PWC Basics: A Simple Chemical Process

ENHANCES PROCESS PROFITABILITY

PWC Basics: Chemical Process Operation

Operate plant to meet production objectives 24X7

Production Objective Itself Can Change

	Process Distur	rbances	
Ambient	Raw material	Sensor	Equipment
Conditions	Quality	Noise	Characteristics

Need PWC to drive accumulation of all independent inventories to zero

PWC Basics

- Regulatory Control System
 - Drives all inventory accumulation terms to zero
 - Ensures plant operation around a steady state
- What steady state to operate at
 - Economic Optimum
 - Minimize expensive utility consumption
 - Maximize production

Plantwide Control Hierarchy

PLANT

Regulatory PWCS Design

• What to Control

- All independent inventories (DOF)
 - Material Liquid level or gas pressure
 - Energy Temperature or vapor pressure
 - Component Composition, tray temperature (inferential)
- Throughput or Production Rate
- Degree of tightness of control
 - Should energy inventories be tightly controlled?
 - Should surge level inventories be tightly controlled?
- What to manipulate
 - Pair close
 - Fast dynamics
 - Tight closed loop control
- Location of through-put manipulator a key decision for inventory management and economics

The Transformation of Variability Perspective

Where to Transform Variability

- Surge level
 - Does not affect steady state
 - Regulate loosely for filtering out flow transients
- Energy Inventories
 - Regulate tightly to guarantee safety (rxn runaway?)
- Product quality
 - Regulate tightly
 - Minimize "free" product give-away
- Production rate
 - Often "loose" is OK (eg meet the monthly target)
- Recycle loop circulation rates
 - Regulate to avoid large drifts
 - All equipment inside recycle loop see acceptable variability

Nonlinearity in Material Recycle Loops

Fixing the fresh feed rate of a recycled component is NOT a good idea

Possibility of overfeeding induced instability

Material Recycle Snowball Effect

Material Recycle Snowball Effect

Alternative Material Balance Control Schemes

Configure control structure to transform recycle rate variability out of the recycle loop

PWC Basics: Throughput Manipulation

THROUGHOUT MANIPULATOR (TPM)

The setpoint adjusted to effect a change in production/processing rate

EPWC Workshop, Bangkok, Jan 13, 2019

PWC Basics: TPM Selection

- When is TPM choice flexible
 - Large storage tanks supply the fresh feed(s)
 - Variability in storage tank level is acceptable
 - Allows structures that bring in fresh feed(s) as make-up
- Usually plant designs have large recycle rates
 - Design in the snowballing region
 - Capacity bottleneck then is likely inside the loop
- Where to locate the TPM
 - Inside the recycle loop
 - If multiple recycle loops, on a common branch
 - If bottleneck is known, AT the bottleneck

Reactor Separator Recycle Process

Steady State DOF	6
Given Column Pr	-1
Surge Levels	-2
Control DOFs	9

PWCS Design: TPM at Fresh Feed

PWCS Design: Recycle Drifts

Beware of subtle plantwide recycle loop inventory drifts Stoichiometric feed balancing

Plantwide balances close slowly due to recycle

Always examine process input-output structure Every component must find a way out or get consumed (DOWNS' DRILL)

For (near) pure C product, $F_A = F_B$

PWCS Design: TPM at Column Boilup

PWCS Design Steps

- DOF analysis and control objectives
 - Production rate, Product quality
 - Safety limits (eg UFL < gas loop composition < LFL)
 - Inventories
 - Economic
- Choose TPM
 - Feed set by an upstream process
 - On demand operation (utility plants)
 - Flexible
 - Inside the recycle loop at the feed of the most non-linear/fragile unit
 - If bottleneck is known, at the bottleneck inside the recycle loop
- Design "local" loops for closing all independent material and energy balances around the TPM
 - Radiate outwards from the TPM
 - Check consistency of material / energy balance closure (Downs' Drill)
- Design economic control loops
 - Active constraint control & SOCV control

Mode I Optimum Operation

OBJECTIVE

MIN J = Boilup at given throughput

subject to process constraints

ACTIVE CONSTRAINTS

 T_{rxr}^{MAX} Max reactor temperature LVL_{rxr}^{MAX} MAX reactor level x_c^{prdMIN} MIN product purity

EQUALITY CONSTRAINT

P Given throughput

UNCONSTRAINED DOFs

SOCV1	L/F	Reflux to feed ratio
SOCV2	[A/B] _{rxr}	Reactor A/B ratio

Mode II Optimum Operation

MAX J = Throughput (P)

subject to process constraints

ACTIVE CONSTRAINTS

T _{rxr} MAX	Max reactor temperature
	MAX reactor level
X_C prdMIN	MIN product purity
ΔΡ ^{ΜΑΧ}	Capacity bottleneck

UNCONSTRAINED DOFs

SOCV1 L/F SOCV2 [A/B]_{rxr}

Reflux to feed ratio Reactor A/B ratio

Product C

PWCS Design: TPM at Fresh Feed

PWCS Design: TPM at Fresh Feed

PWCS Design: TPM at Bottleneck

PWCS Design: TPM at Bottleneck

Switching Regulatory Control Structure

• Locate TPM at bottleneck inside recycle loop

• Economic considerations play a major role in regulatory control layer design

- COMMON SENSE MUST PREVAIL
 - Everything must be carefully thought through
 - It pays to be systematic

Case Study I: Ester Purification Process

Flowsheet Material Balances

Control Objective

- Operate plant to maximize ester production
- BOTTLENECK
 - Maximum water solvent rate to the extractor
 - Hydraulic constraint
 - Limits alcohol extraction capacity

Steady State Bifurcation Analysis

Fresh Water Rate = MAX

Control Structure 2

CS1: TPM at Bottleneck Feed

CS1: TPM at Bottleneck Feed

CS2: TPM at Fresh Feed

CS1 Closed Loop Transients

Large Feed Composition Change

EPWC Workshop, Bangkok, Jan 13, 2019

CS2 Closed Loop Transients

Large Feed Composition Change

EPWC Workshop, Bangkok, Jan 13, 2019

Throughout Maximization Results

