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Appendix K

Contour Mapping and the
Principle of the Argument

The concept of contour mapping is illustrated in 

Fig. K.1. A closed contour Cs in the complex s-plane is

mapped by a transfer function H(s) into another closed

contour CH in the complex H-plane. For each point on

Cs, there is a corresponding point on CH. For example,

three arbitrarily chosen points s1, s2, and s3 on the Cs

contour map into points H(s1), H(s2), and H(s3) on the

CH contour. Suppose that Cs is traversed in the clock-

wise direction, starting at s1 and continuing along Cs to

s2 and s3, before eventually returning to s1. Then CH

will also be traversed, starting at H(s1) and continuing

to H(s2) and to H(s3) before eventually returning to the

starting point. In Fig. K.1, a clockwise traverse of Cs re-

sults in a clockwise traverse of CH. However, this is not

always the case; a counterclockwise traverse of CH

could result, depending on the particular H(s) that is

considered.

The concept of contour encirclement plays a key role

in Nyquist stability theory. A contour is said to make a

clockwise encirclement of a point if the point is always

to the right of the contour as the contour is traversed in

the clockwise direction. Thus, a single traverse of either

CH or Cs in Fig. K.1 results in a clockwise encirclement

of the origin. The number of encirclements by CH is re-

lated to the poles and zeroes of H(s) that are located

inside of Cs, by a well-known result from complex vari-

able theory (Brown and Churchill, 2004; Franklin et al.,

2005).

Principle of the Argument. Consider a transfer
function H(s) and a closed contour Cs in the
complex s-plane that is traversed in the clockwise
(positive) direction. Assume that Cs does not pass
through any poles or zeroes of H(s). Let N be the
number of clockwise (positive) encirclements of
the origin by contour CH in the complex H-plane.
Define P and Z to be the numbers of poles and

zeroes of H(s), respectively, that are encircled by
Cs in the clockwise direction. Then N � Z � P.

Note that N is negative when P � Z. For this situation,

the CH contour encircles the origin in the counterclock-
wise (or negative) direction. Next, we show that the

Nyquist Stability Criterion is based on a direct applica-

tion of the Principle of the Argument.

K.1 DEVELOPMENT OF THE NYQUIST
STABILITY CRITERION

According to the General Stability Criterion of

Chapter 10, a feedback control system is stable if and

only if all roots of the characteristic equation lie to

the left of the imaginary axis. This condition moti-

vates the following choices for function H(s) and con-

tour Cs:

1. Let H(s) � 1 � GOL(s), where GOL(s) is the open-

loop transfer function, GOL(s) � Gc(s)Gv(s)Gp(s)

Gm(s). Assume that GOL(s) is strictly proper (more

poles than zeros) and does not contain any unstable

pole-zero cancellations.

2. Contour Cs is chosen to be the boundary of the

open right-half-plane (RHP). We assume that it is

traversed in the clockwise (positive) direction.

This choice of Cs creates a dilemma—how do we evalu-

ate H(s) on the boundary of an infinite region? This

problem is solved by choosing Cs to be the Nyquist con-
tour shown in Fig. K.2. The Nyquist contour consists of

the imaginary axis and a semicircle with radius, R S �.

Because GOL(s) is strictly proper (that is, it has more

poles than zeros), GOL(s) S 0 as R S � and the semi-

circular arc of the Nyquist contour maps into the origin

of the H-plane. Thus, the imaginary axis is the only
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portion of the Nyquist contour that needs to be consid-

ered. In other words, we only have to evaluate GOL(s)

for s � j� and �� � � � �.

In order to apply the Principle of the Argument, we

need to determine P, the number of poles of H(s) � 1

� GOL(s) that lie in the RHP. Fortunately, this is easy,

because P is equal to the number of poles of GOL(s)

that lie in the RHP. To prove this, suppose that GOL(s)

has the general form,

(K-1)

where A(s) and B(s) are polynomials in s and GOL(s)

does not contain any unstable pole-zero cancellations.

Then,

(K-2)

Because H(s) and GOL(s) have the same denominator,

they have the same number of RHP poles.

H(s) = 1 + GOL(s) = 1 + 
A(s)e-�s

B(s)
 = 

B(s) + A(s)e- �s

B(s)

GOL(s) = 
A(s)e-�s

B(s)

Recall that H(s) was defined as H(s) � 1 � GOL(s).

Thus, the CH and contours have the same shape,

but the CH contour is shifted to the left by �1, relative

to the contour. Consequently, encirclements of

the origin by CH are identical to encirclements of the

�1 point by . As a result, it is more convenient to

express the Nyquist Stability Criterion in terms of

GOL(s) rather than H(s).

One more issue needs to be addressed, namely, the

condition that Cs contour cannot pass through any pole

or zero of GOL(s). Open-loop transfer functions often

have a pole at the origin owing to an integrating ele-

ment or integral control action. This difficulty is

avoided by using the modified Nyquist contour in Fig.

K.2, where � �� 1. A similar modification is available

for the unusual situation where GOL(s) has a pair of

complex poles on the imaginary axis. These modifica-

tions are described elsewhere (Kuo, 2003; Franklin et

al., 2005). Although conceptually important, we do not

have to be overly concerned with these modifications,

because they are typically incorporated in software for

control applications.
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