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The reaction rate is first order with a rate constant (in min -I) 

k = 2.4 X lOIS e-20,OOOIT (Tin OR). 

For the batch case, linearize the model around T = T. 
18.10 A batch reactor converts component A into B, which 
(I) in turn decomposes into C: 

k1 k2 
A-'>B-'>C 

where kl = klOe-EIIRT and k2 = k20e-E2IRT. 

The concentrations of A and B are denoted by XI and X2, re-
spectively. The reactor model is 

dXI - = - kloXle-EIIRT 
dt 

dX2 _ k -E1IRT k20x2e-E21RT dt - lOxle -

Thus, the ultimate values of XI and X2 depend on the reactor 
temperature as a function of time. For 

klO = 1.335 X 1010 min-I, 
EI = 75,000 Jig mol, 
R = 8.31 J/(gmol K) 

k20 = 1.149 X 1017 min-l 

E2 = 125,000 J/gmol 

XIO = 0.7 mol/L, X20 = 0 

Find the constant temperature that maximizes the amount of 
B, for 0 t 8 min. Next allow the temperature to change as 
a cubic function of time 

T(t) = ao + alt + a2? + a3t3 

Find the values of ao, ai, a2, a3 that maximize X2 by integrating 
the model and using a suitable optimization method. 
18.11 Suppose a batch reactor such as the one in Fig. 18.12 I) has a gas ingredient added to the liquid feed. As long as 

the reaction is proceeding normally, the gas is absorbed 

in the liquid (where it reacts), keeping the pressure low. 
However, if the reaction slows or the gas feed is greater than 
can be absorbed, the pressure will start to rise. The pressure 
rise can be compensated by an increase in liquid feed, but this 
may cause the cooling capacity to be exceeded. Describe a so-
lution to this problem using overrides (see Chapter 15). 
18.12 Fogler2 describes a safety accident in which a batch (1

1 
reactor was used to produce nitroanaline from ammo-
nia and o-nitro chlorobenzene. On the day of the acci-
dent, the feed composition was changed from the 

normal operating value. Using the material/energy balances 
and data provided by Fogler, show that the maximum cooling 
rate will not be sufficient to prevent a temperature runaway 
under conditions of the new feed composition. Use a simula-
tor to solve the model equations. 
18.13 Consider the batch reactor system simulated by Aziz 
(I) et al.3 The two reactions, A + B -'> C and A + C -'> D, 

are carried out in a jacketed batch reactor, where C is 
the desired product and D is a waste product. The ma-

nipulated variable is the temperature of the coolant in the 
cooling jacket. There are two inequality constraints: input 
bounds on the coolant temperature and an upper limit on the 
maximum reactor temperature. Using the model parameters 
specified by Aziz et aI., evaluate the following control strate-
gies for a set-point change from 20°C to 92 0c. 
(a) PID controller 
(b) Batch unit 
(c) Batch unit with preload 
(d) Dual-mode controller 

2 Elements of Chemical Reaction Engineering, 4th ed., Prentice Hall, 
Upper Saddle River, NJ, 2005, Chapter 9. 
3N. Aziz, M. A. Hussain, and I. M. Mujtaba, Performance of 
Different Types of Controllers in Tracking Optimal Temperature 
Profiles in Batch Reactors, Comput. Chem. Eng, 24, 1069 (2000). 

Appendix A 

Laplace Transforllls 
In Chapter 2 we developed a number of mathematical 
models that describe the dynamic operation of se-
lected processes. Solving such models-that is, finding 
the output variables as functions of time for some 
change in the input variable(s)-requires either ana-
lytical or numerical integration of the differential 
equations. Sometimes considerable effort is involved 
in obtaining the solutions. One important class of 
models includes systems described by linear ordinary 
differential equations (ODEs). Such linear systems 
represent the starting point for many analysis tech-
niques in process control. 

In this Appendix, we introduce a mathematical tool, 
the Laplace transform, which can significantly reduce the 
effort required to solve and analyze linear differential 
equation models. A major benefit is that this transfor-
mation converts ordinary differential equations to alge-
braic equations, which can simplify the mathematical 
manipulations required to obtain a solution or perform 
an analysis. 

First, we define the Laplace transform and show how 
it can be used to derive the Laplace transforms of sim-
ple functions. Then we show that linear ODEs can be 
solved using Laplace transforms, along with a technique 
called partial fraction expansion. Some important gen-
eral properties of Laplace transforms are presented, 
and we illustrate the use of these techniques with a series 
of examples. 

A.1 THE LAPLACE TRANSFORM OF 
REPRESENTATIVE FUNCTIONS 

The Laplace transform of a function f(t) is defined as 

F(s) = ;E[f(t)] = 100 

f(t)e- st dt (A-I) 

where F(s) is the symbol for the Laplace transform, s is 
a complex independent variable, f(t) is some function 
of time to be transformed, and ;E is an operator, 
defined by the integral. The function f(t) must satisfy 
mild conditions that include being piecewise continu-
ous for 0 < t < 00 (Churchill, 1971); this requirement 
almost always holds for functions that are useful in 
process modeling and control. When the integration is 
performed, the transform becomes a function of the 
Laplace transform variable s, The inverse Laplace 
transform (;E-1) operates on the function F(s) and 
converts it to f(t). Notice that F(s) contains no infor-
mation about f(t) for t < O. Hence, f(t) = ;E-1[F(s)} is 
not defined for t < 0 (Schiff, 1999). 

One of the important properties of the Laplace trans-
form and the inverse Laplace transform is that they are 
linear operators; a linear operator satisfies the superpo-
sition principle: 

?:F(ax(t) + by(t» = a?:F(x(t» + b?:F(y(t» (A-2) 

where ?:F denotes a particular operation to be performed, 
such as differentiation or integration with respect to 
time. If?:F ==;E, then Eq. A-2 becomes 

;E(ax(t) + by(t» = aXes) + b Yes) (A-3) 

Therefore, the Laplace transform of a sum of functions 
x(t) and yet) is the sum of the individual Laplace trans-
forms Xes) and Yes); in addition, multiplicative con-
stants can be factored out of the operator, as shown 
in (A-3). 

In this book we are more concerned with operational 
aspects of Laplace transforms-that is, using them to 
obtain solutions or the properties of solutions of linear 
differential equations. For more details on mathematical 
aspects of the Laplace transform, the texts by Churchill 
(1971) and Dyke (1999) are recommended. 

Before we consider solution techniques, the appli-
cation of Eq. A-I should be discussed. The Laplace 

A-l 
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transform can be derived easily for most simple func-
tions, as shown below. 

Constant Function. For f(t) = a (a constant), 

::E(a) = 100 

ae-SI dt = e-sl [ 

Step Function. The unit step function, defined as 

S(t) = 
< 0 
2: 0 

(A-4) 

(A-S) 

is an important input that is used frequently in process 
dynamics and control. The Laplace transform of the 
unit step function is the same as that obtained for the 
constant above when a = 1: 

1 ::E[S(t)] =-
s 

(A-6) 

If the step magnitude is a, the Laplace transform is als. 
The step function incorporates the idea of initial time, 
zero time, or time zero for the function, which refers to 
the time at which Set) changes from 0 to 1. To avoid 
any ambiguity concerning the value of the step function 
at t = 0 (it is discontinuous), we will consider Set = 0) 
to be the value of the function approached from the 
positive side, t = 0+. 

Derivatives. The transform of a first derivative of f is 
important because such derivatives appear in dynamic 
models: 

::E(dfldt) = 100 

(dfldt)e-SI dt 

Integrating by parts, 

::E(dfldt) = 100 

f(t)e-Sls dt+ f(t)e-SI [ 

(A-7) 

(A-8) 

= s::E(f(t)) - f(O) = spes) - f(O) (A-9) 

where pes) is the Laplace transform of f(t). Generally, 
the point at which we start keeping time for a solution 
is arbitrary. Model solutions are most easily obtained 
assuming that time starts (i.e., t = 0) at the moment 
the process model is first perturbed. For example, if 
the process initially is assumed to be at steady state 
and an input undergoes a unit step change, zero time 

is taken to be the moment at which the input changes 
in magnitude. In many process modeling applications, 
functions are defined so that they are zero at initial 
time-that is,f(O) = O. In these cases, (A-9) simplifies 
to ::E(dfldt) = spes). 

The Laplace transform for higher-order derivatives 
can be found using Eq. A-9. To derive ::E[.f"(t)], we 
define a new variable (<p = dfldt) such that 

= ::E( = s<p(s) - <p(0) (A-lO) 

<p(s) = spes) - f(O) 

Substituting into Eq. A-I0 

( d
2f

) ::E dt2 = s[sP(s) - f(O)] - <p(0) 

= s2p(s) - sf(O) - 1'(0) 

(A-ll) 

(A-12) 

(A-13) 

where 1'(0) denotes the value of dfldt at t = O. The 
Laplace transform for derivatives higher than second 
order can be found by the same procedure. An nth-
order derivative, when transformed, yields a series of 
(n + 1) terms: 

= sI1P(s) - sl1-1f(0) - sl1-2f(1)(0) - ... 

- sf(n-2)(0) - f(n-l)(o) (A-14) 

where fiCO) is the ith derivative evaluated at t = O. If 
n = 2, Eq. A-13 is obtained. 

Exponential Functions. The Laplace transform of an 
exponential function is important because exponential 
functions appear in the solution to all linear differential 
equations. For a negative exponential, e-bl, with b > 0, 

00 roo 
::E(e-bt) = 1 e-b1e-S1dt = Jo e-(b+s)tdt (A-IS) 

= _1_[ -e -(b+s)t] I 00 

b + s 0 

1 
s + b 

(A-16) 

The Laplace transform for b < 0 is unbounded if s < b; 
therefore, the real part of s must be restricted to be 
larger than -b for the integral to be finite. This condi-
tion is satisfied for all problems we consider in this book. 

Trigonometric Functions. In modeling processes atid 
in studying control systems, there are many other 
important time functions, such as the trigonometric 
functions, cos wt and sin wt, where w is the frequency in 
radians per unit time. The Laplace transform of cos wt 

A.1 The Laplace Transform of Representative Functions A-3 

Table A.I Laplace Transforms for Various Time-Domain Functionsa 

f(t) 

1. Set) (unit impulse) 

2. Set) (unit step) 

3. t (ramp) 

5 -bt . e 

6 . .!.e-liT 
T 

tll-Ie-bt 
7. (n _ I)! (n > 0) 

8. 1 /ll-Ie-th 
Tll(n - I)! 

1 9. (e- b2t - e-blt) 
bi - b2 

1 10. --- (e- tiTl - e-th2) 
TI - T2 

b3 - b i b - b 11. e-blt + -,-3 _---=-2 -b2t 
b2 - b i b i - b2 e 

1 TI - T3 1 T - T 12. - ___ e-thl + __ 2 __ 3 e-th2 
TI TI - T2 T2 T2 - TI 

14. sin wt 

15. cos wt 

16. sin(wt + <p) 

17. e-bt sin wt } b, w real 
18. e-btcoswt 

19. 
T 1-1;2 
(0 :s; Isld) 

1 20. 1 + ---(Tle- tiTl - T2e-th2) 
T2 - TI 

(TI #- T2) 

1 
1 
S 

1 
s2 

(n - I)! 
Sll 

1 
s + b 

1 
TS + 1 

1 
(S + b)ll 

1 
(TS + 1)11 

1 

hs + 1)(T2s + 1) 
S + b3 

(S + bl)(s + b2) 

T3S + 1 
(TIS + 1)(T2S + 1) 

1 

w 

S2 + w2 

S 

s2 + w2 

w cos <P + s sin <p 
s2 + w2 

w 

F(s) 

( continued) 
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Table A.1 (Continued) 

21. 1 

f(t) 

1 + tV] 

tV = tan- I , ,(0 :s; 1'1<1) 

22. 1 - tIT) + , sin tIT)] 
vI - ,2 

(O:S; 1,1 < 1) 
23. 1 + T3 - TI e-tiTl + T3 - T2 e-th2 

TI - T2 T2 - TI 

(TI "* T2) 

24. df 
dt 
d"f 

25. dt" 

26. f(t - to)S(t - to) 

aNote thatf(t) and F(s) are defined for t 2: 0 only. 

or sin wt can be calculated using integration by parts. 
An alternative method is to use the Euler identityl 

ejwI + e-jwI 
cos wt = 2 ,j v==-t (A-17) 

and to apply (A-I). Because the Laplace transform of a 
sum of two functions is the sum of the Laplace transforms, 

;£(cos wt) = !;£(e jwt ) + !;£(e -jwI) (A-18) 

Using Eq. A-16 gives 

;£( cos wt) = 1.(_1_._ + _1_._) 
2 s - JW S + JW 

= 1.(s + jw + s - jW) = -,:-_s_-:-
2 s2 + w2 (A-19) 

Note that the use of imaginary variables above was 
merely a device to avoid integration by parts; imagi-
nary numbers do not appear in the final result. To find 
;£(sin wt), we can use a similar approach. 

lThe symbol j, rather than i, is traditionally used for v=I in the 
control engineering literature. 

F(s) 

1 

1 

sF(s) - f(O) 

s"F(s) - s"-If(O) - s"-2f(1)(0) - ... 

- Sf(11-2)(0) - f(Il-I)(O) 

e-tosF(s) 

Table A.l lists some important Laplace transform 
pairs that occur in the solution of linear differential 
equations. For a more extensive list of transforms, see 
Dyke (1999). 

Note that in all the transform cases derived above, 
F(s) is a ratio of polynomials in s, that is, a rational 
form. There are some important cases when nonpoly-
nomial (nonrational) forms occur. One such case is 
discussed next. 

The Rectangular Pulse Function. An illustration of 
the rectangular pulse is shown in Fig. A.l. The pulse 
has height h and width two This type of signal might be 
used to depict the opening and closing of a valve regu-
lating flow into a tank. The flow rate would be held at h 
for a duration of tw units of time. The area under the 
curve in Fig. A.l could be interpreted as the amount of 
material delivered to the tank (= htw)' Mathematically, 
the functionf(t) is defined as 

(A-20) 

A2 Solution of Differential Equations by Laplace Transform Techniques A.5 

f(t) 

h 1---___ --. 

°oL------L-------
tw 

Time. t 

Figure A.1 The rectangular pulse function. 

The Laplace transform of the rectangular pulse can be 
derived by evaluating the integral (A-I) between t = 0 
and t = tIV because f(t) is zero everywhere else: 

F(s) = 100 

f(t)e- st dt = 11w 
he-sl dt (A-21) 

h 1111 h F(s) = - - e-sl = - (1 - e-II\,s) 
s 0 s 

(A-22) 

Note that an exponential term in F(s) results. For a unit 
rectangular pulse, h = 1itIV and the area under the pulse 
is unity. 

Impulse Function. A limiting case of the unit rectangu-
lar pulse is the impulse or Dirac delta function, which has 
the symbol oCt). This function is obtained when tw 0 
while keeping the area under the pulse equal to unity. A 
pulse of infinite height and infinitesimal width results. 
Mathematically, this can be accomplished by substitut-
ing h = 11tw into (A-22); the Laplace transform of oCt) is 

;£(o(t)) = lim (1 - e-II"s) 
111->0 tws 

(A-23) 

Equation A-23 is an indeterminate form that can be 
evaluated by application of L'Hospital's rule (also 
spelled L'Hopital), which involves taking derivatives of 
both numerator and denominator with respect to tw: 

se-tl"s 
;£(o(t)) = lim -- = 1 

111->0 S 
(A-24) 

If the impulse magnitude (i.e., area twh) is a constant a 
rather than unity, then 

;£(ao(t)) = a (A-25) 

as given in Table Al. The unit impulse function may 
also be interpreted as the time derivative of the unit 
step function Set). The response of a process to a unit 
impulse is called its impulse response, which is illus-
trated in Example A. 7. 

A physical example of an impulse function is the 
rapid injection of dye or tracer into a fluid stream, 
where f(t) corresponds to the concentration or the flow 
rate of the tracer. This type of signal is sometimes used 
in process testing, for example, to obtain the residence 
time distribution of a piece of equipment, as illustrated 
in Section A5. 

A.2 SOLUTION OF DIFFERENTIAL 
EQUATIONS BY LAPLACE 
TRANSFORM TECHNIQUES 

In the previous section we developed the techniques 
required to obtain the Laplace transform of each term 
in a linear ordinary differential equation. Table Al 
lists important functions of time, including derivatives, 
and. their Laplace transform equivalents. Because the 
Laplace transform converts any function f(t) to F(s) 
and the inverse Laplace transform converts F(s) back 
to f(t) , the table provides an organized way to carry out 
these transformations. 

The procedure used to solve a differential equation 
is quite simple. First Laplace transform both sides of 
the differential equation, substituting values for the 
initial conditions in the derivative transforms. Re-
arrange the resulting algebraic equation, and solve for 
the transform of the dependent (output) variable. Fi-
nally, find the inverse of the transformed output vari-
able. The solution method is illustrated by means of 
several examples. 

EXAMPLEA.l 

Solve the differential equation, 
dy 

5 - + 4y = 2 yeO) = 1 
dt 

using Laplace transforms. 

SOLUTION 

(A-26) 

First, take the Laplace transform of both sides of Eq. A-26: 

:£(5 d: + 4Y) = :£(2) (A-27) 

,2 
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Using the principle of superposition, each term can be trans-
formed individually: 

d:) + = (A-28) 

= = 5(sY(s) -1) = 5sY(s) - 5 
(A-29) 

= = 4Y(s) 

= 2 
s 

Substitute the individual terms: 

2 
5sY(s) - 5 + 4Y(s) = -s 

Rearrange (A-32) and factor out Yes): 

or 

2 
Y(s)(5s + 4) = 5 + -s 

5s + 2 
Yes) = s(5s + 4) 

(A-30) 

(A-31) 

(A-32) 

(A-33) 

(A-34) 

Take the inverse Laplace transform of both sides of Eq. A-34: 

-1 _ -1[ 5s + 2 ] 
[Yes)] - s(5s + 4) (A-35) 

The inverse Laplace transform of the right side of (A-35) can 
be found by using Table AI. First, divide the numerator and 
denominator by 5 to put all factors in the s + b form corre-
sponding to the table entries: 

-1( S + 0.4 ) 
yet) = s(s + 0.8) (A-36) 

Because entry 11 in the table, (s + b3)/[(s + b1)(s + b2)], 
matches (A-36) with b1 = 0.8, b2 = 0, and b3 = 0.4, the 
solution can be written immediately: 

yet) = 0.5 + 0.5e-O.8t (A-37) 

Note that in solving (A-26), both the forcing function (the 
constant 2 on the right side) and the initial condition have 
been incorporated easily and directly. As for any differential 
equation solution, (A-37) should be checked to make sure it 
satisfies the initial condition and the original differential 
equation for t 2: O. 

Next we apply the Laplace transform solution to a 
higher-order differential equation. 

EXAMPLEA.2 
Solve the ordinary differential equation 

with initial conditions yeO) = y' (0) = y"(O) = O. 

SOLUTION 
Take Laplace transforms, term by term, using Table A1: 

d:) = l1sY(s) 

= 6Y(s) 

= 1 
s 

Rearranging and factoring Yes), we obtain 

1 
Y(s)(s3 + 6s2 + l1s + 6) = s 

1 Yes) = -------
s(s3 + 6s2 + l1s + 6) 

(A-38) 

(A-39) 

(A-40) 

To invert (A-40) to find yet), we must find a similar expression 
in Table AI. Unfortunately, no formula in the table has a 
fourth-order polynomial in the denominator. This example will 
be continued later, after we develop the techniques necessary to 
generalize the solution method in Section A3. 

In general, a transform expression may not exactly 
match any of the entries in Table A.1. This problem al-
ways arises for higher-order differential equations, 
because the order of the denominator polynomial 
(characteristic polynomial) of the transform is equal to 
the order of the original differential equation, and no 
table entries are higher than third order in the denomi-
nator. It is simply not practical to expand the numtfer 
of entries in the table ad infinitum. Instead, we use a 
procedure based on elementary transform building 
blocks. This procedure, called partial fraction expan-
sion, is presented in the next section. 

A.3 PARTIAL FRACTION EXPANSION 
The high-order denominator polynomial in a Laplace 
transform solution arises from the differential equation 
terms (its characteristic polynomial) plus terms con-
tributed by the inputs. The factors of the characteristic 
polynomial correspond to the roots of the characteristic 
polynomial set equal to zero. The input factors may be 
quite simple. Once the factors are obtained, the 
Laplace transform is then expanded into partial frac-
tions. As an example, consider 

Yes) _ s + 5 
- s2 + 5s + 4 

(A-41) 

The denominator can be factored into a product of 
first-order terms, (s + 1)(s + 4). This transform can be 
expanded into the sum of two partial fractions: 

s + 5 al 
(s + 1)(s + 4) = s + 1 + s + 4 (A-42) 

where al and a2 are unspecified coefficients that must 
satisfy Eq. A-42. The expansion in (A-42) indicates 
that the original denominator polynomial has been fac-
tored into a product of first-order terms. In general, for 
every partial fraction expansion, there will be a unique 
set of ai that satisfy the equation. 

There are several methods for calculating the appro-
priate values of al and a2 in (A-42): 

Method 1. Multiply both sides of (A-42) by (s + 1)(s + 4): 

s + 5 = aleS + 4) + a2(s + 1) (A-43) 

Equating coefficients of each power of s gives 

Sl: al + a2 = 1 

so: 4al + a2 = 5 

(A-44a) 

(A-44b) 

Solving
l 
for al and a2 simultaneously yields al = 

a2 = -3"' 

Method 2. Because Eq. A-42 must be valid for all values 
of s, we can specify two values of s and solve for the 
two constants: 

s = - 3: - = - + a2 

Solving, al = t a2 = 

(A-45a) 

(A-45b) 

Method 3. The fastest and most popular method is 
called the Heaviside expansion. In this method multiply 
both sides of the equation by one of the denominator 

A3 Partial Fraction Expansion A·7 

terms (s + bD and then set s = -bi, which causes all 
terms except one to be multiplied by zero. Multiplying 
Eq. A-42 by s + 1 and then letting s = -1 gives 

al = S + 51 4 
s + 4 s=-l 3 

Similarly, after multiplying by (s + 4) and letting 
s = -4, the expansion gives 

a2 = s + 51 
s + 1 s=-4 

1 
3 

As seen above, the coefficients can be found by sim-
ple calculations. 

For a more general transform, where the factors 
are real and distinct (no complex or repeated factors 
appear), the following expansion formula can be used: 

Yes) = N(s) = n N(s) = '£ (A-46) 
D(s) IT (s + bi) i=l s + i 

1=1 

where D(s), an nth-order polynomial, is the denomina-
tor of the transform. D(s) is the characteristic polyno-
miaL The numerator N(s) has a maximum order of n - 1. 
The ith coefficient can be calculated using the Heavi-
side expansion 

N(s) I a· = (s + b)--
I I D(s) s=-b 

(A-47) 
I 

Alternatively, an expansion for real, distinct factors 
may be written as 

Yes) = N'(s) = __ N...c./(s....:..)_ 
D'(s) .IT (TiS + 1) 

z=l 

(A-48) 

Using Method 3, calculate the coefficients by 

I N'(s) I a· = (T'S + I)--
I Z D'(s) s=-l. 

'it' 

(A-49) 

Note that several entries in Table A.l have the TS + 1 
format. 

We now can use the Heaviside expansion to com-
plete the solution of Example A.2. 

EXAMPLE A.2 (Continued) 

First factor the denominator of Eq. A-40 into a product of 
first-order terms (n = 4 in Eq. A-46). Simple factors, as in this 
case, rarely occur in actual applications. 

s(s3 + 6s2 + l1s + 6) = s(s + 1)(s + 2)(s + 3) (A-50) 
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This result determines the four terms that will appear in the 
partial fraction expansion-namely, 

1 Y( s) = ----:------:------,-----,-
s(s + 1)(s + 2)(s + 3) 

s s+1 s+2 s+3 
(A-51) 

The Heaviside expansion method gives a I = 1/6, 0'2 = -1/2, 
0'3 = 1/2, 0'4 = -1/6. 

After the transform has been expanded into a sum of first-
order terms, invert each term individually using Table A.l: 

yet) = :£-1 [yes)] 

=:£_1(1/6 
s s+1 s+2 s+3 

= .!.:£-1(.!.) _ .!.:£-1(_1 ) 
6 s 2 s+1 

+ .!.:£-1(_1 ) _ .!.:£-1(_1 ) 
2 s+2 6 s+3 

111 1 = - _ -e-t + e-2t _ _ e-3t 
6 2 2 6 

(A-52) 

Equation A-52 is thus the solution yet) to the differential equa-
tion (A-38). The a/s are simply the coefficients of the solution. 
Equation A-52 also satisfies the three initial conditions of the 
differential equation. The reader should verify the result. 

A.3.1 General Procedure for Solving Differential 
Equations 

We now state a general procedure to solve ordinary 
differential equations using Laplace transforms. The 
procedure consists of four steps, as shown in Fig. A2. 

Note that solution for the differential equation in-
volves use of Laplace transforms as an intermediate step. 
Step 3 can be bypassed if the transform found in Step 2 
matches an entry in Table AI. In order to factor D(s) in 
Step 3, software such as MATLAB, Mathematica, or 
Mathcad can be utilized (Chapra and Canale, 2010). 

In Step 3, other types of situations can occur. Both re-
peated factors and complex factors require modifications 
of the partial fraction expansion procedure. 

Repeated Factors 

If a term s + b occurs r times in the denominator, r 
terms must be included in the expansion that incorpo-
rate the s + b factor 

0'1 a2 Yes) = -- + + " . + . + ... 
s+b (s+b)2 (s+b)' 

(A-53) 

Time 
domain 

ODE 
Initial 

conditions 

Solution 
yet) 

__ Laplace 
E( domain ---'>->-

Step 1 
Take Laplace 

transform 
(Table 3.1) 

Step 2 
Solve for ----

yes) = N(s) 
D(s) 

Step 3 
Factor D(s), 

perform partial 
fraction expansion 

t 
Step 4 

Take inverse 
Laplace transform 

(Table 3.1) 

Figure A.2 The general procedure for solving an ordinary 
differential equation using Laplace transforms. 

in addition to the other factors. Repeated factors arise 
infrequently in process models of real systems, mainly 
for a process that consists of a series of identical units 
or stages. 

EXAMPLEA.3 

For 

Yes) = s + 1 = + 0'2 + 0'3 (A-54) 
s(s2 + 4s + 4) s + 2 (s + 2)2 S 

evaluate the unknown coefficients ai' 

SOLUTION 
To find 0'1 in (A-54), the Heaviside rule cannot be used for mul-

/1' tiplication by (s + 2), because s = -2 causes the second term 
on the right side to be unbounded, rather than 0 as desired. We 
therefore employ the Heaviside expansion method for the 
other two coefficients (0'2 and 0'3) that can be evaluated nor-
mally and then solve for 0'1 by arbitrarily selecting some other 

value of s. MUltiplying (A-54) by (s + 2)2 and letting s = -2 
yields 

0'2 = s : l\s=_2 = 

Multiplying (A-54) by s and letting s = 0 yields 

s + 1 \ 1 
0'3 = s2 + 4s + 4 s=O = "4 

Substituting the value s = -1 in (A-54) gives 

0= 0'1 + 0'2 - 0'3 
1 

0'1 = -"4 

(A-55) 

(A-56) 

(A-57) 

(A-58) 

An alternative approach to find 0'1 is to use differentiation of 
the transform. Equation A-54 is multiplied by s(s + 2)2, 

s + 1 = al(s + 2)s + a2s + a3(s + 2)2 (A-59) 

Then (A-59) is differentiated twice with respect to s, 

Note that differentiation in this case is tantamount to equat-
ing powers of s, as demonstrated earlier. 

The differentiation illustrated above can 
be used as the basis of a morEl general method to evalu-
ate the coefficients of repeated factors. If the denomi-
nator polynomial D(s) contains the repeated factor 
(s + by, first form the quantity 

Q(s) = N(s) (s + by = (s + by-1a1 + (s + by-2a2 + ... 
D(s) 
+ a r + (s + b n other partial fractions] (A-61) 

Setting s = -b will generate a r directly. Differentiat-
ing Q(s) with respect to s and letting s = -b generates 
a r-1' Successive differentiation a total of r - 1 times 
will generate all ai, i = 1,2, ... , r from which we obtain 
the general expression 

= 1:.. d(i)Q.(s) \ 
u. i = 0, ... , r - 1 

I dsl l ) s=-b 
(A-62) 

For i = 0 in (A-62), O! is defined to be 1 and the zeroth 
derivative of Q(s) is defined to be simply Q(s) itself. 

Returning to the problem in Example A3, 

Q(s) = s + 1 
s 

(A-63) 

A.3 Partial Fraction Expansion A-9 

from which 

i = 0: a2 = s + 1\ 
s s=-2 

1 
2 

-1\ 
= -; s=-2 

s=-2 

Complex Factors 

(A-64a) 

1 
4 

(A-64b) 

An important case occurs when the factored character-
istic polynomial yields terms of the form 

where 

CIS + Co 

dr -<do 
4 

Here the denominator cannot be written as the product 
of two real factors, which can be determined by using 
the quadratic formula. 

For example, consider the transform 

s + 2 
Yes) = s2 + s + 1 (A-65) 

To invert (A-65) to the time domain, We complete the 
square of the first two terms in the denominator: 

s + 2 (s + 0.5) + 1.5 
Yes) - -----:;:----

- (s + 0.5)2 - 0.25 + 1 (0)2 (s + 0.5)2 + 2 
(A-66) 

Dividing the numerator of Yes) into two terms, 

s + 0.5 1.5 
Yes) = (0)2 + (0)2 

(s + 0.5)2 + 2
3 

(s + 0.5)2 + 2 
(A-67) 

To determine yet), we invert each term separately. Note 
. s + b -b 

that in Table A1, ". 2 2 transforms to e I 
(s+b) +w 

coswt, while w2 2 transforms to e-bt sinwt. 
(s+b) +w 
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Therefore the corresponding time-domain solution is 

_ V3 _. V3 yet) = e 0.51 cos t + V3 e 0.51 sm- t 
2 2 (A-68) 

If the denominator is factored into a pair of complex 
terms (complex conjugates) in the partial fraction 
equation, we can alternatively express the transform as 

(Xl + j!31 (X2 + j!32 Yes) = + (A-69) s + b + jw s + b - jw 

Appearance of these complex factors implies oscillatory 
behavior in the time domain. Terms of the form e-bl 

sinwt and e -bl coswt arise after combining the inverse 
transforms e-(b+jw)1 and e-(b-jw)l. Dealing with complex 
factors is more tedious than analyzing real factors. 

A partial fraction form that avoids complex algebra is 

(A-70) 

Using Table A.l, the corresponding expression for 
yet) is 

However, the coefficients al and a2 must be found by 
solving simultaneous equations, rather than by the Heav-
iside expansion, as shown as follows in Example AA. 

EXAMPLEA.4 

Find the inverse Laplace transform of 

Yes) = s + 1 
s2(s2 + 4s + S) 

(A-72) 

SOLUTION 

The roots of the denominator term (s2 + 4s + S) are 
imaginary (s + 2 + j, s + 2 - j), so we know the solution 
will involve oscillatory terms (sin, cos). The partial fraction 
form for (A-72) that avoids using complex factors or roots is 

s + 1 a1 ass + a6 Y( s) = = - + + ----''-------''-
s2(s2 + 4s + S) S s2 s2 + 4s + S 

(A-73) 

Multiply both sides of Eq. A-73 by s2(s2 + 4s + S) and 
collect terms: 

s + 1 = (a1 + as)s3 + (4a1 + a2 + (6)s2 

+ (Sal + 4(2)S + Sa2 (A-74) 

Equate coefficients of like powers of s: 

s3: a1 + as = 0 

s2: 4a1 + a2 + a6 = 0 

sl: Sal + 4a2 = 1 

so: Sa2 = 1 

(A-7Sa) 

(A-7Sb) 

(A-7Sc) 

(A-7Sd) 

Solving simultaneously gives al = 0.04, a2 = 0.2, as = 0.04, 
a6 = -0.36. The inverse Laplace transform of Yes) is 

yet) = ::£_1(0.04) + ::£_1(0.2) + ::£_I(-0.04S - 0.36) 
s s2 s2+4s+S 

(A-76) 
Before using Table A.l, the denominator term (s2 + 4s + S) 
must be converted to the standard form by completing the 
square to (s + 2)2 + 12; the numerator is -0.04(s + 9). In order 
to match the expressions in Table A.l, the argument of the last 
term in (A-76) must be written as 

-0.04s - 0.36 -0.04(s + 2) -0.28 
-----= + 
(s + 2)2 + 1 (s + 2? + 1 (s + 2)2 + 1 

(A-77) 
This procedure yields the following time-domain expression: 

y(t) = 0.04 + 0.2t - 0.04e-2t cos t - 0.28e-2t sin t 

It is clear from this example that the Laplace transform 
solution for complex or repeated roots can be quite 
cumbersome for transforms of ODEs higher than 
second order. In this case, using numerical simulation 
techniques may be more efficient to obtain a solution, 
as discussed in Chapters 4 and 5. 

A.4 OTHER LAPLACE TRANSFORM 
PROPERTIES 

In this section, we consider several Laplace transform 
properties that are useful in process dynamics and 
control. 

A.4.1 Final Value Theorem 
The asymptotic value of yet) for large values of time 
y(oo) can be found from (A-78), providing that lim [sY(s)] 
exists for all Re(s) 2:: 0: s->O 

lim yet) = lim [sY(s)] 
{->oo s->O 

(A-78) 

Equation A-78 can be proved using the relation for t'he 
Laplace transform of a derivative (Eq. A-9): 

00 

J dy 
- e-si dt = sY(s) - yeO) 
dt 

o 
(A-79) 

Taking the limit as s 0 and assuming that dy/dt is 
continuous and that sY(s) has a limit for all Re(s) 2:: 0, 

00 

JddY dt = lim [sY(s)] - yeO). t s->O 
(A-80) 

o 
Integrating the left side and simplifying yields 

lim yet) = lim [sY(s)] 
f--'j. 00 s---::". (X) 

(A-8l) 

If yet) is unbounded for t 00, Eq. A-8l gives 
erroneous results. For example, if Yes) = l/(s - 5), Eq. 
A-8l predicts y(oo) = O. Note that Eq. A-79, which is 
the basis of (A-79), requires that lim yet 00) exists. In 
this case, yet) = eSI, which is unbounded for t 00. 

However, Eq. A-79 does not apply here, because s Yes) = 
s/(s - 5) does not have a limit for some real value of 
s 2:: 0, in particular, for s = 5. 

A.4.2 Initial Value Theorem 
Analogous to the final value theorem, the initial value 
theorem can be stated as 

lim yet) = lim [sY(s)] 
(->O s-> 00 

(A-82) 

The proof of this theorem is similar to the development 
in (A-78) through (A-8l). It also requires that yet) is 
continuous. The proof is left to the -reader as an exercise. 

EXAMPLEA.5 

Apply the initial and final value theorems to the transform 
derived in Example A.l: 

SOLUTION 

Initial Value 

Yes) = Ss + 2 
s(Ss + 4) 

. . Ss+2 yeO) = hm [sY(s)] = hm --= 1 
s ...... 00 s ...... 00 Ss + 4 

Final Value 

y(oo) = lim [sY(s)] = lim Ss + 2 = O.S 
s ...... o s ...... o Ss + 4 

(A-83a) 

(A-83b) 

The initial value of 1 corresponds to the initial condition given 
in Eq. A-26. The final value of O.S agrees with the time-domain 
solution in Eq. A-37. Both theorems are useful for checking 
mathematical errors that may occur in obtaining Laplace trans-
form solutions. 

A.4 Other Laplace Transform Properties A-ll 

EXAMPLEA.6 

A process is described by a third-order ODE: 

d3y d2y dy - + 6 - + 11- + 6y = 4u 
dr3 d? dt (A-84) 

with all initial conditions on y, dy/dt, and di/d? equal to 
zero. Show that for a step change in II of 2 units, the steady-
state result in the time domain is the same as applying the 
final value theorem. 

SOLUTION 

If II = 2 the steady-state result for y can be found by setting 
all derivatives to zero and substituting for u. Therefore 

6y = 8 or y = 4/3 
The transform of (A-84) is 

(s3 + 6s2 + 11s + 6)Y(s) = 8/s 

Yes) = 8 
s4 + 6s3 + 11s2 + 6s 

(A-8S) 

(A-86) 

(A-87) 

One of the benefits of the final value theorem is that we do 
not have to solve for the analytical solution of yet). Instead, 
simply apply Eq. A-81 to the transform Yes) as follows: 

lim sY(s) = lim 8 
s ...... o s ...... o s3 + 6s2 + 11s + 6 

8 4 
-
6 3 (A-88) 

This is the same answer as obtained in Eq. A-8S. The time-
domain solution obtained from a partial fraction expansion is 

y = 4/3 2e-t + 2e-2t 2/3e-3t (A-89) 
As t --'? 00, only the first term remains, which is the same 
result as in Eq. A-90 (using the final value theorem). 

A.4.3 Transform of an Integral 
Occasionally, it is necessary to find the Laplace transform 
of a function that is integrated with respect to time. By 
applying the definition (Eq. A-I) and integrating by parts, 

:e{ l' f(t') dt' } f { l' f(t') dt' }e-" dt 

(A-90) 

[e-" l' f(t') dt'r 

1100 

+ - e-Slf(t) dt 
s 0 (A-9l) 
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The first term in (A-93) yields 0 when evaluated at both 
the upper and lower limits, as long as f(t*) possesses 
a transform (is bounded). The integral in the second 
term is simply the definition of the Laplace transform 
of f(t). Hence, 

:e{ l f(t-') dt' } ; F(.,) (A-92) 

Note that Laplace transformation of an integral function 
of time leads to division of the transformed function by s. 
We have already seen in (A-9) that transformation of 
time derivatives leads to an inverse relation - that is, 
multiplication of the transform by s. 

A.4.4 Time Delay (Translation in Time) 
Functions that exhibit time delay play an important 
role in process modeling and control. Time delays com-
monly occur as a result of the transport time required 
for a fluid to flow through piping. Consider the stirred-
tank heating system example presented in Chapter 2. 
Suppose one thermocouple is located at the outflow 
point of the stirred tank, and a second thermocouple is 
immersed in the fluid a short distance (L= 10 m) down-
stream. The heating system is off initially, and at time 
zero it is turned on. If there is no fluid mixing in the 
pipe (the fluid is in plug flow) and if no heat losses 
occur from the pipe, the shapes of the two temperature 
responses should be identical. However, the second 
sensor response will be translated in time; that is, it will 
exhibit a time delay. If the fluid velocity is 1 mis, the 
time delay (to = Llv) is 10 s. If we denote f(t) as the 
transient temperature response at the first sensor and 
fd(t) as the temperature response at the second sensor, 
Fig. A.3 shows how they are related. The function fd = 0 
for t < to. Therefore, fd and f are related by 

fd(t) = f(t - to)S(t - to) (A-93) 

Note thatfd is the functionf(t) delayed by to time units. 
The unit step function Set - to) is included to denote 
explicitly thatfJCt) = 0 for all values of t < to· If ;£(f(t)) = 
pes), then 
;£(fd(t)) = ;£(f(t - to)S(t - to)) 

= loof(t - to)S(t - to)e-st dt 

= to f(t - to)(O)e-st dt + 100 

f(t - to)e-st dt 

= 100 

f(t - to)e-s(t-tole-sto d(t - to) (A-94) 
to 

ret) 

o 
(a) 

o 
(b) 

Figure A.3 A time function with and without time delay. 
(a) Original function (no delay); (b) function with delay to· 

Because (t - to) is now the artificial variable of integra-
tion, it can be replaced by t*. 

;£(f(t)) = e-sto 100 

f(t*)e- st* dt* (A-95) 

yielding the Real Translation Theorem: 

Pd(S) = ;£(f(t - to)S(t - to)) = e-stop(s) (A-96) 

In inverting a transform that contains an e-sto ele-
ment (time-delay term), the following procedure will 
easily yield results and also avoid the pitfalls of dealing 
with translated (shifted) time arguments. Starting with 
the Laplace transform 

Yes) = e-stop(s) (A-97) 

1. Invert pes) in the usual manner; that is, perform 
partial fraction expansion, and so forth, to find f(t). 

2. Find yet) = f(t - to)S(t - to) by replacing the ar-
gument t, wherever it appears in f(t), by (t - to); 
then multiply the entire function by the shifted 
unit step function, Set - to)· 

EXAMPLEA.6 
Find the inverse transform of 

1 + e-2s 
Y(S)------

(4s + 1)(3s + 1) 
(A-98) 

SOLUTION 

Equation A-lOO can be split into two terms: 

Yes) = Y1(s) + Y2(s) (A-99) 
1 e-2, 

= (4s + 1)(3s + 1) + (4s + 1)(3s + 1) (A-lOO) 

The inverse transform of Yj(s) can be obtained directly from 
Table A.l: 

(A-lOl) 

Because Y2(s) = e-2sy j (s), its inverse transform can be writ-
ten immediately by replacing t by (t 2) in (A-lOl), and then 
multiplying by the shifted step function: 

Y2(t) = [e-(1-2)/4 - e-(1-2)/3]S(t - 2) (A-102) 

Thus, the complete inverse transform is 

yet) = e -1/4 - e -1/3 + [e -(1-2)14 - e -(t-2)/3]S(t - 2) 

(A-l03) 

Equation A-103 can be numerically evaluated without dif-
ficulty for particular values of t, noting that the term in 
brackets is multiplied by 0 (the value of the unit step func-
tion) for t < 2, and by 1 for t 2: 2. An equivalent and sim-
pler method is to evaluate the contributions from the 
bracketed time functions only when the time arguments are 
nonnegative. An alternative way of writing Eq. A-lOS is as 
two equations, each one applicable over a particular inter-
val of time: 

o :S t < 2: yet) = e-1/4 - e-1/3 (A-104) 

q 

Stage 1 
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and 
t 2: 2: yet) = e-tl4 e-tl3 + [e-(t-2)/4 - e-(t-2)/3] 

= e-ti4(1 + e2/4) - e-tl3(1 + e2/3 ) 

= 2.6487e- tI4 - 2.9477e- tI3 (A-IDS) 

Note that (A-104) and (A-IDS) give equivalent results for 
t = 2, because in this case, yet) is continuous at t = 2. 

A.S A TRANSIENT RESPONSE EXAMPLE 
In Chapter 3 we will develop a standardized approach 
for using Laplace transforms to calculate transient re-
sponses. That approach will unify the way process mod-
els are manipulated after transforming them, and it will 
further simplify the way initial conditions and inputs 
(forcing functions) are handled. However, we already 
have the tools to analyze an example of a transient re-
sponse situation in some detail. Example A.7 illustrates 
many features of Laplace transform methods in investi-
gating the dynamic characteristics of a physical process. 

EXAMPLEA.7 
The Ideal Gas Company has two fixed-volume, stirred-tank 
reactors connected in series as shown in Fig. A.4. The three 
IGC engineers who are responsible for reactor operations-
Kim Ng, Casey Gain, and Tim Delay-are concerned about 
the adequacy of mixing in the two tanks and want to run a 
tracer test on the system to determine whether dead zones 
and/or channeling exist in the reactors. 

q 

Stage 2 

Figure A.4 Two-stage stirred-tank reactor system. 
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Table A.2 Two-Stage Stirred-Tank Reactor Process and 
Operating Data 

Volume of Stage 1 
Volume of Stage 2 
Total flow rate q 
Nominal feed reactant concentration (Ci) 

= 4m3 

= 3 m3 

= 2 m3/min 
= 1 kg mol/m3 

Their idea is to operate the reactors at a temperature low 
enough that reaction will not occur, and to apply a rectangu-
lar pulse in the reactant concentration to the first stage for 
test purposes. In this way, available instrumentation on the 
second-stage outflow line can be used without modification to 
measure reactant (tracer) concentration. 

Before performing the test, the engineers would like to have 
a good idea of the results that should be expected if perfect 
mixing actually is accomplished in the reactors. A rectangular 
pulse input for the change in reactant concentration will be 
used with the restriction that the resulting output concentra-
tion changes must be large enough to be measured precisely. 

The process data and operating conditions required to 
model the reactor tracer test are given in Table A2. Figure A.5 
shows the proposed pulse change of 0.25 min duration that can 
be made while maintaining the total reactor input flow rate 
constant. As part of the theoretical solution, Kim, Casey, and 
Tim would like to know how closely the rectangular pulse re-
sponse can be approximated by the system response to an im-
pulse of equivalent magnitude. Based on all of these 
considerations, they need to obtain the following information: 

(a) The magnitude of an impulse input equivalent to the rec-
tangular pulse of Fig. A5. 

(b) The impulse and pulse responses of the reactant concen-
tration leaving the first stage. 

(c) The impulse and pulse responses of the reactant concen-
tration leaving the second stage. 

SOLUTION 

The reactor model for a single-stage CSTR was given III 

Eq. 2-66 as 

1 

dc 
Vdi = q(Ci - c) - Vkc 

6 

o 
I 

0.25 
Time (min) 

1 

Figure A.S Proposed input pulse in reactant concentration. 

where c is the reactant concentration of component A. Be-
cause the reaction term can be neglected in this example 
(k = 0), the stages are merely continuous-flow mixers. Two ma-
terial balance equations are required to model the two stages: 

dC1 
4- + 2C1 = 2c· dt I 

(A-106) 

dC2 
3 ---:it + 2C2 = 2CI (A-107) 

If the system initially is at steady state, all concentrations are 
equal to the feed concentration: 

(A-lOS) 

(a) The pulse input is described by 

,r {: (A-109) 
t<O 
o ::5 t < 0.25 min 
t 2: 0.25 min 

A convenient way to interpret (A-109) is as a constant input 
of 1 added to a rectangular pulse of height = 5 kg mol/m3: 

cf = 6 for 0::5 t < 0.25 min (A-110) 

The magnitude of an impulse input that is equivalent to the 
time-varying portion of (A-110) is simply the integral of the 
rectangular pulse: 

kg mol . kg mol, min 
M = 5 -- X 0.25 mill = 1.25 3 

m3 m 

Therefore, the equivalent impulse input is 

c?(t) = 1 + 1.25o(t) (A-111) 

Although the units of M have little physical meaning, the 
product 

m3 kg mol, min 
qM = 2 -. X 1.25 0 = 2.5 kg mol mill 

can be interpreted as the amount of additional reactant fed 
into the reactor as either the rectangular pulse or the impulse. 

(b) The impulse response of Stage 1 is obtained by Laplace 
transforming (A-106), using CI(O) = 1: 

4sCI(s) - 4(1) + 2CI(s) = 2Ci(s) (A-112) 

By rearranging (A-112), we obtain CI(s): 

4 2 
C1(s) = 4s + 2 + 4s + 2 Ci(s) (A-l13) 

The transform of the impulse input in feed concentration in 
(A-111) is 

1 C?(s) = - + 1.25 
s 

(A-114) 

Substituting (A-114) into (A-l13), we have 

d 2 6.5 
I(S) = s(4s + 2) + 4s + 2 (A-115) 

Equation A-115 does not correspond exactly to any entries in 
Table AI. However, putting the denominator in 'TS + 1 form 
yields 

B( ) _ . 1 3.25 
CI S - s(2s + 1) + 2s + 1 (A-116) 

which can be directly inverted using the table, yielding 

c£(t) = 1 - e-tl2 + 1.625e-t12 = 1 + 0.625e- tI2 (A-117) 

The rectangular pulse response is obtained in the same way. 
The transform of the input pulse (A-109) is given by (A-22), 
so that 

p 1 5(1 - e-O•25s) 
Ci (s) = + ---'------'--

s s 
(A-11S) 

Substituting (A-11S) into (A-l13) and solving for Cf(s) yields 

Cp 4 12 (s) - +---
I - 4s + 2 s(4s + 2) 

10e-O.25s 

s(4s + 2) 
(A-119) 

Again, we have to put (A-121) into a form suitable for 
inversion: 

2 6 
Ci(s) = 2s + 1 + ( s 2s + 1) 

5e-O.25s 

s(2s + 1) (A-120) 

Before inverting (A-120), note that the term containing e-0.25s 
will involve a translation in time. Utilizing the procedure 

A5 A Transient Response Example A-IS 

discussed above, we obtain the following inverse transform: 

cf(t) = e- t12 + 6(1 - e-tI2) - 5[1 - e-(t-O.25)!2JS(t - 0.25) 

(A-121) 

Note that there are two solutions; for t < 0.25 min (or tw) the 
rightmost term, including the time delay, is zero in the time 
solution. Thus, for 

t < 0.25 min: q(t) = e- t12 + 6(1 - e-tI2) = 6 - 5e- t12 

(A-122) 
t 2: 0.25 min: q(t) = e-tl2 + 6(1 - e-tI2 ) 

- 5(1 - e-(t-O.25)/2) 

= 1 - 5e- t12 + 5e-tI2e+O.25/2 

= 1 + 0.6657e- tI2 (A-123) 
Plots of (A-117), (A-122), and (A-123) are shown in Fig. A6. 
Note that the rectangular pulse response approximates the 
impulse response fairly well for t > 0.25 min. Obviously, the 
approximation cannot be very good before t = 0.25 min, be-
cause the full effect of the rectangular pulse is not felt until 
that time, while the full effect of the hypothetical impulse be-
gins immediately at t = O. 

(c) For the impulse response of Stage 2, Laplace transform 
(A-107), using C2(0) = 1: 

(A-124) 

Rearrange to obtain C2(s): 

(A-125) 

1.75,---,-----,----,-----,----, 

--- Impulse input 
-- RectangUlar pulse input 

1.50 

1.25 

1.00 L-__ ..l.--__ --L-__ __ ___I 

o 2 4 6 8 10 
Time (min) 

Figure A.6 Reactor Stage 1 response. 

-
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For the input to (A-127), substitute the Laplace transform of 
the output from Stage I-namely, (A-116): 

CO(s) __ 3_ + _2_[ 1 (A-126) 
2 - 3s + 2 3s + 2 s(2s + 1) 2s + 1 

which can be rearranged to 
1.5 1 

q(s) = loSs + 1 + s(1.5s + 1)(2s + 1) 

3.25 +-------
(l.5s + 1)(2s + 1) 

(A-127) 

Because each term in (A-127) appears as an entry in Table AI, 
partial fraction expansion is not required: 

= e-tl l.5 + [1 + J:... (1.5e- tl l.5 - 2e-tI2 )] 
0.5 

3.25 [-tI2 -tl1.5] +-- e -e 
0.5 

= 1 - 2.5e-tl l.S + 2.5e- tI2 (A-128) 

For the rectangular pulse response of Stage 2, substitute the 
Laplace transform of the appropriate stage output, 
Eq. A-120, into Eq. A-125 to obtain 

p 1.5 2 
C2 (s) = 1.5s + 1 + (l.5s + 1)(2s + 1) 

+ 6 _ 5e-
O

.
25s 

(A-129) 
s(1.5s + 1)(2s + 1) s(1.5s + 1)(2s + 1) 

Again, the rightmost term in (A-129) must be excluded from 
the inverted result or included, depending on whether or not 
t < 0.25 min. The calculation of the inverse transform of 
(A-129) gives 

t < 0.25: cf(t) = 6 + I5e- tl l.5 - 20e- t12 (A-130) 
t 2: 0.25: cf(t) = 1 - 2.7204e- tl l.5 + 2.663e-tI2 (A-131) 

Plots of Eqs. A-128, A-130, and A-131 are shown in Fig. A7. 
The rectangular pulse response is virtually indistinguishable 
from the impulse response. Hence, Kim, Casey, and Tim can 

SUMMARY 
In this chapter we have considered the application of 
Laplace transform techniques to solve linear differen-
tial equations. Although this material may be a re-
view for some readers, an attempt has been made to 

1.3,---,----,----,----,------, 

--- Impulse input 
-- Rectangular pulse input 

1.2 

Time (min) 

Figure A.7 Reactor Stage 2 response. 

use the simpler impulse response solution to compare with real 
data obtained when the reactor is forced by a rectangular 
pulse. The maximum expected value of C2(t) is approximately 
1.25 kg mollm3. This value should be compared with the nomi-
nal concentration before and after the test (C2 = 1.0 kg mOI/m3) 
to determine if the instrumentation is precise enough to record 
the change in concentration. If the change is too small, then the 
pulse amplitude, pulse width, or both must be increased. 

Because this system is linear, multiplying the pulse magni-
tude (h) by a factor of four would yield a maximum concen-
tration of reactant in the second stage of about 2.0 (the 
difference between initial and maximum concentration will 
be four times as large). On the other hand, the solutions ob-
tained above strictly apply only for tw = 0.25 min. Hence, the 
effect of a fourfold increase in tw can be predicted only by re-
solving the model response for tw = 1 min. Qualitatively, we 
know that the maximum value of C2 will increase as tw in-
creases. Because the impulse response model is a reasonably 
good approximation with tw = 0.25 min, we expect that small 
changes in the pulse width will yield an approximately pro-
portional effect on the maximum concentration change. This 
argument is based on a proportional increase in the approxi-
mately equivalent impulse input. A quantitative verification 
using numerical simulation is left as an exercise. 

concentrate on the important properties of the Laplace 
transform and its inverse, and to point out the tech-
niques that make manipulation of transforms easier 
and less prone to error. 

The use of Laplace transforms can be extended to 
obtain solutions for models consisting of simultaneous 
differential equations. However, before addressing such 
extensions, we introduce the concept of input-output 
models described by transfer functions. The conversion 
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EXERCISES 
A.1 The differential equation (dynamic) model for a chemi-
cal process is as follows: 

d2y dy - + 5 - + 3y = 2u(t) 
dF dt 

where u(t) is the single input function of time. y(O) and dy/dt (0) 
are both zero. 
What are the functions of the time (e.g., e-tiT) in the solution 
to the ODE for output y(t) for each of the following cases? 
(a) u(t) = be-2t 

(b) u(t) = ct 
band c are constants. 

Note: You do not have to find y(t) in these cases. Just deter-
mine the functions of time that will appear in y(t). 

A.2 Solve the ODE 

d4y d3y d2y dy - + 16- + 86-----:? + 176- + 105y = 1 
dt 4 df d, dt 

using partial fraction expansion. Note you need to calculate 
the roots of a fourth-order polynomial in s. All initial condi-
tions on y and its derivatives are zero. 
A.3 Figure EA3 shows a pulse function. 
(a) From details in the drawing, calculate the pulse width, two 

h 

Slope =-a 
u(t) 

tw t 
Figure EA.3 Triangular pulse function. 
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of differential equation models into transfer function 
models, covered in the next chapter, represents an im-
portant simplification in the methodology, one that can 
be exploited extensively in process modeling and control 
system design. 

Dyke, P. R. G., An Introduction to Laplace Transforms and Fourier 
Series, Springer-Verlag, New York, 1999. 

Schiff, 1. L., The Laplace Transform: Theory and Application, 
Springer, New York, 1999. 

(b) Construct this function as the sum of simpler time ele-
ments, some perhaps translated in time, whose transforms 
can be found directly from Table A.1. 
(c) Find U(s). 
(d) What is the area under the pulse? 
A.4 Derive Laplace transforms of the input signals shown in 
Figs. EA4a and EA.4b by summing component functions 
found in Table AI. 
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Figure EA.4a 
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Figure EA.4b 
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A.S The start-up procedure for a batch reactor includes a 
heating step where the reactor temperature is gradually 
heated to the nominal operating temperature of 75°C. The 
desired temperature profile T(t) is shown in Fig. EA.5. What 
is T(s)? 

75 

o 30 
t (min) 

Figure EA.S 

A.6 Using partial fraction expansion where required, find 
x(t) for 

s(s + 1) 
(a) Xes) = (s + 2)(s + 3)(s + 4) 

s + 1 
(b) Xes) = (s + 2)(s + 3)(s2 + 4) 

s+4 
(c) Xes) = (s + 1)2 

1 
(d) Xes) = s2 + s + 1 

_ s + 1 e-O.5s 
(e) Xes) - s(s + 2)(s + 3) 

A.7 Expand each of the following s-domain functions into 
partial fractions: 

6(s + 1) 
(a) Yes) = i(s + 1) 

12(s + 2) 
(b) Yes) = s(s2 + 9) 

(s + 2)(s + 3) 
(c) Yes) = (s + 4)(s + 5)(s + 6) 

1 
(d) Yes) = [(s + I? + If(s + 2) 

A.S (a) For the integro-differential equation 

X+3X+2x=21
1 

e-r d7 

find x(t). Note that x = dx/dt, etc. 
(b) What is the value of x(t) as t ---> oo? 

A.9 For each of the following functions Xes), what can you 
say about x(t) (0 :S t:S (0) without solving for x(t)? In other 
words, what are x(O) and x(cx;)? Is x(t) converging, or diverg-
ing? Is x(t) smooth, or oscillatory? 

6(s + 2) 
(a) Xes) = (s2 + 9s + 20)(s + 4) 

10s2 - 3 
(b) Xes) = -(s-2-6-s-+-1-0-)(-s-+-2-) 

16s + 5 
(c) Xes) = s2 + 9 

A.I0 For each of the following cases, determine what func-
tions of time, e.g., sin 3t, e- 81 , will appear in yet). (Note that 
you do not have to find yet)!) Which yet) are oscillatory? 
Which exhibit a constant value of yet) for large values of t? 

2 
(i) Yes) = s(s2 + 4s) 

2 
(ii) Yes) = s(s2 + 4s + 3) 

2 
(iii) yes) = sCi + 4s + 4) 

2 
(iv) yes) = s(? + 4s + 8) 

2(s + 1) 
(v) yes) = s(s2 + 4) 

A.ll Which solutions of the following equations will exhibit 
convergent behavior? Which are oscillatory? 

d3x . 
(c) df + x = sm t 

d2x dx 
(d) dr + dt = 4 

Note: All of the above differential equations have one com-
mon factor in their characteristic equations. 
A.12 The differential equation model for a particular chemi-
cal process has been found by testing to be as follows: 

where 7] and 72 are constant parameters and u(t) is the input 
function of time. 

What are the functions of time (e.g., e -I) in the solution for 
each output yet) for the following cases? (Optional: find the 
solutions for y(t).) 
(a) u(t) = as(t) unit step function 
(b) lI(t) = be-liT 77=7] "'72 

(c) u(t) = ee-1iT 
7 = 7] '" 72 

(d) u(t) = d sin wt 7] '" 72 

A.13 Find the complete time-domain solutions for the fol-
lowing differential equations using Laplace transforms: 

d3x dx(O) 
(a) - + 4x = el with x(O) = 0, -- = 0, 

df dt 
d2x(0) 
--=0 

dr 
dx 

(b) dt - 12x = sin 3t x(O) = 0 

d2x dx dx(O) 
(c) - + 6- + 25x = e- I x(O) = 0, -- = 0 

(d) A process is described by two differential equations: 
dy] iit + Y2 = Xl 

dY2 iit - 2y] + 3Y2 = 2X2 

If Xl = e -I and X2 = 0, what can you say about the form of the 
solution for y]? For Y2? 
A.14 The dynamic model between an output variable y and 
an input variable u can be expressed by 

d2y(t) dy(t) duet - 2) 7 + 3 dt + yet) = 4 dt - u(t - 2) 

(a) Will this system exhibit an oscillatory response after an 
arbitrary change in u? 
(b) What is the steady-state gain? 
(c) For a step change in u of magnitude 1.5, what is yet)? 
A.IS Find the solution of 

dx - + 4x = f(t) 
dt 

wh", fit) G 
x(O) = 0 

t < 0 
o :S t < 1/h 

t 1/h 

Plot the solution for values of h = 1, 10, 100, and the limiting 
solution (h ---> (0) from t = 0 to t = 2. Put all plots on the same 
graph. 
A.16 (a) The differential equation 

d2y dy - + 6- + 9y = cos t 
dr dt 

Exercises A-19 

has initial conditions yeO) = 1, y' (0) = 2. Find Y(s) and, with-
out finding yet), determine what functions of time will appear 
in the solution. 

s + 1 
(b) If Yes) = 2 ' find yet). 

s(s + 4s + 8) 
A.17 A stirred-tank blending system initially is full of water 
and is being fed pure water at a constant flow rate, q. At a 
particular time, an operator shuts off the pure water flow and 
adds caustic solution at the same volumetric flow rate q but 
with concentration Ci. If the liquid volume V is constant, the 
dynamic model for this process is 

de 
V- + qe = qc· dt I 

with e(O) = O. 
What is the concentration response of the reactor effluent 
stream, e(t)? Sketch it as a function of time. 

Data: V = 2 m3; q = 0.4 m3/min; c;= 50 kg/m3 

A.IS For the dynamic system 

dy 
2 dt = -y + 5u 

y and II are deviation variables-yin degrees, u in flow rate units. 
(a) u is changed from 0.0 to 2.0 at t = O. Sketch the response 
and show the value of Yss. How long does it take for y to reach 
within 0.1 degree of the final steady state? 
(b) If u is changed from 0.0 to 4.0 at t = 0, how long does it 
take to cross the same steady state that was determined in 
part (a)? What is the new steady state? 
(c) Suppose that after step (a) that the new temperature is 
maintained at 10 degrees for a long time. Then, at t = t1, U is 
returned to zero. What is the new steady-state value of y? 
Use Laplace transformation to show how to obtain the analy-
tical solution to the above ODE for this case. (Hint: select a 
new time, t = 0, where yeO) = 10.) 
A.19 Will the solution to the ODE that follows reach a 
steady state? Will it oscillate? 

d2x dx -+-=4 
dr dt 

Show appropriate calculations using partial fraction expan-
sion and Laplace transforms. 
A.20 Three stirred-tanks in series are used in a reactor train 
(see Fig. EA.20). The flow rate into the system of some inert 
species is maintained constant while tracer test are conducted. 
Assuming that mixing in each tank is perfect and volumes are 
constant: 
(a) Derive model expressions for the concentration of tracer 
leaving each tank, ei is the concentration of tracer entering 
the first tank. 
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q 
Ci 

Figure EA.20 

(b) If Ci has been constant and equal to zero for a long time 
and an operator suddenly injects a large amount of tracer ma-
terial in the inlet to tank 1, what will be the form of C3(t) (i.e., 
what kind of time functions will be involved) if 

1. VI = V2 = V3 
2. VI -:P V2 -:P V3. 

(c) If the amount of tracer injected is unknown, is it possi-
ble to back-calculate the amount from experimental data? 
How? 
A.21 A stirred-tank reactor is operated with a feed mixture 
containing reactant A at a mass concentration CAi. The feed 
flow rate is Wi, as shown in Fig. EA.2l. Under certain condi-
tions the system operates according to the model 

(a) For cases where the feed flow rate and feed concentra-
tion may vary and the volume is not fixed, simplify the model 
to one or more equations that do not contain product deriva-
tives. The density may be assumed to be constant. Is the 

Wi 

] 
v 

W 

Figure EA.21 

model in a satisfactory form for Laplace transform opera-
tions? Why or why not? 
(b) For the case where the feed flow rate has been steady at 
Wi for some time, determine how CA changes with time if a 
step change in CAi is made from CAl to CA2. List all assump-
tions necessary to solve the problem using Laplace transform 
techniques. 

Appendix B 

Digital Process Control SysteDls: 
Hardware and Software 
Process control implemented by computers has un-
dergone extensive changes in both concepts and 
equipment during the past 50 years. The feasibility of 
digital computer control in the chemical process in-
dustries was first investigated in the mid-1950s. Dur-
ing that period, studies were performed to identify 
chemical processes that were suitable for process 
monitoring and control by computers. These efforts 
culminated in several successful applications, the first 
ones being a Texaco refinery and a Monsanto chemi-
cal plant (both on the Gulf Coast) using mainframe 
computers. The first commercial systems were slow in 
execution and massive in size compared with the com-
puters available today. They also had very limited ca-
pacity. For example, a typical first-generation process 
control computer had 32K RAM and disk storage of 
1MB. 

The functionalities of these early control systems were 
limited by capabilities of the existing computers rather 
than the process characteristics. These limitations, cou-
pled with inadequate operator training and an unfriendly 
user interface, led to designs that were difficult to operate, 
maintain, and expand. In addition, many systems had 
customized specifications, making them extremely ex-
pensive. Although valuable experience was gained in sys-
tems design and implementation, the lack of financial 
success hindered the infusion of digital system applica-
tions into the process industries until about 1970, when 
inexpensive microprocessors became available commer-
cially (Liptak, 2005). 

During the past 40 years, developments in micro-
electronics and software technologies have led to the 

widespread application of computer control systems. 
Digital control systems have largely replaced tradi-
tional analog instrument panels, allowing computers 
to control process equipment while monitoring process 
conditions. Technological advancements, such as 
VLSI (very large-scale integrated) circuitry, object-
oriented programming techniques, and distributed 
configurations have improved system reliability and 
maintainability while reducing manufacturing and im-
plementation cost. This cost reduction has allowed 
small-scale applications in new areas, for example, 
microprocessors in single-loop controllers and smart 
instruments (Herb, 1999). Programmable logic con-
trollers have also gained a strong foothold in the 
process industries. 

Increased demand for digital control systems cre-
ated a new industry, consisting of systems engineering 
and service organizations. Manufacturing companies 
moved toward enterprise-wide computer networks by 
interfacing process control computers with business 
computer networks. These networks permit all com-
puters to use the same databases in planning and 
scheduling (see Chapter 19), and they also allow access 
to operator station information from locations outside 
the plant. 

In the following sections, we provide an overview of 
the hardware and software used for process control. 
The distributed control system configuration is de-
scribed first, followed by data acquisition for different 
signal types. Digital hardware is then considered, and 
concluding with a description of control system soft-
ware organization and architeetures. 
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