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Putting Optimization into process control. Abstract
• How can you control a complex plant effectively using simple elements with a minimal amount of modelling? 
• How can you put optimization into the control layer?

Industry has been using simple and effective as “advanced regulatory control” (ARC) schemes based on PID controllers for almost 100 years. The objective of my 
work is to provide a systematic approach for designing such control systems. 
• The main competitor to ARC is MPC (model predictive control), but the costs of implementing and maintaining MPC solutions are high. Moreover, in most 

cases ARC solutions (including cascade, ratio, split range and selector control) are more flexible and easier to tune. The main problem right now is that the 
knowledge and competence about ARC strategies is very low, especially in academia, but also in industry the knowledge is dying out. The result is that 
people turn off good ARC applications, simply because they don't understand what they are doing. 

• The reason for the lack of training and knowledge is that there has a been belief in academia since the 1980s, that ARC solutions (and PID control) are old-
fashioned and will soon be replaced by MPC. However, MPC has now been around for 50 years, and yet the use of MPC is far from increasing as expected. 
The latest hype is that, if MPC is too complex, then machine learning is the solution. No, it is not, because or the lack of rich data (with sufficiently large 
input excitations) in most control applications, in particular in process control. 

In summary, there is a need to change the mindset of people, both in academia and industry, People need to realize that ARC solutions should be a central part 
of the future. MPC of course has its place, but mainly as an improvement for large-scale applications that can afford the effort.

The talk will emphasize the above points and in addition present a systematic approach to ARC methods based on my recent paper (which is open access).

Reference: Sigurd Skogestad, ''Advanced control using decomposition and simple elements''.
Published in: Annual Reviews in Control, vol. 56 (2023), Article 100903 (44 pages).

Sigurd Skogestad is a Professor in chemical engineering at the Norwegian University of Science and Technology (NTNU) in Trondheim. He received his PhD from Caltrech in 1987 and he is the principal author 
together with Ian Postlethwaite of the book "Multivariable feedback control" published by Wiley in 1996 (first edition) and 2005 (second edition). The goal of his research is to develop simple yet rigorous 
methods to solve problems of engineering significance. Research interests include the use of feedback as a tool to (1) reduce uncertainty (including robust control), (2) change the system dynamics (including 
stabilization), and (3) generally make systema more well-behaved (including self-optimizing control). Other interests include limitations on performance in linear systems, control structure design and plantwide 
control, interactions between process design and control, and distillation column design, control and dynamics. His other main interests are mountain skiing (cross country), orienteering (running around with a 
map) and grouse hunting.

https://www.sciencedirect.com/science/article/pii/S1367578823000676
https://folk.ntnu.no/skoge/
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About Sigurd Skogestad

•1955: Born in Flekkefjord, Norway
• 1956-1961: Lived in South Africa
•1974-1978: MS (Siv.ing.) studies in chemical engineering at NTNU
•1979-1983: Worked at Norsk Hydro co. (process simulation)
•1983-1987: PhD student at Caltech (supervisor: Manfred Morari)
•1987-present: Professor of chemical engineering at NTNU
• 1994-95: Visiting Professor UC Berkeley
• 2001-02: Visiting Professor UC Santa Barbara
•1999-2009: Head of ChE Department, NTNU
•2015-..: Director SUBPRO (Subsea research center at NTNU)

Non-professional interests:
• mountain skiing (cross country) 
• orienteering (running around with a map) 
• grouse hunting 1973
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“The goal of my research is to 
develop simple yet rigorous 
methods to solve problems of 
engineering significance” 
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1. Robust control
2. Distillation
3. PID (IMC)

1983-87: Caltech
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October 1984
Robust control takes off!
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Robust control

1996 2005Berkeley, Dec. 1994
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At home doing moonshine
distillation (1979)

Distillation
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𝜏𝜏𝑐𝑐 ≥ 𝜃𝜃
Tuning parameter:

SIMC* PID tuning rule (2001,2003) 

*SIMC = Simple/Skogestad IMC
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2000, 2003, 2009
2009

2000

Chemical Engineering



Process control: Hierarchical decision system 
based on time scale separation



Alan Foss (“Critique of chemical process control theory”, 
AIChE Journal,1973):

The central issue to be resolved ... is the determination of control system 
structure. Which variables should be measured, which inputs should be 
manipulated and which links should be made between the two sets?
There is more than a suspicion that the work of a genius is needed here, for 
without it the control configuration problem will likely remain in a primitive, 
hazily stated and wholly unmanageable form. The gap is present indeed, but 
contrary to the views of many, it is the theoretician who must close it.

Control structure design = Plantwide control
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Well, I’m not a genius, but I didn’t give up.
I started on this in 1983. 40 years later:



How we design a control system for a complete 
chemical plant?
• Where do we start?
• What should we control? and why?
• etc.
• etc.
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Optimal steady-state operation (economics)

• Typical cost function*:

*No need to include fixed costs (capital costs, operators, maintainance) at ”our” time scale (hours)
Note: J=-P where P= Operational profit

J [$/s] = cost feed + cost energy – value products 
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Subject to Constraints:
Purity D: For example, xD, impurity ≤ max
Purity B: For example, xB, impurity ≤ max
Flow constraints: min ≤ D, B, L etc. ≤ max
Column capacity (flooding): V ≤ Vmax, etc.

• Optimal operation: Minimize J with respect to steady-state degrees of freedoms (inputs u)
• u = [reflux L;  heat input V]

Example: distillation column

Cost J [$s] to be minimized (economics):

value products

cost energy (heating + cooling)

cost feed

J = - P   where  P = pD D + pB B – pF F – pVV



CV2s

CV1s

Process control: Hierarchical decision system

Manager

Process engineer

Operator/RTO (usually steady-state)

Supervisory control layer
”Advanced control”/MPC

Regulatory (basic) control layer
PID-control

u (MV) = valves

min J (economics)
hour

Setpoint control 
(+ look after other variables)
Jc = (y-ys)2 + Δu2

minute

Stabilize + avoid drift
Gain margin…
second

CV = controlled variable (with setpoint)

ResponsibleObjective
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          or
Dynamic RTO
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CV2s



Process control: Hierarchical decision system

u (MV) = valves

CV2s

CV1s
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• Real-time optimization layer (RTO):
– Optimize setpoints CV1s based on detailed nonlinear model (usually steady state)

• Supervisory/”Advanced” control:
– Follow set points for CV1  
– Switch between active constraints (change CV1)
– Look after regulatory layer (avoid that MVs saturate, etc.)

Implementation:
Alternative 1:  “Advanced PID” (ARC) based on ”simple elements” 
Alternative 2:  MPC (model predictive control)

• Regulatory control (PID):
– Stable operation (CV2)

CV = controlled variable.      MV = manipulated variable.         ARC = Advanced regulatory (PID) control

CV2s

CV1s

u (MV) = valves

RTO

MPC or PID

PID

Process control layers
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Move optimization into the control layer

• Try to eliminate RTO-layer  
• = «Feedback-optimizing control»
• Unconstrained case: Select CV1 using «self-optimizing» control

– Ideal: Control cost gradient to zero, CV1=Ju=0
• Changing active constraints: More complicated (but I think we now 

have solved it )
– I. Primal-dual optimizing control (with control of constraints on slow timescale)

• Can use PID control
• May add fast override control for constraints

– Region-based control (fast control of constraints)

• II. More inputs (MVs) than constraints: Can use PID with selectors
• III. General case: MPC with changing cost function (swicth CV1)

CV1s

RTO
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Optimal steady-state operation
  minu J(u,d) 

   s.t. g(u,d) ≥ 0 (constraints)
• J = economic cost [$/s]
• Unconstrained case: Optimal to keep gradient Ju � ∂J/∂u =0 

u

cost J

Ju=0
Ju<0

Ju<0

uopt

Ju 0

•  Constrained case: KKT-conditions: gA=0, 
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Optimal steady-state operation

Want tight control of active constraints for economic reasons
 

– Active constraint: gA=0
– Tight control of gA minimizes «back-off»

• How can we identify and control active constraints?
• How can we switch constraints?



I. Primal-dual control based on KKT conditions: Feedback solution that 
automatically tracks active constraints by adjusting Lagrange multipliers (= shadow prices = dual 
variables) λ

• D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Control 97 (2021) 72–83,
• R. Dirza and S. Skogestad . Primal–dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.

Process

Unconstrained 
optimization 

(nu PID-controllers)
Gradient 

estimation

Constraint control
(nc slower PI/I-controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

Primal-dual feedback control.
• Makes use of «dual decomposition» 

of KKT conditions
• Selector on dual variables λ
• Problem: Constraint control using 

dual variables is on slow time scale

Dual variables λ

Primal variables u

Inequality constraints: 𝜆𝜆 ≥ 0



II. Region-based feedback solution with «direct» constraint control 
(for case with more inputs than constraints) 

Process

Gradient 
estimation

Constraint controllers
(fast PID-controllers)

MAX/
MIN

y

g (measured constraint)

g (constraints paired with u1)
SP=0

u1

d

u2

Ju1
u1

(changes!)
Ju2

PID
u1o

SP=0

Control
1. Reduced gradient  𝑁𝑁𝑇𝑇𝐽𝐽𝑢𝑢 = 0 

• «self-optimizing variables»)
2. Active constrints gA = 0.

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012
• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019
• Bernardino and Skogestad, Decentralized control using selectors for optimal steady-state operation with changing active constraints, J. Process Control, Vol. 137, 2024

• Selector on primal
variables (inputs)

Introduce 𝑁𝑁:  𝑁𝑁𝑇𝑇𝑔𝑔𝑢𝑢 = 0
KKT:



Static gradient estimation:
Very simple and works well!

From «exact local method» of self-optimizing control:

• Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024 (submitted)



III. Region-based MPC with switching of cost function (for general case)
Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched CVs)

• Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024 (submitted)
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• Real-time optimization layer (RTO):
– Optimize setpoints CV1s based on detailed nonlinear model (usually steady state)

• Supervisory/”Advanced” control:
– Follow set points for CV1  
– Switch between active constraints (change CV1)
– Look after regulatory layer (avoid that MVs saturate, etc.)

Implementation:
Alternative 1:  “Advanced PID” (ARC) based on ”simple elements” 
Alternative 2:  MPC (model predictive control)

• Regulatory control (PID):
– Stable operation (CV2)

CV = controlled variable.      MV = manipulated variable.         ARC = Advanced regulatory (PID) control

CV2s

CV1s

u (MV) = valves

RTO

MPC or PID

PID

Process control layers
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«Advanced» control

• This is a relative term
• Usually used for anything than comes in addition to (or in top of) basic PID loops
• Main options

– ARC using advanced control elements
• PID + Cascade, feedforward, selectors, etc.
• This option is preferred if it gives acceptable performance and it’s not too complicated

– Model predictive control (MPC)
• Requires more effort to implement and maintain

ARC = Advanced regulatory (PID) control
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Academia: MPC

• MPC 
• General approach, but we need a dynamic model
• Also: MPC  is usually implemented only after some time of operation
• Furthermore: Not all problems are easily formulated using MPC

• So we need something in addition to MPC
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Research question: Alternative simpler solutions to MPC

• Would like: Feedback solutions that can be implemented without a detailed models

• Machine learning?
– Requires a lot of data
– Can only be implemented after the process has been in operation

• Solution: “Classical advanced control“ (ARC) based on single-loop PIDs
– Extensively used by industry
– Problem for engineers: Lack of design methods

• Has been around since 1930’s
• But almost completely neglected by academic researchers

– Main fundamental limitation: Based on single-loop (need to choose pairing)

ARC = Advanced regulatory (PID) control
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QUIZ
What are the three most important inventions of process control?

• Hint 1: According to Sigurd Skogestad
• Hint 2: All three are from the 1930’s

SOLUTION
1. PID controller, in particular, I-action
2. Cascade control
3. Ratio control
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Standard Advanced control elements
• Each element links a subset of inputs with a  subset of outputs
• Results in simple local tuning

42

Sigurd Skogestad, ''Advanced control using 
decomposition and simple elements''.
Annual Reviews in Control, vol. 56 (2023), 
Article 100903 (44 pages).

https://www.sciencedirect.com/science/article/pii/S1367578823000676
https://www.sciencedirect.com/science/article/pii/S1367578823000676
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E1. Cascade control
• Have Extra output (state) measurements 
E2. Ratio and feedforward control 
• Have measured disturbance
E12. Decoupling elements
• Have interactive process
E13. Linearization elements / Adaptive gain
• Have Nonlinear process
E5-E7. Split-range control  (or multiple controllers or VPC)
• Need extra inputs (MV) to handle all conditions (steady state)  (MV-MV switch)
E3. Valve position control (VPC) (Input resetting/Midranging control)
• Have extra inputs dynamically 
E4. Selectors
• Have changes in active constraints (CV-CV switch)

Often static nonlinear «function block»
One unifying approach is «Transformed inputs» (similar to feedback linearization)

“Classical Advanced control” (ARC) using simple control elements 

ARC = Advanced regulatory (PID) control
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How design classical APC elements?

• Industrial literature (e.g., Shinskey). 
 Many nice ideas. But not systematic. Difficult to understand reasoning

• Academia:  Very little work
– I feel alone
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Constraint switching 
(because it is optimal at steady state)

• CV-CV switching
– Control one CV at a time

• MV-MV switching
– Use one MV at a time

• MV-CV switching
– MV saturates so must give up CV
1. Simple («do nothing»)  
2. Complex (repairing of loops)

Process

Process

Process

Process
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MV-MV switching

For cases with one CV (y) and many inputs (MVs) 
– Need several MVs to cover whole steady state range
– Example 1: Not both heating (u1) and cooling (u2) to control temperature (y=T)
– Example 3: Need both gas (u1) and brake (u2) to control car speed (y)

Three alternatives
E5. Split range control
E6. Multiple controllers with different setpoints
E7. Valve position control

Process

MVs (u)
CV (y)
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MVs (two for summer and two for winter):
1. AC (expensive cooling)
2. CW (cooling water, cheap)
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)

Example split range control (E5) : Room temperature with 4 MVs

MV-MV switching

SR-block:

y=T

1

3 2

4

CPI – same controller for all inputs (one integral time)
         But get different gains by adjusting slopes α in SR-block

47
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E6: MV-MV switching

Disadvantage (comfort):
• Different setpoints

Advantage (economics) : 
• Different setpoints (energy savings)

C1

C2

C3

C4

23oC

22oC

21oC

20oC

48

Alternative: Multipliple Controllers with different setpoints (E6)

y=T

1

3 2

4



49 A Reyes-Lua, S Skogestad. Multiple-Input Single-Output Control for Extending the Steady-State Operating Range - Use of Controllers with Different Setpoints. Processes 7 (12), 941 (2019)

y=T

d=Tamb

49

Simulation Room temperature
• Dashed lines: SRC (E5)
• Solid lines: Multiple controllers (E6)

 

SRC = split range control



51

CV-CV switching

• Only one input (MV) controls many outputs (CVs)
– Typically caused by change in active constraint
– Example 1: Control car speed (y1) - but give up if too small distance (y2) to car in front.
– Example 2: Control  power (y1) - but give up if too high engine temperature (y2).

• Use max- or min-selectors (E4)

Process
MV (u)

CVs (y)
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E4. Selector: One input (u), several outputs (y1,y2)

• Note: The selector is on the input u, even though the setpoint/constraint is on 
the output y

• Sometimes called “override” 
– OK name for temporary dynamic fix, but otherwise a bit misleading

• Selectors are used for output-output (CV-CV) switching
• Selectors work well, but require pairing each constraint with a given input (not 

always possible)

> MAX= HS=

< MIN= LS=

y1

y2

u=min(u1,u2)
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TC

u=Fuel gas

Flue gas

Process fluid (water)

Air

T1s = 500C

TC
T2max=700C

y1=T1

u1

u2

u=min(u1,u2)

Input (MV)
      u = Fuel gas flowrate
Output (CV)
      y1 = process temperature T1
             (desired setpoint or max constraint)
      y2 = furnace temperature T2
             (T2max= 700C)

Rule: Use min-selector for constraints that 
are satisfied with a small input

Furnace control 

CV-CV switching 

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

MIN

with safety constraint

y2=T2

HP steam

53
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Design of selector structure

Rule 1 (max or min selector)
• Use max-selector for constraints that are satisfied with a large input
• Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors): 
• If need both max and min selector: Potential infeasibility
• Order does not matter if problem is feasible
• If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.”
Dinesh Krishnamoorthy , Sigurd Skogestad. Computers & Chemical Engineering, Volume 143, (2020)

https://www.sciencedirect.com/science/journal/00981354
https://www.sciencedirect.com/science/journal/00981354/143/supp/C
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Example. Maximize flow with pressure constraints

Op

Input u = z1  
Want to maximize flow, J=-F: 
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Disturbances in p0 and p2 (unmeasured)
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t>1800: u=zmax=1
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Anti-surge control (= min-constraint on F)
Example «simple» MV-CV switching (no selector)

• No selector required, because MV=z has a «built-in» max-selector at z=0.
• Generally: «Simple» MV-CV switching (with no selector) can be used if we satisfy the 

input saturation rule:  «Pair a MV that may saturate with a CV  that can be given up 
(when the MV saturates at z=0)”

59

Minimize recycle (MV=z) subject to
 CV= 𝐹𝐹 ≥ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
 MV ≥ 0
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p0 F0

Fp

QUIZ 
Compressor 

control

Suggest a solution which achieves
• p< pmax= 37 bar    (max delivery pressure)
• P0 > pmin = 30 bar  (min. suction pressure)
• F < Fmax = 19 t/h   (max. production rate)
• F0 > Fmin = 10 t/h  (min. through compressor
                                      to avoid surge)

CW
p0 F0 Fp

CW

FC

PC PCFC

MAX 

pmin=
30bar

Fmax=
19 t/h

pmax=
37bar

Fmin=
10 t/h

Rule CV-CV switching: Use max-selector for constraints that 
are satisfied by a large input (MV) (here: valve opening z) 

z
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Complex MV-CV switching

• = CV-CV switch followed by MV-MV switch
• Example inventory control: Avoid «long loop» (dynamic issue)



62 TPM = throughput manipulator

Example: 
Inventory control
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Example . Very smart selector strategy: Bidirectional inventory control
                     Reconfigures automatically with optimal buffer management!!

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981
C. Zotica, S. Skogestad and K. Forsman, Comp. Chem. Eng, 2021

Max flow:
Fs=∞
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F0=1 F2=1 F3=1F1=1

1=∞=∞ =∞
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F0=1 F2=1 F3=1F1=0.5

1=∞=∞
0.5
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F0=0.5 F2=1 F3=1F1=0.5

1
0.5

=∞=∞
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F0=0.5 F2=0.5 F3=1F1=0.5

1
0.5

=∞=∞
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F0=0.5 F2=0.5 F3=0.5Fully 
open

1=∞=∞ =∞
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F0=1 F2=1 F3=1F1=1

1=∞=∞

Challenge: Can MPC be made to do his? Optimally reconfigure loops and find optimal buffer? 
• Yes, possible with standard setpoint-based MPC if we use  

• Trick: All flow setpoints = infinity (unachoevable setpoint)
• What about Economic MPC? Cannot do it easily; may try scenario-MPC
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Example adaptive cruise control: 
CV-CV switch followed by MV-MV switch

Note: This is not Complex MV-CV switching, because then the order would be opposite.
70



Important insight

• Many problems: Optimal steady-state solution always at constraints
• In this case optimization layer may not be needed 

– if we can identify the active constraints and control them using selectors
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E8. Anti-windup

• All the controllers shown need anti-windup to «stop integration» during periods 
when the control action (vi) is not affecting the process:
– Controller is disconnected (because of selector)
– Physical MV ui is saturated

Anti-windup using back-calculation. Typical choice for tracking constant, KT=1

KT,i

Selector or
saturation
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Challenges selector design

• Standard approach requires pairing of each active constraint with a single input
– May not be possible in complex cases

• Stability analysis of switched systems is still an open problem
– Undesired switching may be avoided in many ways:

• Filtering of measurement
• Tuning of anti-windup scheme
• Minimum time between switching
• Minimum input change 
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When use MPC?

When conventional APC performs poorly or becomes complex

• Cases with many changing constraints (where we cannot assign one input to each 
constraint)

• Interactive process  
• Know future disturbances and setpoint changes (predictive capability)
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Conclusion Advanced process control (APC)

• Classical APC, aka «Advanced regulatory control» (ARC) or «Advanced PID»:
– Works very well in many cases
– Optimization by feedback (active constraint switching)
– Need to pair input and output.

• Advantage: The engineer can specify directly the solution
• Problem: Unique pairing may not be possible for complex cases

– Need model only for parts of the process (for tuning)
– Challenge: Need better teaching and design methods

• MPC may be better (and simpler) for more complex multivariable cases
– But MPC may not work on all problems (Bidirectional inventorycontrol)
– Main challenge: Need dynamic model for whole process
– Other challenge: Tuning may be difficult 



Optimal centralized
Solution (EMPC)

Sigurd (me)

Academic process control community fish pond

Simple solutions that 
work (ARC =  PID++)

Please join me, I feel a little alone
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