivity. Define r1 N1/D1 and r2

N2/(D1 � D2). The amount of DNO3 leaving stage 2 (as mol/s

in F2) is given by

(19-9)fDNO3 = 
r1D1

(1 + r1)2(1 + r2)
 + 

r2D2

(1 + r1)(1 + r2)2

�
�

�
�
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Inequality constraints on r1 and r2 do exist, namely, r1 � 0 and

r2 � 0—because all Ni and Di are positive. These constraints

can be ignored except when the search method incorrectly

leads to negative values of r1 or r2.

Step 4. Simplify the model. Because D1 � D2 � 0.5, then,

from (19-9),

(19-12)

We select r1 to be the independent variable for the one-

dimensional search in Eq. 19-9, and then r2 is a dependent

variable. Because r1 and r2 are nonnegative, Eq. 19-12 im-

plies that r1 � 0.8 and r2 � 0.4. After variable substitution,

there is only one independent variable (r1) in the objective

function.

Step 5. Compute the optimum. Because r1 lies between 0

and 0.8 (the interval of uncertainty), select the three inte-

rior points for the search to be r1 � 0.2, 0.4, and 0.6. The

corresponding values of r2 are 0.3, 0.2, and 0.1. Table 19.2

shows the numerical results for three iterations, along with

r2 = 0.4 - 0.5r1

objective function values. After the first iteration, the worst

point (r1 � 0.2) is discarded and the new point (r � 0.4536)

is added. After the second iteration, the point with the low-

est value of f(r1 � 0.6) is discarded. The tolerance on the ob-

jective function change is satisfied after only three iterations,

with the value of r1 that maximizes fDNO3 computed to be

. The converted mononitrate is 0.1348 mol/s

from stage 2; the remainder of the nitrate is consumed to

make higher molecular weight byproducts.

Step 6. Perform sensitivity studies. Based on the results in

Table 19.2, the yield is not significantly different from the

optimum as long as 0.4 � r1 � 0.6. Practically speaking, this

situation is beneficial, because it allows a reasonable range

of decane flows to achieve temperature control. If either D1

or D2 changes by more than 10%, we should recalculate the

optimum. There also might be a need to reoptimize r1 and

r2 if ambient conditions change (e.g., summer vs. winter op-

eration). Even a 1% change in yield can be economically

significant if production rates and the selling price of the

product are sufficiently high.

ropt
1  = 0.4439
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Table 19.2 Search Iterations for Example 19.2 (Quadratic Interpolation)

Iteration xa fa xb fb xc fc x*

1 0.2 0.1273 0.4 0.1346 0.6 0.1324 0.4536

2 0.4 0.1346 0.6 0.1324 0.4536 0.1348 0.4439

3 0.4 0.1346 0.4536 0.1348 0.4439 0.1348 (not needed)

ropt
1  = 0.4439

If the function to be optimized is not unimodal, then

some care should be taken in applying the quadratic in-

terpolation method. Selecting multiple starting points

for the initial scanning before quadratic interpolation is

initiated ensures that an appropriate search region has

been selected. For a single variable search, scanning

the region of search is a fairly simple and fast proce-

dure, but evaluating the presence of multiple optima

can become problematic for multivariable optimization

problems.

19.3.2 Multivariable Optimization

In multivariable optimization problems, there is no

guarantee that a given optimization technique will find

the optimum point in a reasonable amount of computer

time. The optimization of a general nonlinear multi-

variable objective function, f(x) � f (x1, x2, . . . , ),

requires that efficient and robust numerical tech-

niques be employed. Efficiency is important, because

the solution requires an iterative approach. Trial-and-

error solutions are usually out of the question for

problems with more than two or three variables. For

xNV

example, consider a four-variable grid search, where

an equally spaced grid for each variable is prescribed.

For 10 values of each of the 4 variables, there are 104

total function evaluations required to find the best an-

swer out of the 104 grid intersections. Even then, this

computational effort may not yield a result sufficiently

close to the true optimum. Grid search is a very ineffi-

cient method for multivariable optimization.

The difficulty of optimizing multivariable functions

often is resolved by treating the problem as a series of

single-variable (or one-dimensional) searches. From a

given starting point, a search direction is specified, and

then the optimum point along that direction is deter-

mined by a one-dimensional search. Then a new search

direction is determined, followed by another one-

dimensional search in that direction. In choosing an 

algorithm to determine the search direction, we can

draw upon extensive numerical experience with various

optimization methods (Griva et al, 2008; Nocedal and

Wright, 2006; Edgar et al., 2001).

Multivariable RTO of nonlinear objective functions

using function derivatives is recommended with more

than two variables. In particular, the conjugate gradient



and quasi-Newton methods (Griva et al, 2008; Edgar 

et al., 2001) are extremely effective in solving such

problems. Applications of multivariable RTO have 

experienced rapid growth as a result of advances in

computer hardware and software. We consider such

methods in more detail in Section 19.5.

An important application of unconstrained optimiza-

tion algorithms is to update parameters in steady-state

models from the available data. Usually, only a few

model parameters are estimated on-line, and then

RTO is based on the updated model. Guidelines for

parameter estimation have been provided by Marlin

and Hrymak (1997) and Forbes et al. (1994).

Most practical multivariable problems include con-

straints, which must be treated using enhancements of

unconstrained optimization algorithms. The next two

sections describe two classes of constrained optimiza-

tion techniques that are used extensively in the process

industries. When constraints are an important part of an

optimization problem, constrained techniques must be

employed, because an unconstrained method might

produce an optimum that violates the constraints, lead-

ing to unrealistic values of the process variables. The

general form of an optimization problem includes a

nonlinear objective function (profit) and nonlinear con-

straints and is called a nonlinear programming problem.

(19-13)

(19-14)

(19-15)

In this case, there are NV process variables, NE equality

constraints and NI inequality constraints.

Skogestad (2000) and Perkins (1998) have discussed

the interplay of constraints, and the selection of the

optimal operating conditions. Skogestad identified

three different cases for RTO that are illustrated in

Fig. 19.5. In each case, a single variable x is used to

maximize a profit function, f(x).

gi(x1, x2, . . . . ,  xNV
) …  0    (i = 1, . . . , NI)

 subject to:  hi(x1, x2, . . . . ,  xNV
) = 0 (i = 1, . . . , NE)

  maximize   f(x1, x2, . . . , xNV
)

(a) Constrained optimum: The optimum value of

the profit is obtained when x � xa. Implementa-

tion of an active constraint is straightforward;

for example, it is easy to keep a valve closed.

(b) Unconstrained flat optimum: In this case, the

profit is insensitive to the value of x, and small

process changes or disturbances do not affect

profitability very much.

(c) Unconstrained sharp optimum: A more diffi-

cult problem for implementation occurs when

the profit is sensitive to the value of x. If possi-

ble, we may want to select a different input vari-

able for which the corresponding optimum is

flatter, so that the operating range can be wider

without reducing the profit very much.

In some cases, an actual process variable (such as

yield) can be the objective function, and no process

model is required. Instead, the process variables are

varied systematically to find the best value of the objec-

tive function from the specific data set, sometimes in-

volving design of experiments as discussed by Myers

and Montgomery (2002). In this way, improvements in

the objective function can be obtained gradually. Usu-

ally, only a few variables can be optimized in this way,

and it is limited to batch operations. Methods used in

industrial batch process applications include EVOP

(evolutionary operation) and response surface analysis

(Edwards and Jutan, 1997; Box and Draper, 1998;

Myers and Montgomery, 2002).

19.4 LINEAR PROGRAMMING

An important class of constrained optimization prob-

lems has a linear objective function and linear con-

straints. The solution of these problems is highly

structured and can be obtained rapidly via linear pro-
gramming (LP). This powerful approach is widely used

in RTO applications.
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Figure 19.5 Three types of optimal operating conditions.
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For processing plants, different types of linear
inequality and equality constraints often arise that

make the LP method of great interest. The constraints

can change on a daily or even an hourly basis.

1. Production constraints. Equipment throughput

restrictions, storage limits, or market constraints

(no additional product can be sold) are frequently

encountered in manufacturing. These constraints

have the form of xi � ci or gi � xi � ci � 0

(cf. Eq. 19-15).

2. Raw material limitations. Feedstock supplies are

frequently limited owing to supplier capability or

production levels of other plants within the same

company.

3. Safety restrictions. Common examples are limita-

tions on operating temperature and pressure.

4. Product specifications. Constraints placed on the

physical properties or composition of the final

product fall into this category. For blends of vari-

ous liquid products in a refinery, it is commonly

assumed that a blend property can be calculated by

averaging pure component properties. Thus, a

blend of Nc components with physical property val-

ues 	k and volume fractions yk (based on volumet-

ric flow rates) has a calculated blend property of

(19-16)

If there is an upper limit 
 on , the resulting

constraint is

(19-17)

5. Material and energy balances. Although items

1–4 generally are considered to be inequality

constraints, the steady-state material and energy

balances are equality constraints.

19.4.1 Linear Programming Concepts

For simplicity, consider a multivariable process with

two inputs (u1, u2) and two outputs (y1, y2). The set of

inequality constraints for u and y define an operating
window for the process. A simple example of an oper-

ating window for a process with two inputs (to be opti-

mized) is shown in Fig. 19.6. The upper and lower

limits for u1 and u2 define a rectangular region. There

are also upper limits for y1 and y2 and a lower limit for

y2. For a linear process model,

(19-18)

the inequality constraints on y can be converted to con-

straints in u, which reduces the size of the operating

y = Ku

a
Nc

k =1

	kyk …   


	

	 = a
Nc

k =1

	kyk

window to the shaded region in Fig. 19.6. If a linear

cost function is selected, the optimum operating condi-

tion occurs on the boundary of the operating window at

a point where constraints intersect (Griva et al, 2008;

Edgar et al., 2001). These points of intersections are

called vertices. Thus, in Fig. 19.6 the optimum operat-

ing point, uopt occurs at one of the seven vertices,

points A–G. For the indicated linear profit function

(dashed lines), the maximum occurs at vertex D. This

graphical concept can be extended to problems with

more than two inputs because the operating window is

a closed convex region, providing that the process

model, cost function, and inequality constraints are all

linear. Using Eq. 19-18, we can calculate the optimal

set points ysp from the value of uopt.

The number of independent variables in a con-

strained optimization problem can be found by a proce-

dure analogous to the degrees of freedom analysis in

Chapter 2. For simplicity, suppose that there are no

constraints. If there are NV process variables (which

includes process inputs and outputs) and the process

model consists of NE independent equations, then the

number of independent variables is NF � NV � NE.

This means NF set points can be specified independently

to maximize (or minimize) the objective function. The

corresponding values of the remaining (NV � NF) vari-

ables can be calculated from the process model. How-

ever, the presence of inequality constraints that can

become active changes the situation, because the NF set

points cannot be selected arbitrarily. They must satisfy

all of the equality and inequality constraints.

The standard linear programming (LP) problem can

be stated as follows:

(19-19)minimize f = a
NV

r =1

cixi
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Operating
window

A
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D

E

u 1
u1
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u 2
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1

Low lim
it o

n y 2

High
 lim

it o
n y 2

Increasing profit
(dashed lines)

Figure 19.6 Operating window for a 2 � 2 optimization

problem. The dashed lines are objective function contours,

increasing from left to right. The maximum profit occurs

where the profit line intersects the constraints at vertex D.

c19Real-TimeOptimization.qxd  11/11/10  8:11 PM  Page 405



EXAMPLE 19.3

Consider a simple version of a refinery blending and production

problem. This example is more illustrative of a scheduling ap-

plication (Level 5 in Fig. 19.1) that has been used extensively

since the 1960s in the chemical process industries. Figure 19.7 is

a schematic diagram of feedstocks and products for the refinery

(costs and selling prices are given in parentheses). Table 19.3

lists the information pertaining to the expected yields of the two

types of crude oils when processed by the refinery. Note that

the product distribution from the refinery is quite different for

the two crude oils. Table 19.3 also lists the limitations on the es-

tablished markets for the various products in terms of the al-

lowed maximum daily production. In addition, processing costs

are given.

To set up the linear programming problem, formulate an

objective function and constraints for the refinery operation.

From Fig. 19.7, six variables are involved, namely, the flow

rates of the two raw materials and the four products. Solve

the LP using the Excel Solver.

SOLUTION

Let the variables be

The linear objective function f (to be maximized) is the profit,

the difference between income and costs:

where the following items are expressed as dollars per day:

(19-22)

(19-23)

The yield data provide four linear equality constraints (ma-

terial balances) relating x1 through x6:

(19-24)

(19-25)

(19-26)

(19-27)

Other constraints that exist or are implied in this problem

are given in Table 19.3, which lists certain restrictions on the

{xi} in terms of production limits. These can be formulated as

inequality constraints:

(19-28)

(19-29)

(19-30)Fuel oil:  x5 …  6,000

Kerosene:  x4 …  2,000

Gasoline:  x3 …  24,000

 Residual:  x6 = 0.05x1 + 0.10x2

 Fuel oil:  x5 = 0.10x1 + 0.36x2

 Kerosene:  x4 = 0.05x1 + 0.10x2

 Gasoline:  x3 = 0.80x1 + 0.44x2

f = 36x3 + 24x4 + 21x5 + 10x6 - 24.5x1 - 16x2

c Income = 36x3 + 24x4 + 21x5 +  10x6

Raw material cost = 24x1 + 15x2

Processing cost = 0.5x1 + x2

s

f = income - raw material cost - processing cost

 x6 = bbl/day of residual

 x5 = bbl/day of fuel oil

 x4 = bbl/day of kerosene

 x3 = bbl/day of gasoline

 x2 = bbl/day of crude #2

 x1 = bbl/day of crude #1
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subject to

(19-20)

(19-21)

The LP solution can be obtained by a method called the

Simplex algorithm (Edgar et al., 2001; Griva et al.,

2008). The Simplex algorithm can handle virtually any

number of inequality constraints and any number of

variables in the objective function (subject to computer

time limitations, of course). Maximization problems can

be converted to the form of (19-19) by multiplying the

objective function by �1. Inequality constraints are

handled by the introduction of artificial variables called

slack variables, which convert the inequality constraints

(19-20) to equality constraints by subtracting a non-

negative slack variable from the left-hand side of each

inequality. The slack variable then provides a measure

of the distance from the constraint for a given set of

variables, and these artificial variables are introduced

for computational purposes. When a slack variable is

zero, the constraint is active. Because there are a lim-

ited number of intersections of constraint boundaries

where the optimum must occur, the amount of computer

time required to search for the optimum is reduced con-

siderably compared to more general nonlinear optimiza-

tion problems. Hence, many nonlinear optimization

problems (even those with nonlinear constraints) are

often linearized so that the LP algorithm can be

employed. This procedure allows optimization problems

with over 100,000 variables to be solved.

In the 1980s, a major change in optimization soft-

ware occurred when linear programming solvers and

then nonlinear programming solvers were interfaced

to spreadsheet software for desktop computers. The

spreadsheet has become a popular user interface for

entering and manipulating numeric data. Spreadsheet

software increasingly incorporates analytic tools that

are accessible from the spreadsheet interface and permit

access to external databases. For example, Microsoft

Excel incorporates an optimization-based routine

called Solver that operates on the values and formulas

of a spreadsheet model. Current versions (4.0 and

later) include LP and NLP solvers and mixed integer

programming (MIP) capability for both linear and

nonlinear problems. The user specifies a set of cell 

addresses to be independently adjusted (the decision

variables), a set of formula cells whose values are to

be constrained (the constraints), and a formula cell

designated as the optimization objective, as shown in

the following example.

 a
NV

j =1

a
'

ijxj = di i  = 1, 2, . . . NE

 a
NV

j =1

aijxj Ú bi  i  = 1, 2, . . . NI

  xi Ú  0  i = 1, 2, . . . NV
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One other set of constraints, although not explicitly stated in

the formulation of the problem, is composed of the nonnega-

tivity restrictions, namely, xi � 0. All process variables must

be zero or positive, because it is meaningless to have negative

production rates.

The formal statement of the linear programming problem

is now complete, consisting of Eqs. 19-23 to 19-30. We can

now proceed to solve the LP problem using the Excel Solver

option. The problem statement can be introduced into the

spreadsheet as illustrated in the Solver Parameter dialog box

in Fig. 19.8. There are four equality constraints and three in-

equality constraints; the first three equality constraints are

shown in the dialog box in Fig. 19.8. The objective function is

in the target cell A10, and the six variable cells are in cells

A4–F4.

In the refinery blending problem, the optimum x
obtained by Excel occurs at the intersection of the gasoline

and kerosene constraints. For these active constraints, the

optimum is therefore

f   = $286,758/day

x6  = 2,000

x5  = 5,103

x4  = 2,000 (kerosene constraint)

x3  = 24,000 (gasoline constraint)

x2  = 6,897

x1  = 26,207
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Refinery

Costs Sales prices

($24/bbl)

($15/bbl)

Crude oil #1

Crude oil #2

Gasoline ($36/bbl)

Kerosene ($24/bbl)

Fuel oil ($21/bbl)
Residual ($10/bbl)

Figure 19.7 Refinery input and output schematic.

Table 19.3 Data for the Refinery Feeds and Products

Maximum

allowable

production

Crude #1 Crude #2 (bbl/day)

Gasoline 80 44 24,000

Kerosene 5 10 2,000

Fuel oil 10 36 6,000

Processing 

cost ($/bbl) 0.50 1.00

Volume percent yield

Figure 19.8 Solver parameter dialog

box for Example 19.3 (Refinery LP).

In the process industries, the Simplex algorithm

has been applied to a wide range of problems, such as

the optimization of a total plant utility system. A gen-

eral steam utility configuration, typically involving as

many as 100 variables and 100 constraints, can be eas-

ily optimized using linear programming (Bouilloud,

1969; Edgar et al., 2001; Marlin, 2000). The process

variables can be updated on an hourly basis because
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steam demands in process units can change. In addi-

tion, it may be economical to generate more electric-

ity locally during times of peak demand, due to

variable time-of-day electricity pricing by utilities.

Larger LP problems are routinely solved in refineries,

numbering in the thousands of variables and spanning

several months of operations (Pike, 1986).

19.5 QUADRATIC AND NONLINEAR
PROGRAMMING

The most general optimization problem occurs when

both the objective function and constraints are nonlin-

ear, a case referred to as nonlinear programming (NLP),

which is stated mathematically in Eqs. 19-13 to 19-15.

The leading constrained optimization methods include

(Nocedal and Wright, 2006; Griva et al., 2008; Edgar

et al., 2001)

1. Quadratic programming

2. Generalized reduced gradient

3. Successive quadratic programming (SQP)

4. Successive linear programming (SLP)

19.5.1 Quadratic Programming

In quadratic programming (QP), the objective function

is quadratic and the constraints are linear. Although

the solution is iterative, it can be as obtained as quickly

as in linear programming.

A quadratic programming problem minimizes a qua-

dratic function of n variables subject to m linear in-

equality or equality constraints. A convex QP is the

simplest form of a nonlinear programming problem

with inequality constraints. A number of practical opti-

mization problems are naturally posed as a QP prob-

lem, such as constrained least squares and some model

predictive control problems. 

In compact notation, the quadratic programming

problem is

(19-31)

(19-32)

where c is a vector (n � 1), A is an m � n matrix, and Q
is a symmetric n � n matrix.

The equality constraint of (19-32) may contain some

constraints that were originally inequalities but have

been converted to equalities by introducing slack vari-

ables, as is done for LP problems. Computer codes for

quadratic programming allow arbitrary upper and

lower bounds on x; here we assume x � 0 for simplic-

ity. QP software finds a solution by using LP opera-

tions to minimize the sum of constraint violations.

Because LP algorithms are employed as part of the QP

 x Ú 0
Subject to   Ax = b

Minimize   f (x) = cT x + 1

2
 xT Qx

calculations, most commercial LP software also con-

tains QP solvers.

19.5.2 Nonlinear Programming Algorithms 
and Software

One of the older and most accessible NLP algorithms

uses iterative linearization and is called the generalized
reduced gradient (GRG) algorithm. The GRG algo-

rithm employs linear or linearized constraints and uses

slack variables to convert all constraints to equality

constraints. It then develops a reduced basis by elimi-

nating a subset of the variables, which is removed by

inversion of the equalities. The gradient or search

direction is then expressed in terms of this reduced

basis. The GRG algorithm is used in the Excel Solver.

CONOPT is a reduced gradient algorithm that works

well for large-scale problems and nonlinear constraints.

CONOPT and GRG work best for problems where the

number of degrees of freedom is small (the number of

constraints is nearly equal to the number of variables).

Successive quadratic programming (SQP) solves a se-

quence of quadratic programs that approach the solu-

tion of the original NLP by linearizing the constraints

and using a quadratic approximation to the objective

function. Lagrange multipliers are introduced to handle

constraints, and the search procedure generally employs

some variation of Newton’s method, a second-order

method that approximates the Hessian matrix using

first derivatives (Biegler et al., 1997; Edgar et al., 2001).

MINOS and NPSOL, software packages developed in

the 1980s, are suitable for programs with large numbers

of variables (more variables than equations) and con-

straints that are linear or nearly linear. Successive linear
programming (SLP) is used less often for solving RTO

problems. It requires linear approximations of both the

objective function and constraints but sometimes ex-

hibits poor convergence to optima that are not located

at constraint intersections.

Software libraries such as GAMS (General Algebraic

Modeling System) or NAG (Numerical Algorithms

Group) offer one or more NLP algorithms, but rarely

are all algorithms available from a single source. No

single NLP algorithm is best for every problem, so several

solvers should be tested on a given application. See 

Nocedal and Wright (2006) for more details on available

software.

All of the NLP methods have been utilized to solve

nonlinear programming problems in the field of chemi-

cal engineering design and operations. Although in the

following example we illustrate the use of GRG in the

Excel Solver, large-scale NLP problems in RTO are

more frequently solved using SQP owing to its superior

ability in handling a large number of active constraints.
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EXAMPLE 19.4

Consider the problem of minimizing fuel costs in a boiler-

house. The boilerhouse contains two turbine generators, each

of which can be simultaneously operated with two fuels: fuel

oil and medium Btu gas (MBG); see Fig. 19.9. The MBG is

produced as a waste off-gas from another part of the plant,

and it must be flared if it cannot be used on-site. The goal of

the RTO scheme is to find the optimum flow rates of fuel oil

and MBG and provide 50 MW of power at all times, so that

steady-state operations can be maintained while minimizing

costs. It is desirable to use as much of the MBG as possible

(which has zero cost) while minimizing consumption of expen-

sive fuel oil. The two turbine generators (G1, G2) have differ-

ent operating characteristics; the efficiency of G1 is higher

than that of G2.

Data collected on the fuel requirements for the two gener-

ators yield the following empirical relations:

(19-33)

(19-34)

where

P1 � power output (MW) from G1

P2 � power output (MW) from G2

x1 � fuel oil to G1 (tons/h)

x2 � MBG to G1 (fuel units/h)

x3 � fuel oil to G2 (tons/h)

x4 � MBG to G2 (fuel units/h)

The total amount of MBG available is 5 fuel units/h. Each

generator is also constrained by minimum and maximum

power outputs: generator 1 output must lie between 18 and

30 MW, while generator 2 can operate between 14 and 

25 MW.

Formulate the optimization problem by applying the

methodology described in Section 19.2. Then solve for the

optimum operating conditions (x1, x2, x3, x4, P1, P2) using the

Excel Solver.

 P2 = 4.0x3 + 0.05x2
3 + 3.5x4 + 0.02x2

4

 P1 = 4.5x1 + 0.1x2
1 + 4.0x2 + 0.06x2

2

SOLUTION

Step 1. Identify the variables. Use x1 through x4 as the four

process variables. Variables P1 and P2 are dependent because

of the equality constraints (see Steps 3 and 4).

Step 2. Select the objective function. The way to minimize

the cost of operation is to minimize the amount of fuel oil

consumed. This implies that we should use as much MBG as

possible, because it has zero cost. The objective function can

be stated in terms of variables defined above; that is, we wish

to minimize

(19-35)

Step 3. Specify process model and constraints. The con-

straints given in the problem statement are as follows:

(1)

(19-33)

(19-34)

(2) (19-36)

(19-37)

(3) (19-38)

(4) (19-39)

Note that all variables defined above are nonnegative.

Step 4. Simplify the model and objective function.
Although there are two independent variables in this prob-

lem (six variables and four equality constraints), there is no

need to carry out variable substitution or further simplifica-

tion, because the Excel Solver can easily handle the solution

of this fairly small NLP problem.

Step 5. Compute the optimum. The Solver dialog box is

shown in Fig. 19.10. The objective function value is in the

target cell of the spreadsheet, written as a function of x1 � x4

(Eq. 19-35). These four variables are changed in the series of

cells A4–D4. The constraints shown above are expressed in

cells B12, B9, E12, and E9.

At the optimum f � 6.54, x1 � 1.82, and x3 � 4.72, meaning

that 1.82 tons/h of fuel oil are delivered to generator G1,

while 4.72 tons/h are used in G2. G1 utilizes all of the MBG

(x2), while G2 uses none (x4 � 0), due to its lower efficiency

with MBG.

Step 6. Perform a sensitivity analysis. Many operating

strategies may be satisfactory, though not optimal, for 

the above problem. The procedure discussed above can

also be repeated if parameters in the original constraint

equations are changed as plant operating conditions vary.

For example, suppose the total power requirement is

changed to 55 MW; as an exercise, determine whether any

of the active constraints change for the increased power 

requirement. 

 MBG supply  5  = x2 + x4

 Total power 50  = P1 + P2

 14 …  P2 …  25

 Power range 18 …  P1 …  30

P2 = 4.0x3 + 0.05x2
3 + 3.5x4 + 0.2x2

4

 P1 = 4.5x1 + 0.1x2
1 + 4.0x2 + 0.06x2

2

 Power relations 

f = x1 + x3
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G1 G2

P1

x1x2 x3 x4

P2

MBG Fuel oil

Figure 19.9 The allocation of two fuels in a boilerhouse with

two turbine generators (G1, G2).



410 Chapter 19 Real-Time Optimization

SUMMARY

chapter. A wide range of optimization techniques can

be used, depending on (1) the number of variables,

(2) the nature of the equality and inequality con-

straints, and (3) the nature of the objective function.

Because we have presented only introductory concepts

in optimization here, the reader is advised to consult

other comprehensive references on optimization such

as Edgar et al. (2001) before choosing a particular

method for RTO.

Although the economic benefits from feedback control

are not always readily quantifiable, RTO offers a direct

method of maximizing the steady-state profitability of a

process or group of processes. The optimization of the

set points is performed as frequently as necessary, 

depending on changes in operating conditions or con-

straints. It is important to formulate the optimization

problem carefully; a methodology for formulation and

solution of optimization problems is presented in this
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EXERCISES

19.1 A laboratory filtration study has been carried out at

constant rate. The filtration time (tf in hours) re-

quired to build up a specific cake thickness has been

correlated as

where xi � mass fraction solids in the cake. Find the value

of xi that maximizes tf using quadratic interpolation.

19.2 The thermal efficiency of a natural gas boiler versus

air/fuel ratio is plotted in Fig. E19.2. Using physical argu-

ments, explain why a maximum occurs.

tf = 5.3 xi e
-3.6xi + 2.7

19.3 A plasma etcher has a yield of good chips that is influ-

enced by pressure (X1) and gas flow rate (X2). Both X1

and X2 are scaled variables (0 � Xi � 2). A model has

been developed based on operating data as follows:

Use Excel to maximize yield Y, using starting points of (1,1)

and (0,0).

19.4 A specialty chemical is produced in a batch reactor. The

time required to successfully complete one batch of product de-

pends on the amount charged to (and produced from) the reac-

tor. Using reactor data, a correlation is t � 2.0P 0.4, where P is

the amount of product in pounds per batch and t is given in

hours. A certain amount of nonproduction time is associated

with each batch for charging, discharging, and minor mainte-

nance, namely, 14 h/batch. The operating cost for the batch

system is $50/h. Other costs, including storage, depend on the

Y = -0.1X 4
1 + 0.2X2X 2

1  - 0.09X 2
2  - 0.11X 2

1  + 0.15X1 + 0.5
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Air/fuel ratio

2

Thermal
efficiency

(%)

Figure E19.2

size of each batch and have been estimated to be C1 � $800

Yields (Volume %)

Maximum 

Crude Crude Allowable Production

No. 1 No. 2 Rate (bbl/day)

Gasoline 70 31 6,000

Kerosene 6 9 2,400

Fuel oil 24 60 12,000

19.6 Linear programming is to be used to optimize the opera-

tion of the solvent splitter column shown in Fig. E19.6.

The feed is naphtha, which has a value of $40/bbl in its

alternate use as a gasoline blending stock. The light ends

sell at $50/bbl, while the bottoms are passed through a second

distillation column to yield two solvents. A medium solvent

comprising 50 to 70% of the bottoms can be sold for $70/bbl.,

while the remaining heavy solvent (30 to 50% of the bottoms)

can be sold for $40/bbl.

Another part of the plant requires 200 bbl/day of medium

solvent; an additional 200 bbl/day can be sold to an external

market. The maximum feed that can be processed in column 1

is 2,000 bbl/day. The operational cost (i.e., utilities) associated

P0.7($/yr). The required annual production is 300,000 lb/yr, and

the process can be operated 320 days/yr (24 h/day). Total raw

material cost at this production level is $400,000/yr.

(a) Formulate an objective function using P as the only vari-

able. (Show algebraic substitution.)

(b) What are the constraints on P? 

(c) Solve for the optimum value of P analytically. Check

that it is a minimum. Also check applicable constraints.

19.5 A refinery processes two crude oils that have the yields

shown in the following table. Because of equipment and

storage limitations, production of gasoline, kerosene,

and fuel oil must be limited as shown below. There are

no plant limitations on the production of other products such

as gas oils. The profit on processing crude No. 1 is $2.00/bbl,

and on crude No. 2 it is $1.40/bbl. Find the optimum daily feed

rates of the two crudes to this plant via linear programming

using the Excel Solver.
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with each distillation column is $2.00/bbl feed. The operating

range for column 2 is given as the percentage split of medium

and heavy solvent. Solve the linear programming problem to

determine the maximum revenue and percentages of output

streams in column 2.

19.7 Reconciliation of inaccurate process measurements is an

important problem in process control that can be solved using

optimization techniques. The flow rates of streams B and C

have been measured three times during the current shift

(shown in Fig. E19.7). Some errors in the measurement de-

vices exist. Assuming steady-state operation (wA � constant),

find the optimal value of wA (flow rate in kg/h) that mini-

mizes the sum of the squares of the errors for the material

balance, wA � wC � wB.

19.8 A reactor converts reactant BC to product CB by heat-

ing the material in the presence of an additive A (mole

fraction � xA). The additive can be injected into the

reactor, while steam can be injected into a heating coil

inside the reactor to provide heat. Some conversion can be

obtained by heating without addition of A, and vice versa.

The product CB can be sold for $50 per lb-mol. For 1 lb-mol

of feed, the cost of the additive (in dollars per lb-mol feed) as

a function of xA is given by the formula 2.0 � 10xA � .

The cost of the steam (in dollars per lb-mol feed) as a func-

tion of S is 1.0 � 0.003S � 2.0 � 10�6S2 (S � lb steam/lb-mol

feed). The yield equation is yCB � 0.1 � 0.3xA � 0.0001S �
0.0001xAS.

yCB = 
lb-mol product CB

lb-mol feed

20x2
A

(a) Formulate the profit function (basis of 1.0 lb-mol feed) in

terms of xA and S.

(b) Maximize f subject to the constraints

19.9 Optimization methods can be used to fit equations to

data. Parameter estimation involves the computation

of unknown parameters that minimize the squared

error between data and the proposed mathematical

model. The step response of an overdamped second-order

dynamic process can be described using the equation

where �1 and �2 are process time constants and K is the

process gain.

The following normalized data have been obtained from a

unit step test (K is equal to y(�)):

y(t)

K
 = a1 - 

�1e-t/�1 - �2e-t/�2

�1 - �2
b

0 …  xA  …  1  S Ú 0

f = income - costs
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(1) 92.4 kg/h
(2) 94.3 kg/h
(3) 93.8 kg/h

(1) 11.1 kg/h
(2) 10.8 kg/h
(3) 11.4 kg/h

A B

C

Figure E19.7

Column
1

Column
2

40% Light
ends

Feed
x1

Heavy
solvent

x5

Medium
solvent

x4

60% Bottoms
x2

x3

Figure E19.6

time, t 0 1 2 3 4 5

yi /K 0.0 0.0583 0.2167 0.360 0.488 0.600

t 6 7 8 9 10

yi /K 0.692 0.772 0.833 0.888 0.925

Use Excel with a starting point (1,0) to find values of �1 and �2

that minimize the sum of squares of the errors. Compare your

answer with that obtained using MATLAB.

19.10 A brewery has the capability of producing a range of

beers by blending existing stocks. Two beers (suds

and premium) are currently available, with alcohol

concentrations of 3.5% for suds and 5.0% for pre-

mium. The manufacturing cost for suds is $0.25/gal, and for

premium it is $0.40/gal. In making blends, water can be

added at no cost. An order for 10,000 gal of beer at 4.0%

has been received for this week. There is a limited amount

of suds available (9,000 gal), and, because of aging problems,

the brewery must use at least 2,000 gal of suds this week.

What amounts of suds, premium, and water must be

blended to fill the order at minimum cost?

19.11 A specialty chemicals facility manufactures two products

A and B in barrels. Products A and B utilize the same raw ma-

terial; A uses 120 kg/bbl, while B requires 100 kg/bbl. There is

an upper limit on the raw material supply of 9,000 kg/day. An-

other constraint is warehouse storage space (40 m2 total; both

A and B require 0.5 m2/bbl). In addition, production time is

limited to 7 h per day. A and B can be produced at 20 bbl/h

and 10 bbl/h, respectively. If the profit per bbl is $10 for A and

$14 for B, find the production levels that maximize profit.

19.12 Supervisory control often involves the optimization of

set points in order to maximize profit. Can the same results

be achieved by optimizing PID controller tuning (Kc, �I, �D),

in order to maximize profits? Are regulatory (feedback) con-

trol and supervisory control complementary?



19.13 A dynamic model of a continuous-flow, biological

chemostat has the form

where X is the biomass concentration, S is the substrate con-

centration, and C is a metabolic intermediate concentration.

The dilution rate, D, is an independent variable, which is de-

fined to be the flow rate divided by the chemostat volume.

Determine the value of D, which maximizes the steady-

state production rate of biomass, f, given by

19.14 A reversible chemical reaction, , occurs in the

isothermal continuous stirred-tank reactor shown in

Fig. E19.14. The rate expressions for the forward and

reverse reactions are

Using the information given below, use a numerical search

procedure to determine the value of FB (L/h) that maxi-

mizes the production rate of CB (i.e., the amount of CB that

leaves the reactor, mol B/h). The allowable values of FB are

0 � FB � 200 L/h.

 r2 = k2CB

 r1 = k1CA

A :;  B

f = DX

 S
–
 = -0.9 S [ X - C ] + D [ 10 - S]

 C
–

 = 0.9 S [ X - C ] - 0.7 C - D C

 X– = 0.063 C - D x

Available information

(i) The reactor is perfectly mixed.

(ii) The volume of liquid, V, is maintained constant using an

overflow line (not shown in the diagram).

(iii) The following parameters are kept constant at the

indicated numerical values:

19.15 A reversible chemical reaction, , occurs in the

isothermal continuous stirred-tank reactor shown in

Fig. E19.14. The rate expressions for the forward and

reverse reactions are

where the rate constants have the following temperature

dependence:

Each rate constant has units of h�1, and T is in K.

Use the MATLAB Optimization Toolbox or Excel to de-

termine the optimum values of temperature T(K) and flow

rate FB (L/h) that maximize the steady-state production rate

of component B. The allowable values are 0 � FB � 200 and

300 � T � 500.

Available information

(i) The reactor is perfectly mixed.

(ii) The volume of liquid, V, is maintained constant using an

overflow line (not shown in the diagram).

(iii) The following parameters are kept constant at the indi-

cated numerical values:

 CAF = 0.3 mol A/L  CBF = 0.3 mol B/L

 V = 200 L  FA = 150 L/h

k2 = 6.0 * 106 exp(-5500/T)

k1 = 3.0 * 106 exp(-5000/T)

r1 = k1CA  r2 = k2CB

A :;  B

 k1 = 2h-1  k2 = 1.5 h-1

 CAF = 0.3 mol A / L  CBF = 0.3 mol B/ L

 V = 200 L  FA = 150 L/ h
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