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PWC Basics: Chemical Process Operation
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PWC Basics
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PWC Basics

* Regulatory Control System
— Drives all inventory accumulation terms to zero

— Ensures plant operation around a steady state

 What steady state to operate at

— Economic Optimum
* Minimize expensive utility consumption
* Maximize production
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Plantwide Control Hierarchy
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Regulatory PWCS Design

What to Control

— All independent inventories (DOF)
e Material — Liquid level or gas pressure
* Energy — Temperature or vapor pressure
 Component — Composition, tray temperature (inferential)

— Throughput or Production Rate

Degree of tightness of control
— Should energy inventories be tightly controlled?
— Should surge level inventories be tightly controlled?

What to manipulate

— Pair close
* Fast dynamics
* Tight closed loop control

Location of through-put manipulator a key decision for
inventory management and economics
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The Transformation of Variability Perspective

HEAT EXCHANGER EXAMPLE

Process Stream in HEAT EXCHANGER
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CONTROL Agent for transformation /
SYSTEM management of process variability
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Where to Transform Variability

Surge level
— Does not affect steady state

— Regulate loosely for filtering out flow transients

Energy Inventories
— Regulate tightly to guarantee safety (rxn runaway?)

Product quality
— Regulate tightly

— Minimize “free” product give-away

Production rate
— Often “loose” is OK (eg meet the monthly target)

Recycle loop circulation rates
— Regulate to avoid large drifts

— All equipment inside recycle loop see acceptable variability
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Nonlinearity in Material Recycle Loops
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Fixing the fresh feed rate of a recycled component is NOT a good idea

Possibility of overfeeding induced instability
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Material Recycle Snowball Effect
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Material Recycle Snowball Effect
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Alternative Material Balance Control Schemes

@ —@ Fixed Feed
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Recycle
: Fixed Recycle
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Configure control structure to transform
recycle rate variability out of the recycle loop
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PWC Basics: Throughput Manipulation

THROUGHOUT MANIPULATOR (TPM)

The setpoint adjusted to effect a change in production/processing rate
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PWC Basics: TPM Selection

e When is TPM choice flexible

— Large storage tanks supply the fresh feed(s)
— Variability in storage tank level is acceptable
 Allows structures that bring in fresh feed(s) as make-up
* Usually plant designs have large recycle rates
— Design in the snowballing region
— Capacity bottleneck then is likely inside the loop

* Where to locate the TPM
— Inside the recycle loop
— If multiple recycle loops, on a common branch
— If bottleneck is known, AT the bottleneck
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Reactor Separator Recycle Process
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PWCS Design: TPM at Fresh Feed

A+B—->C

Product C
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PWCS Design: Recycle Drifts

Beware of subtle plantwide recycle loop inventory drifts
Stoichiometric feed balancing

Plantwide balances close slowly due to recycle

Always examine process input-output structure
Every component must find a way out or get consumed (DOWNS’ DRILL)
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PWCS Design: TPM at Column Boilup
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PWCS Design Steps

DOF analysis and control objectives

— Production rate, Product quality

— Safety limits (eg UFL < gas loop composition < LFL)
— Inventories

— Economic

Choose TPM
— Feed set by an upstream process
— On demand operation (utility plants)

— Flexible
* Inside the recycle loop at the feed of the most non-linear/fragile unit
» |If bottleneck is known, at the bottleneck inside the recycle loop

Design “local” loops for closing all independent material and
energy balances around the TPM

— Radiate outwards from the TPM
— Check consistency of material / energy balance closure (Downs’ Drill)

Design economic control loops
— Active constraint control & SOCV control
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Mode | Optimum Operation

OBIJECTIVE
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Mode Il Optimum Operation
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PWCS Design: TPM at Fresh Feed
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PWCS Design: TPM at Fresh Feed

-0
>)

()
O—
TPlM F, g >'%
-/

> LS >( FC
|

i

A+B—->C

TrerAX—ch ) @ |

Long Loop - Large 6 @\%\ ‘
PO)
v

APMATX .6 XCprdMIN _)@

Product C

EPWC Workshop, Bangkok, Jan 13, 2019



PWCS Design: TPM at Bottleneck
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PWCS Design: TPM at Bottleneck
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Switching Regulatory Control Structure
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* Locate TPM at bottleneck inside recycle loop

* Economic considerations play a major role in
regulatory control layer design

* COMMON SENSE MUST PREVAIL

— Everything must be carefully thought through
— |t pays to be systematic
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Case Study I: Ester Purification Process
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Flowsheet Material Balances
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Control Objective

* Operate plant to maximize ester production

* BOTTLENECK

— Maximum water solvent rate to the extractor

* Hydraulic constraint

— Limits alcohol extraction capacity
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Steady State Bifurcation Analysis

Fresh Water Rate = MAX

_ (b)

(@) v
£400- 2150
0 3 ]
¢ {0
0 300- ~ o |
g _»Infeasible %130_
0 setpoint 8120—
20- 0
0 < 10-
i 5]
*;%100— c004 No setpoint
f 0. 3 — Infeasibility "

. ‘ : ‘ T —
100 10 140 160 180 00 0 % 0 NN W XN N L
Fresh e re kol Extractor feed rate (kmolh)

EPWC Workshop, Bangkok, Jan 13, 2019



Control Structure 2
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CS1: TPM at Bottleneck Feed
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CS1: TPM at Bottleneck Feed
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CS2: TPM at Fresh Feed
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CS1 Closed Loop Transients

Large Feed Composition Change
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CS2 Closed Loop Transients

Large Feed Composition Change
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Fresh feed rate (kmol/h)

Throughout Maximization Results
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