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Lecture 7. Transformed inputs

* Motivation: Feedforward ratio control
* Motivation: Decoupling of mixing process

* Inversion of input transformation
A. Exact inverse of model
B. Approximate inverse using feedback (cascade control)
. Derivation of ideal transformed inputs (for static and dynamic model)
- Linearization
- Decoupling
— Feeforward disturbance rejection

Lecture 8: Examples and discussion
 Examples (many)
* Discussion
— Chain of transformations (Exact inverse for systems of higher order)
— Potential internal instability with exact inverse
* Linear analysis,
* Bode stability condition
— Comparison with «feedback linearization»

e QOutput transformation
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5.1. Classical solutions

5.1.1. Static feedforward compensator

A static feedforward compensator is a solution widely used in industry, yhich i1s given by:

Cpp =1 (15)

The reason to use this simple solution is that drastic improvements can be obtained compared with pure

feedback control by using just this simple compensator. Moreover, it can be used to account for any

non-realisable problem. However, the resulting performance is also limited because of its simplicity.
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Feedforward control

* Feedforward control relies on model
— as opposed to feedback which relies mostly on data

e Feedback control: Linear model is often OK

* Feedforward control: Much less likely that linear model is OK

— Process changes and disturbances
— This presentation: Use nonlinear static model
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Ratio control
(most common case of nonlinear feedforward)

Example: Process with two feeds q,(d) and g, (u), where ratio should be constant.

Use multiplication block (x):

- (02/01)s

1 (desired flow ratio)

d=0;____ 0 U=0,
(measured (MV: manipulated variable)

flow
disturbance)

“Measure disturbance (d=q,) and adjust input (u=Q,) such that
ratio is at given value (9,/q,)s"

: @ NTNU



Usually: Combine ratio (feedforward) with feedback

* Adjust (q,/q,), based on feedback from process, for example,
composition controller.

— Example cake baking (mixing): Use recipe (ratio control =
feedforward), but adjust ratio if result is not as desired (feedback)
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EXAMPLE: MIXING PROCESS

RATIO CONTROL with outer feedback to adjust ratio setpoint

V= (d/9:)s
d — ql,m — q2,s
)
q4 [m3/s] Calculation
C, [mol/m3] block qz,m\ o
Concentrate " l ; > Water
2

N A H
ST P (N
: g [m3/s]

M ¢ [mol/m3]

Diluted product

u = q, (or actually valve position z,) = physical input (MV)
Vv = q,/q, = u/d = transformed input as seen from feedback controller CC
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Feedforward ratio control:
Transformed input v = g(u,d) = u/d

Transformed system d
e e e il ol —I
u | ]
| |
: I* :
[ ] - "
. ( " - : u=g (v,w,y,d) - . y
. € ‘ontroller C' | v ; i rOCess . >
" . . : Calculation block ) ) it
L (dynamic) . (nonlinear) -
: |u=vxd .
. '
[ ]
]
L]
L1

- L |
[y
i

Figure 1: Use of transformed inputs v. For example, the transformed input could be the ratio
v = g(u,d) = %, and the “inverse input transformation” block that inverts this relationship

would then be u = g~ (v.d) = vd.
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Further motivation transformed inputs

* Industry frequently uses static model-based calculations blocks
— For feedforward, decoupling, linearization

e ...and sometimes combined with cascade control
* |dea: Use physical insight or model equations to derive control strategy
e But little theory for when and how to use

e Shinskey (1981): “There is no need to be limited to single measurable (y) or
manipulable variables (u). If a more meaningful variable happens to be a
mathematical combination of two or more measurable or manipulable variables,
there is no reason why it cannot be used.”

* Transformed input v: Replaces physical input u as manipulated variable for control
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Definition of transformed inputs

| ,

«

|

|

|

|

|

|
Ys Controller  |v =g(u,w,y,d)

Input
- > C calculation
d . : (Static calculation
(dynamic) | block)
IR S F
y
u = physical input Transformed input: v=g(u,w,y,d) (static function)
v = transformed input * vreplaces u as manipulated variable for control

y = controlled output
w = other measured output (state)
d = disturbance

(controller output)
e dandw are assumed measured




Use of transformed inputs

Transformed system d

Ys Controller v =g(u,w,y,d) Input.
- > C L '7 calculation
. (Static calculation
d I
(dynamic) I block)
- |
|
y _______________________
Transformed input v =g(u,w,y,d) Examples
* Replaces the physical input u for control of y. e v = u/d
¢ Aim: Transformed system is easier to control e v=u./u
¢ May include: I U’
* Decoupling * v=u;+u,
* Linearization * v=w(u) ->Cascade control

 Feedforward
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Use of transformed inputs requires inversion

Transformed system d

[ —————— —— — — — — — —

|

|

|

|

|

|
Ys Controller |y :g(U,WIV,Cﬁ
¢ i

|

|

|

Input
. u
C calculation
(dynamic) u=gi(v,wy,d)
B I
Y

Input calculation block: Need to “invert / reverse” the transformation:
u=gt(v,wy,d)

* Two main options:
A: Exact inverse

B. Approximate inverse by feedback
e Can also use combination (C)




A. EXACT INVERSE

Transformed system d

Y, Controller V Exact Inverse
_ . C - (Static calculation
. _ block)
(dynamic) | v=eiuwya)
- I
S
y

Exact inverse requires that v=g(u,w,y,d) depends explicitly on u

Potential problems:
* Inverse may be complicated, easy to do mistakes
* May get internal instability (because of feedback from w and y)




B. INVERSE BY FEEDBACK Transformed system

r--_-_-—---—-—n—"—-:-—-y\yyr_—_"-_-—— |
: Calculate d |
| transformed :
\Yj input (static) |
:(calculated) v=g(u,w,y,d) T
| ! |
I

I
Y. Controller Vg | Slave v- u :
" > C (Setpoml) »|  controller |
(dynamic) If (dynamic) |
I

— I
L]

Y

Only option when v=g(w(u),y,d) does not depend explicitly on u.

Example: v = w (flow controller where w=F)
Other advantages:
* Avoid internal instability with exact inverse
* Avoid complicated inverse (and reduce errors!)
Disadvantages:
* Inverse not perfect dynamically (need fast slave controller)




Examples of transformed inputs

e Feedforward ratio control, v = g(u,d)=u/d
e Example 1: Decoupling for mixing process (exact inverse)

 Example 2 (Industrial): Feedforward for control of reactor temperature (inverse by
feedback)




Example 1: Mixing of hot and cold water

Want to control
u T y, = Temperature T
1 - y, = total flow F

o< * |nputs (Manipulated variables)
u u, = F, = hot water flowrate
2 u, = F, = cold water flowrate

* Want to use two SISO Pl-controllers (TC, FC)
* But the process is very coupled

Vo=sum * Get decoupling with flow ratio and flow sum as
transformed inputs

v,=rati TC sets flow ratio, v, = u,/u,
0 FC sets flow sum, v, = u; + U,
* Exact inverse («static calculation block»):
u,=vy v,/ (1+v,)
u,=v,/(1+v,)

M




A. EXACT INVERSE

Decoupled transformed system from v toy

Two SISO | :
controllers | Exact inverse o
| u,=F,=hot |
V1s=Ts T.T v,=flow ratid flowrate L YiE
- F F' TC r F1=V1V2/(1+V1) . | o
2s=F - = |
Yo >—— FC v =tlow suT’n. F2=v,/(1+v,) — vy,=F
. | u,=F,=cold | 2
- e ___ flowrate _ _ _ _ _ _ _ _ _ _ 1

TC = temperature controller,
FC = flow controller

Pairings: BUT: Flows (F,, F,) cannot be implemented directly.

¢ T-v, The real physical inputs are the valve positions (z,, z,)
* F-v,

No interactions for setpoint change
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BUT

* Flows F cannot usually be implemented directly
e Phycial input (u) = valve position (z)
* Valve equation

F = kf,(2)VAP




A. EXACT INVERSE with inversion of valve equation

Decoupled transformed system fromvtoy

Two SISO |

controllers :

y1s=Ts T-T v,=flow ratio
; ~—1 TC |— -

y2s=F, F.-F

_ Invert valve
Exact inverse .
equations
Fl fv-1
— F/k*sqrt(D
Fl=v v,/ (1+v,) LS

v,=flow sum _
S  FC 2 I. F2=v,/(1+v,) _‘I:F e
2

ul and u2: physical inputs = valve positions

Assumes:
* Know valve equation and valve parameters
* Measure pressure drop d=AP




B. ALTERNATIVE APPROACH: Inverse by feedback (v-controllers)

Decoupled transformed system from vs to y
(assuming fast VC)

Two 3150 T W (measured flow] |

controllers | V=W, /W, |

. |
yls=Ts T-T v, = flow ratio | \ / _
. =—1 TC L —1 VC, . : > Y1~

2s=F o F-F v,.= flow sum : X "
y = - — o —

- —1 FC = —1 VG, / \Y | " Yo
—_— | 7 Y \ :
l_ R T (measured flow) |

VC = v-controller

Requires: Measurement of individual flows (w=F,, F,)
Problem: Strong coupling between v-controllers (VC1 and VC2)
* May take some iterations (time) to converge to the correct inverse




Any better solution?
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REACALL

* Flows F cannot usually be implemented directly
e Phycial input (u) = valve position (z)
* Valve equation

F = kf,(2)VAP

0 1z
(valve op

* The valve equation needs to be inverted

* Two solutions
— ldeal inverse (model-based), f‘l( F )

VAP

— By feedback: Slave flow controller (w-controller)




C. COMBINE Exact Inverse with feedback inverse
Use slave flow controllers (w-controllers)

Decoupled transformed system from v toy

Two SISO —F—————— e e — —
controllers : Exact inverse
y1s=Ts T-T c v,=flow ratig Y1=
b T lwy =V v,/ (1+v,) >
2s=F F -F =

y2s=Fg SN |V, flowsum.w25=\,2/(1+v1) -
: P
I

Requires: Measurement of individual flows (w), F, and F,

Advantage: No interaction between flow(w)—controllers (FC1 and FC2) .
* Inversion fast if we have fast flow control




Summary: Alternatives for inverting input transformation

d
d
l ) v = glu,w,y,d) W
L .
3 Input transformation
u=g (v,w,y, d) ¥ (static) J
Controller C v Inverse input Process —
transformation (nonlinear)
{.‘-;tz-ltl(.‘]l v¥ Controller u Process =
bt (fast) {nonlinear) 4
(('1) Model-based implcmentat.ion A of transformed illp].lt v = gl:u,'w, Yy, CE), The (b) Feedback i]‘np]cmentat,jgn B of transformed input v o= g{u_w,y_. d} using

|

|._| :.I

w= g Ly d)
Imverse mmput
transformation
[static)

Controller O

(c¢) Combined model-based and feedback implementation C of transformed input

y y
Controller Cw u Process -
{fast) (monlinesr) -




[€)Perstorp
Example 2: Reactor temperature control match process)

The reactor solution is circulated through a heat exchanger (cooler).
The reaction is very exothermic: it is important to control the temperature.
Typical variations/disturbances: Cooling water header pressure, CW temperature

Incoming
cooling water

Circulation loop
Thanks to: Krister Forsman



[&]Perstorp
New control structure: Power (E) control

/" Power controller

' @ PV @ E=F(T, Ty

out' T,

ool

The slave power controller acts as a
temperature-corrected flow controller

Thanks to: Krister Forsman B NTNU




HEX power control reduces variations between batches

52 T

Temperature

45 : i
20070617 20070627 20070707

Before

Thanks to: Krister Forsman

I
20070717

200?5?2? 20075806
Time (2 months)

20070816

52

i i I 1
20070622 20070627 20070702 20070707 20070712

With slave power controller



New control structure: Power (E) control

TOUtE Tin? F? ?SP i
OR ORI
| I | i 1 CCW
e
; ; l ;l Incoming
! i E ling water
O v

[&]Perstorp

v=E f_\ Power controller

OO

y=T
U=ZCW

Transformed input
v=g(wd)=E

= I:(Tin-Tout)
w,=F
W2 = Tout
d=T,

Thanks to: Krister Forsman



B. INVERSE BY FEEDBACK Transformed system d=T,

I
I E=g(wd)= :
:V = E I:(Tin- out) I
|<ca|culated) I
| } |
| I
ys=Ts VSI EC u I
f > TC (setpoiq.t) >
| (slave)
—_— I

Must generate inverse by feedback (slave v-controller EC)
since v=E does not depend explicitly on u=z.,




Looks good..... Works in practice...But is there any theory?

e Not too much

e Question 1: How to derive input transformations in a systematic matter?

e (Question 2: Properties of transformed systems. Stability?

— Potential internal instability if transformed variable v depends on outputs (w)




Q1. Systematic derivation of input transformations

* From static model

* From dynamic model




Ideal transformed input v, from static model

Write nonlinear process model on form
y = fo(w,w,d)

|
|
|
|
|
|
|| ExactInverse
|
|
|
|
|

* Introduce transformed inputs as RHS L | cometer V] siicacation
() block)
. * (dynamic) u=f,(v,w,d
vO_fO(urwid) ( ) — ()
* Exactinverse: u is solution to (*) for given v, 2

u=f, (v, w,d)
e Resulting transformed system (at steady state)
Yy = Vg ) )
* Decoupled, linear and independent of disturbances Amazmgly SImPIE!

But it works!!!

 Assumptions
— Know model and measure all disturbances (d)
— The solution to the static inverse problem exists and satisfies certain properties.

* If f, (and v,) does not depend explicitly on u: Use feedback to generate approximate inverse
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Ideal transformed input v, from dynamic model

Nonlinear dynamic process model on form*

dy _
Z=fuwyd

|
|
|
|
|

* Introduce transformed inputs from RHS 2 | convoter | v Exact Inverse

— -1 1 ' namic I u= 1vw

vA=B [f(uwyd) —Ay] (*) _ (dynarmic) | eesitway)

. . . |
e Tuning parameters (usually diagonal matrices):. | - P _________________ )

* Exactinverse: uis solution to (*) for given v,
e Resulting transformed dynamic system

d
d—i’ = Ay + By,
— linear, decoupled (with A and B diagonal) and independent of disturbances! And |t WO rkS I

 Assumptions
— Know model and measure all disturbances (d)
— The solution to the static inverse problem exists and satisfies certain properties

* Iff(and v,) does not depend explicitly on u: Use feedback to generate approximate inverse

Also simple!

*This model looks fairly general, but it’s not. For scalar case, we get first-order system.
However, we may handle higher-order systems by use of measured w-variables.

s ®@NTNU




Ideal transformed input v, from dynamic model

* Nonlinear dynamic process model on form*

2 = fu,w,y,d)
* Introduce transformed inputs from RHS
vA =B '[f(uwyd) —Ay] (*)
* Tuning parameters (usually diagonal matrices):
* Exactinverse: uis solution to (*) for given v,
e Resulting transformed dynamic system
dy

0 = Ay + Bv,

* Choices for B

y

Controller
C
(dynamic)

(Static caclulation

|
|
|
|
|
|
|| ExactInverse
|
|
|
|
|

u=g*(v,w,d,y)

Also simple!
And it works!

_ dy _
1. B=l, - ft =Ay+v
2. B=-A, - d—: = A(y — v) (y=v at steady-state, which is nice!)




Similar to: Feedback linearization for system of relative
order = 1 (Isidori)

* Nonlinear dynamic system (process)

d
— =fwyd)=f,(,d) + £, du
* Introduce transformed inputs

v=fuyd)
* New transformed system is linear, integrating, decoupled and independent of
disturbances:

dy

=D
dt

e Corresponds to B=l and A=0




Why is A=0 a poor choice?
Feedback linearization: Transformed linear system is integrating:

A=0: Transforms stable process into integrator (positive feedback from y)
— Transformed system cannot be operated alone
— Unknown disturbances will integrate.
— Industrial experience: Bad!

Imagine that we want fast control of a process which is already fast.
— First make slow (integrating) by using A=0 (positive feedback)

— Then make fast again using controller C (negative feedback)
* Does not make much sense!
* Also: Integrating systems are not easy to control using C

Fortunately, it is not necessary to make choice A=0 in feedback
linearization

* Theory still holds

* A=0 was chosen as an example for simplicity (Isidori)

Feedback linearization theory applies to input transformations

Nonlinear Decoupling via Feedback: A
Differential Geometric Approach

ALBERTO ISIDORI, MEMBER, 1IEEE, ARTHUR J. KRENER, MEMBER, 1EEE, CLAUDIO GORI-GIORGI,
AND SALVATORE MONACO

Abstract— The paper deals with the pling ai
acting control problems. A coinplete solution to those problems is made
possible via a suitable nonlinear generalization of several powerful geomet-
ric pts already introduced in studying linear multivariable control
systems. The paper also includes algorithms concerned with the actual
construction of the appropriate control laws.

Manuscript received June 25, 1979; revised October 19, 1979 and
August 25, 1980. Paper recommended by M., Vidyasagar, Past Chairman
of the Stability, Nonlincar, and Distributed Systems Committee, This
work was supported by the University of Rome under Grant 7.8*P /1978
and by the National Research Council of Italy.

A. Isidori, C. Gori-Giorgi, and S. Monaco are with the Istituto di
Automatica, University of Rome, Rome, Italy.

A. J. Krener is with the Department of Mathematics, University of
California, Davis, CA 95616.

1. INTRODUCTION

ONSIDER a nonlinear system of the form

i=f(x)+g(x)u (1.12)
x(0)=x° (1.1b)
y=h(x) (1.1¢)

where the input #, the output y, and the state x are /, m,
and » dimensional, f and h are vector-valued differentiable
functions, and g is a matrix-valued differentiable function,
all of the appropriate dimensions. We shall be more precise
later on. The input-output behavior of such a system can

0018-9286,/81 /0400-0331800.75 ©1981 IEEE

From: Alberto Isidori <albisidori@diag.uniromal.it>

Sent: Sunday, October 4, 2020 5:24 PM
To: Sigurd Skogestad <sigurd.skogestad@ntnu.no>

Subject: Re: Feedback linearization generalization

Dear Sigurd
It is nice to hear from you....

Let's move to your questions. | believe that an answer could be as follows.
In feedback linearization, one picks A=0 just as an example. .... The equation

fly,u)=Ay-v

must be solvable for u. This entails, in the higher-dimensional case, a

definition of "relative degree" ....

Best regards
Alberto
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Choice of Tuning parameter A

: d . : :
— Oneidea: Select A = d—f] at nominal operating point

* Then: No feedback from y into transformation (nominally)
* Transformed system has the same dynamics as the original system (nominally)
. . d
— To get decoupling may choose: A = dlag(d—§

* Will get some feedback from y also nominally.

— May want to «speed up» the response of the transformed systems by selecting a larger A.

e This involves negative feedback from y, and may as usual give robustness problems if time delay for y

* «Slowing down» the response (positive feedback from y) does not have robustness problems




Commoin choice: B = -A (gives y=v at steady-state)

dy
¢ L= fuw,y,d)
* Define T, =-A" y

Controller
C
(dynamic)

Transformed process l
¥

 Get:v,=TAf(u,w,y,d)+y

d
* Get transformed system™: TAd—i] = -y + vA

* Transformed system has linear «setpoint» response (from v, to y) with
— time constant T,
— steady-state gain |

* Looks great! May in theory avoid the outer feedback controller C
— But note that the transformation works by feedforward action

* The outer controller C is needed to correct for model errors and unknown
disturbances




Examples («magic»)

 Example 1 (revisit): Mixing with one static and one dynamic equation
 Example 2 (revisit): Reactor temperature control (dynamic)
 Example 3: heated tank

 Example 4: Level control

* Example 5: Heat exchanger (static applied to dynamic system)

Cascade of transformations:

 Example 6: CSTR (with exact inverse using w)




u = Fy U = Fz

Example 1. Mix hot (1) and o R

cold (2) water (shower), y=[F T] "
Mass balance: q = F; + F, (static equation for y,=F)

vO =F1+F2 p=lr T
Energy balance: CZ i (T1 T) + = (Tz — T) (dynamic equation for y,=T)

V4 = Fl (T1 —T) + 2 (Tz T) — AT (choosing B=l)

New transformed inputs: v0 and v,
* v, =sum of flows (as before)
* v,: not ratio (but would be similar to ratio if we used static energy balance)

Exact inverse transformation (with u,=F; and u,=F,)-

V(va+AT)+vo(T-T))
-1 Ve Controller
F2 = Vo — F1 (dyngmic)
Tuning parameter, A = -(g/V)* (nominal) B

Transformed process

F]_:




Example 1. Simulation responses with transformation only.

-> Perfect disturbance rejection and decoupling (as expected)
; = V(m?)

?7 11.5 : : . . . 4z. T2
5 z
=61 E]
< = 1.d;=T;:20->22°C att=50s
g9 é 2.d,=T,: 50 ->55°C att=100s
N B | 3.y,=T.:35->36°Catt=150s
E g 95| 4.y,=q.: 10->11 kg/satt=200s
3 L Il 1 1 1 | 1 | | |
0 50 100 150 200 250 300 90 50 100 150 200 250 300
Time,[S] Time,[S]
8 —
>0 %
S 3
8 40 d _d1:T1 8
% d =T, 2
s s
230+ 3
= =
o
20 : : : : 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time,[s]

Time,[s]
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In practice

* May not measure all disturbances

* Transformation will not longer be «perfect» but still useful




Example 2. Control of reactor temperature,

Energy balance tank: @Vzg\ A

m; ¢y dT/dt=0Q+Q, T T F] T
Static energy balance for cold side: W@ @ | y=T

Q=Fc, (T, ~Ty) =Ex, o D
Neglecting heat of reaction Q,,, we get /2

dT/dt =k E, k=c,/(c,y m,) 5 o E= BWA)=F (T Toy)
Transformed input with systematic approach e @ | l | l cooling water Wy = F

_____ W, = Toue

v = kE — AT

@ R d=T,

Note: choice v=E corresponds to A=0
* Some self-regulation removed by EC @
* Maybe not so bad for this process which

anyway needs to be stabilized (because of Q,,)

Q,,(T) is mainly a function of T. Can be handled by design of TC

®@NTNU



Example 3. Heated tank
_& F. 1T,

m [kg] I

i

MP :

Q)
- u=F y=T,d=Q, T,

Energy balance:

Stati g
e d) = Ty +

model: Fep
Dynamic dT .
model: ar fluy,d) = mep (Fep(To—=T)+ Q)

44

Comparison of static and dynamic case
Transformed inputs (with B=-A for dynamic case)

Q
Fep

vo = folu,d) = Ty +

— —A_lf(u., y,d)+y= — AT (F(Tg —T)+ @ ) + T

m mcp

Ideal inverse of input transformation

u=F = —Q
cp(vg — Tp)
v Q + Amr;:[fr*_,:, — )
pep(y — To)
Resulting transformed system (from v to y=T)
Al F -
i~ m 1)
dT’
i —A(va —T)

Static and Dynamic: Identical with the following choice

Vv, simpler: Does not depend on y and no tuning parameter A

Only disadvantage: Transformed system nonlinear (depends on F/m)

®@NTNU



Exa m ple 4: Level CO ntr‘OI Dynamic case (selecting B=-A)

va=y— AT fluy.d) =y — A" utdi —\y +da)

p P 9(uy.d)
Ideal inverse: u=g '(va.y.d) = Aly —va) —dy +V/y+ do
d . ,
Transformed system: Y _ 4/ _ . _(ofy 1
Ay @ =) a=(5) s
Fy — Static case
F‘B = k\/kl‘/ +p0 y = f[)(u..d) _ (U +d1)2 o d2

ds := pg = pressure difference

Vp = fo('u..d) = (U + dl)z - dg

dV Ideal inverse: u = fg = vy +dy —dy

—— =F + F, — F3 J
Transformed system when Y
apply v, to dynamic model: E = Vg +dy — VYT do

dynamic model

dt

Use scaled variables: k=k,=1

dAy 1
) Linerarized: — Qm( vo y)
ar flu,y,d) =u+di —y+do In practice: v, behaves very similar to v,!

* At steady state y=v, (perfect control)
* Also perfect control dynamically for disturbances
Vo simpler: Does not depend on y and no tuning parameter A

Only disadvantage: Transformed system nonlinear
= @ NTNU



Example 5. Heat exchanger (static)
MVs (original inputs):

u = Fc [kg/s]
CVs (outputs):

y = Ty [°C]

DVs (disturbances):

, o = Ti" [°C]

u do = Ty" [°C]

dy = Fp [kg/s]

Energy balance, countercurrent flow, Q = UAAT,,, Ny, :FUA Ye controler | v =g(u,wy,d) || "
C Cp,c (dyngmic)
Th=(1—en)Ti" + e, T B

N —— — hCp.h

exp(—Ntu(C — 1))
C — exp(—Ny, (C — 1))

VO €c=1-—
Input calcu!athn: | | e, = €.C
Use numerical inverse (to find u for given T,=v,)




Simulation: Static v, with cell dynamic model —

F,

LT, F,, Tin

d,=ATM™ = +2°C d,= AT" = +2°C vy = AT = +5°C
' ' 24.4 . .
~ - ~ — 30 i
027 Q U EEEEEEEEER
°_ ° _ s Open loop °_ .
© 26t o 24.3 ¢ s Transformed only (FF) © 28 - ]
2 mm= Open loop 2 m = i Setpoint = - — Transformed only (FF)
g 25| mmm Transformed only (FF) g s - = =i Setpoint
o = mmm1Setpoint a. 242 EEEEEEEEEEEEEEEEEEEEN] 826‘ -
£ = = :
(] D) O ]
=24+ = = -
' ' 24.1 ' : 24 : :
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Time (s) Time (s) Time (s)
5.3 6
2157 > @
g %D 52+ g A u
2 2 5.1 2
= = ja 2t
= = 5 =
o o o
@) @) @)
J O L
' ' 4.9 : : ' :
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

Time (s Time (s Time (s)




Summary so far

* Transformed input v, based on static model is usually good enough!
— Modely =f,(u,d,w)
— Simple select transformed variable as RHS, v = f,(u,d,w)
* No tuning, independent of y
* Get transformed system y=v, at steady state
— Steady-state: Perfect feedforward control, decoupled, linear
— Dynamically (for model dy/dt=f(u,d,w)): Perfect feedforward control, usually decoupled
* The main advantage with v, based on dynamic model is that it linearizes the system
also dynamically
— But this is probably not so important in most cases

* If we do not measure all disturbances then transformations will no longer be «perfect»
but may still be very useful!




Discussion
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Extension: Chain of transformations

 |dea: Extend exact inverse to systems of higher relative order (whenv
does not depend explicitly on u)

* Model for vy (static case) or dy/dt (dynamic case)

d
y = fo,w,d) or d—Jt,=f(W,y,d)

— Until now: Cannot use exact inverse

e Alternative 1 (until now): Use feedback control to generate approximate inverse
e Alternative 2 (chain of transformations): Make use of known model for w

dw
E — f2(u7 w,Yy, d2)

— Use two exact inverses; find w from f, find u from f,.
— May be viewed as alternative to «feedback linearization» for systems with high relative order
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Chain of transformations

dy/dt = f(w,y,d) =Ay+v (Inverse 1: Solve for given v to find w?)

dw
— = fo (’M, w,y, dz) =A,(w-v,] (Inverse 2: Solve for given given w® =v, to find u)

d
i ida
. Inverse input Inverse input
v P P . g P . u Process 2 w Process 1 y
transformationl ——=| transformation2 — . — . -
) } (nonlinear) [nonlinear)
(static) (static)
r r

* Input u has relative order 2 (from u to y)
* Get perfect disturbance rejection for d, (enters same place as u)
* But not for d since it must go through subystem 2

dw T2='A2_1

T —— = U~ W — S
dt ()] w

* Note: Choose B=-A in inner transformations to get steady-state gain of | (v,=w?®)




Example 6. CSTR.y = ¢4, u=Q,w

Component balance: % = %(CAO —cy) — k(T)cy

Vg = %(CAO —¢a) — k(T)cy — Acy

0, . AHyxk(T)chy

Energy balance: —=—-(T,—T) +

Alternative 1: Cascade control of v,
Alternative 2: Use also model for w=T (energy balance)

q _ Q _ AHyxk(T)chy _ _
> (To —T) + Voo, pey A, (T —vy,)

and use chain of transformations.

=T

k=k0exp<

q, CA():TO

/'

Eqf1 1

)




Alt.2 Chain of inverse transformations

dCA = %(CAO - CA) - k(T)CA = AcA + UA

dt

d=C,0,0,To

Measured variables
Qe AHyxk(T)cy

C
§=§(TO—T)+VPCP ooy = AT =) — - a0-Y
A ‘ =C
T Tol v y A

’ , 4
Y. Controller v Inverse static T,= Inverse static Y=C,
— C v input v | Vainput —_—
(dynamic) transformation | "A2 | transformation
y
q; cao, To
* Make use of model forv=r . N *@L_?_
* Feedforward control for T, will be perfect, but not for C,,and qg. B ,
V [m?] :

* Need to invert expression for v, with respect to T -> invert k(T).

q, ca, T




Alt. 1. Cascade implementation Measured

Calculated variables

Vg = %(CAO —ca) —k(T)cy — Acy ST inpu.t CAO’q d=CAO'CI/TO
transformation

y

<
«

Va
|
Y Controller Vs Slave v,- y=C,
7 > C — controller —
. (setpoint) .
(dynamic) (dynamic)
Y
. ca0, Tt
Two reasons to use slave controller Lo
1. u=Q does not appearinv, |
. . . . Ler
2. Avoid inverting expression for v, with respectto T A *@‘
V m?] E

But do not get perfect feedforward control for T,

q, CA7T

Q




Discussion: Stability problems?

e Consider any transformed input, v = g(u,w,y,d)

* With exact inverse the transformed system may be internally unstable because we
treat w as disturbance, but actually w depends on u

= Happens when w causes unstable zero dynamics from u tov

e Stability problems can be avoided with feedback (cascade) implementation which
gives approximate inverse

——— e

Input
transformation

| |
| |
| |
Y, (static) |
: «calculated) v=g(u,w,y,d) i
| A |
| |
3 |

|

|

|

|
|
|
|
|
|
Ys Controller v | ExactlInverse
|
|
|
|
|

(Static caclulati y Y, Controller vV Slave v- u
atic caclulation R - | R
¢ block) C ‘ s controllgr
(dynamic) u=g(v,w,y,d) (dynamic) I (dynamic)

|

_—— e ———




Unstable zero dynamics Internal instability

Indirect effect through w may cause Unstable zero dynamics for T give internal unstable
e unstable zero dynamics for T (from u to v) tranformed system if we use exact inverse
* =inverse response from u to v (scalar)

— — — — — — — — — — — — — — — — — — — — — — — —

— — — — — — — — — — — — — — — — — — — — — — — —

: Direct :
u : Transformed V Exact Inverse
| static effect V
i * input (static) r — (static)
l i’ v=g(u,w,d) | | u=gvw,d)
| |
: Indirect : I
| > dynamic effect, :
| | - -
| |
| |

— — — — — — — — — — — — — — — — — — — — — — —

Internally unstable:
v=Tu Response from v to y is stable (apparently),
but internal signals u and w are unstable
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Example 7: Internal instability

z 0

L

ms B act

me Cascade

== 1 Setpoint

10

20

30 40

50

== Exact

s Cascade | |

Process
y=u+w-+d Response to step disturbance (d=1)
—2u . . .
" = mes EXaCt
48 + 1 2 b s Cascade | |
Transformed input > 0
vo = g(u,w,d) =u+w—+d 2|
1s — 1 e
— 0 10 20 30 40 50
Vo 4S—|- lu—l‘d
Exact inverse 2  Cascads| |
4s + 1
u=vyg-w—d |u=—(0d .
Response of transformed system |
Yy = Vg . L . .
0 10 20 30 40 50

0

10

20

30 40

50



Transformed system

Linear analysis  mmme et

Exact Inverse
u= K, }(v-K,w)

<

Transformed system with exact inverse
u=Ttv=(+L,)1K, v

For internal stability of transformed system:
Tt =(I+L,)?* K, must be stable

Transformed input

V= Kurk,w Equivalently: Transfer functi
- (K, +K, G, )u=Tu quivalently: Transfer function
where T=K,(I+L,)
T=(K, +K,G,)=K(I+L,) fr(?m u to v must haye stable zerq ijnamlc.s.
L =K1K, G Trick: Can use Nyquist/Bode stability condition for L,
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Linear stability theorems

_ Direct effect

Transformed input

v=K,(l+L,) u
where
L, = K, Ky, Gy,

w=G,(s)u

\ 4

Indirect effect

Stability.
Transformed system is internally stable if and only if
(1+L,)tis stable

Bode stability condition: Internally stable
if and only if |L,(jw,g0) [ <1 (scalar)

Small gain theorem. Stable
if |L,(jw)|<1atallw

In words: Stable if «indirect effect» K, G,, (through w)
is smaller than «direct effect» K, (through u).




Bode stability condition

I_W = KU-1 KW GW
Bode (scalar): Internally stable if and only if |L,(jw;gq) | <1

Two cases
1. L,(O)<O0: Direct and indirect effect are opposite at steady-state. w,3,=0

Get internal instability iff |L,(0)|>1
 When Indirect effect is larger and opposite at steady state
Example 5: K =K ,=1 and G =-2/(4s+1) so L,(0)=-2 <->internally unstable
Note: Transfer function from u to vis T = K (I+L,,) = (4s-1)/(4s+1).

2. L,(0)>0: Direct and indirect effect in same direction at steady state.

* Internal instability is less likely.
* Requires that indirect effect is large and that G, has unstable zeros (inverse response) or delay

Example 6: K =1, G, = (-s+1)/(s+1). wgo=2°. |L,|=K,, at all w. Get internal instability iff K >1.
Note: With K,=2, transfer function from u to v is T= K (I+L,) = (3-s)/((s+1).




What if uncertain about internal instability?

e Use feedback (cascade) implementation

e Slave loop involves controlling v = T(s) u.

— T(s) =K, + K, G,(s)
— Unstable (RHP) zero or time delay in T(s) implies that slave loop cannot be fast

— Uncertain model: Can tune slave controller based on experimental T.




Transformed output

Zzgz(ylwid)
Main idea: Simpler/more linear model for z than fory

No fundamental advanage.
Transformed system from v to z is simple to control

_______________ 1
: I
Y [ P d g Y
S Z VI lu \ 4
Output S Input ‘ | Output I ~
q » »
transform C Pl transform Process > transform ||
Z=gz(ylwld) — I u=g-1{v,w,d) ‘W Z=gz(y,W,d) I
L o e o o o e e o 1| 2

Since we use the same transformation on both y and y,, we will at steady state get y=y..

Example: y=T (temperature), z=H(T,p,x) (enthalpy).
Easy to write energy balance in terms of z=H




Further discussion...

* We have looked at many other examples
 And in particular we have looked at the effect of uncertainty

— No big surprises
— It’s fairly robust!

— Mater theses by Callum Kingstree and Simen Bjorvand




Conclusion

* Transformed input v = g(u,w,d,y)
 Based on simple process models, easy to understand and implement
* Inversion to generate u from v: Exact inverse or approximate inverse by feedback

e Systematic from Static model:

— y=f,(u,w,d).

— Transformed input: v, = f,(u,w,d)
e Systematic from Dynamic model:

- 2 = fu,wy,d)
— Transformed input (B=I): v, = f(u,w,y,d) — Ay
* Resulting transformed system from v to y:
— Linear, independent of disturbances, decoupled
e Potential internal instability with exact inverse
— No problem if indirect effect on v through w is small

— Otherwise use cascade implementation




. . . Complex optimal centralized
Academic control community fish pond > Solution (EMPC, FL)

Simple solutions
that work (PID++)
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