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“The goal of my research is to 
develop simple yet rigorous 
methods to solve problems of 
engineering significance” 
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Outline

• What are input transformations?
– Tranformed input (v) = static function of physical input (u)

• Inverting the input transformation
– Exact inverse (low relative order)
– Approximate inverse using feedback (cascade control)

• Systematic approaches for deriving input transformation
– From static model
– From dynamic model
– Comparison with «feedback linearization»
– Chain of transformations (Exact inverse for systems of higher order)

• Potential internal instability with exact inverse
– Linear analysis, 
– Bode stability condition

• Output transformation
• Discussion/Conclusion
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Motivation

• Industry frequently uses static model-based calculations blocks
• … and sometimes combined with cascade control
• Idea: Use physical insight or model equations to derive control strategy

• But no theory for when and how to use
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Controller
C

(dynamic)
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(dynamic)

ys

y

u y

d

w

Shinskey (1981): “There is no need to be limited to single measurable (y) or manipulable 
variables (u). If a more meaningful variable happens to be a mathematical combination of two 
or more measurable or manipulable variables, there is no reason why it cannot be used.”

Transformed input: v=g(u,w,y,d) (static function)
Here d and w are assumed measured
Transformed output: z=gz(y,w,d)

u = physical input
y = controlled output
w = other measured output (state)
d = disturbance

Definition of transformed inputs
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Controller
C

(dynamic)

Process
(dynamic)

ys u y

d

w
Input 

calculation
(static)

Transformed input v =g(u,w,y,d)
• Replaces the physical input u for control of y.
• Aim: Transformed system is easier to control

• May include: 
• Decoupling
• Linearization
• Feedforward

Transformed system

y

Examples
• v = u/d
• v = u1/u2
• v = u1+ u2
• v = w(u)      -> Cascade control

Use of transformed inputs

v =g(u,w,y,d)
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Controller
C

(dynamic)

Process
(dynamic)

ys u y

d

w
v =g(u,w,y,d)

Input calculation block: Need to “invert / reverse” the transformation: 
u = g-1(v,w,y,d) 

• Two main options: 
• Exact inverse
• Approximate inverse by feedback

Transformed system

y

Use of transformed inputs requires inversion

Input 
calculation

(static)
u = g-1(v,w,y,d)
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Controller
C

(dynamic)

Process
(dynamic)

ys u y

d

w

v Exact Inverse  
(Static calculation

block)
u=g-1(v,w,y,d)

1. EXACT INVERSE

Exact inverse requires that v=g(u,w,y,d) depends explicitly on u

Potential problems:
• Inverse may be complicated, easy to do mistakes
• May get internal instability (because of feedback from w and y)

y
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Controller
C

(dynamic)

Slave v-
controller
(dynamic)

Process
(dynamic)

ys u y

Calculate
transformed 
input (static)
v=g(u,w,y,d)

d

v
(calculated )

(setpoint)

vs

w

2. INVERSE BY FEEDBACK 

y

Only option when  v=g(w(u),y,d) does not depend explicitly on u. Example: v = w
Other advantages:
• Avoid internal instability with exact inverse
• Avoid complicated inverse (and reduce errors!)
Disadvantages:
• Inverse not perfect dynamically (need fast slave controller) 
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Examples of transformed inputs

• Example 1: Mixing process (exact inverse)
• Example 2 (Industrial): Control of reactor temperature (inverse by feedback)
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Example 1: Mixing of hot (u1) and cold (u2) water

• Want to control
y1 = Temperature T
y2 = total flow F

• Want to use two SISO PI-controllers
TC
FC

• Get decoupled response with transformed inputs
TC sets flow ratio, v1 = u1/u2

FC sets flow sum, v2 = u1 + u2

• Exact inverse («static calculation block»):
u1 = v1 v2 / (1+ v1)  
u2 = v2 / (1 + v1)

T
F

u1

u2

v2=sum

v1=ratio

Mechanical inverse:



15

TCys

u1=hot
flowrate

y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers Exact inverse

Decoupled transformed system

Process

T
F

Pairings:  
• T – v1
• F – v2

No interactions for setpoint change

1. EXACT INVERSE

v2=sum

Ts-T

Fs-F FC

Note:
• In practice u=valve position (z) 
• So must add two flow controllers

• These generate inverse by feedback

u2=cold
flowrate
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TCys y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers Exact inverse

Decoupled transformed system

T
F

Pairings:  
• T – v1
• F – v2

No interactions for setpoint change

1. EXACT INVERSE actually requires flow controllers

v2=sum

Ts-T

Fs-F FC

Note:
• In practice u=valve position (z) 
• So must add two flow controllers

• These generate inverse by feedback

FC

FC

u2s

u2

z2

z1u1s

u1



Example 2: Reactor temperature control

TC

TT

Incoming
cooling water

TT

FT

The reactor solution is circulated through a heat exchanger (cooler).
The reaction is very exothermic:  it is important to control the temperature.
Typical variations/disturbances: Cooling water header pressure, CW temperature

HEX

Circulation loop

y = T
u = zCW

T

zCW

Thanks to: Krister Forsman



New control structure: Power (E) control

TC

TT

TT

FT

DT X EC

SP

PV

Incoming
cooling water

Power controller

Tin
Tout

T

zCW

F

The slave power controller acts as a
temperature-corrected flow controller 

Thanks to: Krister Forsman

E = F(Tin-Tout)
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HEX power control reduces variations between batches

Thanks to: Krister Forsman

Before With slave power controller



New control structure: Power (E) control

TC

TT

TT

FT

DT X EC

SP

PV

Incoming
cooling water

Power controller

y = T
u = zCW

vs

Transformed input
v = g(w,d)= E

= F(Tin-Tout)
w1 = F 
w2 = Tout
d = Tin

Tin
Tout

T

zCW

F

v=E

Thanks to: Krister Forsman
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TC EC
(slave)

Process
(dynamic)

ys=Ts u y=T

E = g(w,d) =
F(Tin-Tout)

d = Tin

v = E
(calculated )

(setpoint)

vs

w = F,Tout

2. INVERSE BY FEEDBACK 

y

Must generate inverse by feedback (slave v-controller EC) 
since v=E does not depend explicitly on u=zCW

Transformed system
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Looks good….. Works in practice…But is there any theory?

• Not too much

• Question 1: How to derive input transformations in a systematic matter?

• Question 2: Properties of transformed systems. Stability?
– Potential internal instability if transformed variable v depends on outputs (w)
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Q1. Systematic derivation of input transformations

• From static model
• From dynamic model
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Input transformation from static model
• Write nonlinear process model on form 

𝐲𝐲 = 𝒇𝒇𝟎𝟎(𝒖𝒖,𝒘𝒘,𝒅𝒅)
• Introduce transformed inputs as RHS

𝒗𝒗 = 𝒇𝒇𝟎𝟎 𝒖𝒖,𝒘𝒘,𝒅𝒅 (*)
• Exact inverse: u is solution to (*) for given v:

u= 𝒇𝒇𝟎𝟎−𝟏𝟏 𝒗𝒗,𝒘𝒘,𝒅𝒅
• Resulting transformed system 

𝒚𝒚 = 𝒗𝒗
• Decoupled, linear and independent of disturbances

• Assumptions
– Know model and measure all disturbances (d)
– The solution to the static inverse problem exists and satisfies certain properties.

• Note: If f0 (and v) does not depend explicitly on u: Use feedback to generate approximate inverse 
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Input transformation from dynamic model
• Write nonlinear dynamic process model on form

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒖𝒖,𝒘𝒘,𝒚𝒚,𝒅𝒅)
• Introduce transformed inputs from RHS

𝒗𝒗 = 𝑩𝑩−𝟏𝟏[𝒇𝒇 𝒖𝒖,𝒘𝒘,𝒚𝒚,𝒅𝒅 − 𝑨𝑨𝑨𝑨 ]    (*)
• Tuning parameters (usually diagonal matrices): A and B.  
• Exact inverse: u is solution to (*) for given v
• Resulting transformed dynamic system 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝒗𝒗
– linear, decoupled (with A and B diagonal) and independent of disturbances!

• Assumptions
– Know model and measure all disturbances (d)
– The solution to the static inverse problem exists and satisfies certain properties

• Note: If f (and v) does not depend explicitly on u: Use feedback to generate approximate inverse 
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Input transformation from dynamic model
• Write nonlinear dynamic process model on form

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒖𝒖,𝒘𝒘,𝒚𝒚,𝒅𝒅)
• Introduce transformed inputs

𝒗𝒗 = 𝑩𝑩−𝟏𝟏[𝒇𝒇 𝒖𝒖,𝒘𝒘,𝒚𝒚,𝒅𝒅 − 𝑨𝑨𝑨𝑨 ]    (*)
• Tuning parameters (usually diagonal matrices): A and B.  
• Exact inverse: u is solution to (*) for given v
• Resulting transformed dynamic system 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝒗𝒗

• Choices for B

1. B=I,                       → 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝑨𝑨𝑨𝑨 + 𝒗𝒗

2. B=−A, → 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝑨𝑨(𝒚𝒚 − 𝒗𝒗) (y=v at steady-state)
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Feedback linearization for system of relative order = 1
(Isidori) 
• Nonlinear dynamic system (process)

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒖𝒖,𝒚𝒚,𝒅𝒅) = 𝑓𝑓1(𝑦𝑦,𝑑𝑑) + 𝑓𝑓2(𝑦𝑦,𝑑𝑑)𝑢𝑢

• Introduce transformed inputs 
𝒗𝒗 = 𝒇𝒇(𝒖𝒖,𝒚𝒚,𝒅𝒅)

• New transformed system is linear, integrating, decoupled and independent of 
disturbances:

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒗𝒗

• Corresponds to B=I and A=0



Why is A=0 a poor choice?
• Feedback linearization: Transformed linear system is integrating:

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒗𝒗
• A=0 (feedback linearization): Transform stable process into integrator  

(positive feedback from y)
– Transformed system cannot be operated alone
– Unknown disturbances will integrate. 
– Industrial experience: Bad!

• Imagine that we want fast control of a process which is already fast. 
– First make slow (integrating) by using A=0 (positive feedback)
– Then make fast again using controller C (negative feedback)

• Does not make much sense!
• Also: Integrating systems are not easy to control using C

• Fortunately, it is not necessary to make choice A=0 in feedback 
linearization

• Theory still holds 
• A=0 was chosen as an example for simplicity (Isidori)

• Feedback linearization theory applies to input transformations

From: Alberto Isidori <albisidori@diag.uniroma1.it> 
Sent: Sunday, October 4, 2020 5:24 PM
To: Sigurd Skogestad <sigurd.skogestad@ntnu.no>
Subject: Re: Feedback linearization generalization

Dear Sigurd
It is nice to hear from you….
Let's move to your questions. I believe that an answer could be as follows. 
In feedback linearization, one picks A=0 just as an example. …. The equation
f(y,u) = Ay - v
must be solvable for u. This entails, in the higher-dimensional case, a 
definition of "relative degree" ….

Best regards
Alberto

mailto:albisidori@diag.uniroma1.it
mailto:sigurd.skogestad@ntnu.no
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Choice of Tuning parameter A

– One idea: Select 𝐴𝐴 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

at nominal operating point

• Then: No feedback from y into transformation (nominally)
• Transformed system has the same dynamics as the original system (nominally)

– To get decoupling may choose:  𝐴𝐴 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)

• Will get some feedback from y also nominally.
– May want to «speed up» the response of the transformed systems by selecting a larger A.

• This involves negative feedback from y, and may as usual give robustness problems if time delay for y
• «Slowing down» the response (positive feedback from y) does not have robustness problems 
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B = -A gives steady-state gain I*

• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑢𝑢,𝑤𝑤,𝑦𝑦,𝑑𝑑)
• Define TA = -A-1

• Select 𝑣𝑣 = 𝑇𝑇𝑇𝑇𝑓𝑓 𝑢𝑢,𝑤𝑤,𝑦𝑦,𝑑𝑑 + y

• Get transformed system*:   TA
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= −𝒚𝒚 + 𝒗𝒗
• Transformed system has linear «setpoint» response (from v to y) with

– time constant TA

– steady-state gain I 
• May in theory avoid the outer feedback controller C 

– But note that the transformation works by feedforward action
• The outer controller C is needed to correct for model errors and unknown

disturbances
*Zotica, Alsop and Skogestad. 2020 IFAC World Congress
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Examples («magic»)

• Example 1 (revisit): Mixing with one static and one dynamic equation
• Example 2 (revisit): Reactor temperature control (dynamic)
• Example 3: Heat exchanger (static applied to dynamic system)
• Example 4: CSTR (with exact inverse using w)
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Example 1. Mix hot (1) and 
cold (2) water (shower), y=[q T]
Mass balance: 𝑞𝑞 = 𝑞𝑞1 + 𝑞𝑞2 (static equation for y1=q)

𝑣𝑣0 = 𝑞𝑞1 + 𝑞𝑞2
Energy balance:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑞𝑞1

𝑉𝑉
𝑇𝑇1 − 𝑇𝑇 + 𝑞𝑞2

𝑉𝑉
(𝑇𝑇2 − 𝑇𝑇) (dynamic equation for y2=T) 

𝑣𝑣𝐴𝐴 = 𝑞𝑞1
𝑉𝑉
𝑇𝑇1 − 𝑇𝑇 + 𝑞𝑞2

𝑉𝑉
𝑇𝑇2 − 𝑇𝑇 − 𝐴𝐴𝐴𝐴

New transformed inputs: v0 and vA
• v0 = sum of flows
• vA: not ratio (but would be similar to ratio if we used static energy balance)

Exact inverse transformation (with u1=q1 and u2=q2):

𝑞𝑞1 = 𝑉𝑉 𝑣𝑣𝐴𝐴+𝐴𝐴𝐴𝐴)+𝑣𝑣0 𝑇𝑇−𝑇𝑇2
𝑇𝑇1−𝑇𝑇2

𝑞𝑞2 = 𝑣𝑣0 − 𝑞𝑞1
Tuning parameter, A = -(q/V)* (nominal)



Example 1. Simulation responses with transformation only.
-> Perfect disturbance rejection and decoupling

1. d1=T1: 20 ->22 °C  at t = 50 s
2. d2=T2: 50 ->55 °C  at t = 100 s
3. y2s=Ts: 35 ->36 °C at t = 150 s
4. y1s=qs: 10 ->11 kg/s at t = 200 s
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Example 2. Control of reactor temperature
Energy balance tank:

m1 cp1 dT/dt = Q + Qrx
Static energy balance for cold side:

Q = F cp (Tout – Tin) = E cp
Neglecting heat of reaction Qrx, we get

dT/dt = k E,   k = cp/(cp1 m1)
Transformed input with systematic approach

v = kE – AT

Note: choice v=E corresponds to A=0 
• Some self-regulation removed by EC
• Maybe not so bad for this process which

anyway needs to be stabilized (because of Qrx)

m1

Qrx(T) is mainly a function of T. Can be handled by design of TC
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In practice

• May not measure all disturbances
• Transformation will not longer be «perfect» but still useful
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Example 3. Heat exchanger (static)

Energy balance, countercurrent flow, 𝑄𝑄 = 𝑈𝑈𝑈𝑈Δ𝑇𝑇𝐿𝐿𝐿𝐿

v0
Input calculation:
Use numerical inverse (to find u for given Th=v0)

y

u

𝑁𝑁𝑡𝑡𝑡𝑡 =
𝑈𝑈𝑈𝑈
𝐹𝐹𝑐𝑐𝑐𝑐𝑝𝑝,𝑐𝑐

𝐶𝐶 =
𝐹𝐹𝑐𝑐𝑐𝑐𝑝𝑝,𝑐𝑐

𝐹𝐹ℎ𝑐𝑐𝑝𝑝,ℎ

𝜖𝜖𝑐𝑐 = 1 −
exp −𝑁𝑁𝑡𝑡𝑡𝑡 𝐶𝐶 − 1

𝐶𝐶 − exp(−𝑁𝑁𝑡𝑡𝑡𝑡 𝐶𝐶 − 1 )
𝜖𝜖ℎ = 𝜖𝜖𝑐𝑐𝐶𝐶



d1 = Δ 𝑇𝑇𝑐𝑐𝑖𝑖𝑖𝑖 = +2 ℃
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Extension: Chain of transformations

• Idea: Extend exact inverse to systems of higher relative order (when v 
does not depend explicitly on u)

• Model for y (static case) or dy/dt (dynamic case)

– Until now: Cannot use exact inverse

• Alternative 1 (until now): Use feedback control to generate approximate inverse
• Alternative 2 (chain of transformations): Make use of known model for w 

– Use two exact inverses; find w from f, find u from f2.
– May be viewed as alternative to «feedback linearization» for systems with high relative order

𝑦𝑦 = 𝑓𝑓0 𝑤𝑤,𝑑𝑑 𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑤𝑤, 𝑦𝑦,𝑑𝑑)



39

Inverse input
transformation1
(static)

Inverse input
transformation2
(static)

• Input u has relative order 2 (from u to y)
• Get perfect disturbance rejection for d2 (enters same place as u)
• But not for d since it must go through subystem 2

• Note: Choose B=-A in inner transformations to get steady-state gain of I (v2=ws)

= Ay + v           (Inverse 1: Solve for given v to find ws)

= A2(w - v2) (Inverse 2: Solve for given given ws =v2 to find u) 

τ2=-A2
-1

Chain of transformations
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Example 4. CSTR. 𝑦𝑦 = 𝑐𝑐𝐴𝐴 , 𝑢𝑢 = 𝑄𝑄,𝑤𝑤 = 𝑇𝑇
Component balance: dcA

dt
= q

V
c𝐴𝐴𝐴 − 𝑐𝑐𝐴𝐴 − 𝑘𝑘(𝑇𝑇)𝑐𝑐𝐴𝐴 𝑘𝑘 = 𝑘𝑘0 exp −𝐸𝐸𝐴𝐴

𝑅𝑅
1
𝑇𝑇
− 1

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝐴𝐴 = 𝑞𝑞
𝑉𝑉
𝑐𝑐𝐴𝐴𝐴 − 𝑐𝑐𝐴𝐴 − 𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴 − 𝐴𝐴𝑐𝑐𝐴𝐴

Energy balance:     𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉
𝑇𝑇0 − 𝑇𝑇 + 𝑄𝑄

𝑉𝑉𝑉𝑉𝑐𝑐𝑝𝑝
− Δ𝐻𝐻𝑟𝑟𝑟𝑟𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴

𝜌𝜌𝑐𝑐𝑝𝑝

Alternative 1: Cascade control of vA

Alternative 2: Use also model for w=T (energy balance) 

and use chain of transformations. 

𝑞𝑞
𝑉𝑉
𝑇𝑇0 − 𝑇𝑇 + 𝑄𝑄

𝑉𝑉𝑉𝑉𝑐𝑐𝑝𝑝
− Δ𝐻𝐻𝑟𝑟𝑟𝑟𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴

𝜌𝜌𝑐𝑐𝑝𝑝
= 𝐴𝐴2 (𝑇𝑇 − 𝑣𝑣𝐴𝐴2)
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Controller
C

(dynamic)

Process
(dynamic)

ys

y

u=
Q

y=cA
Inverse static

vA input 
transformation

d=CA0,q,T0

vA

T y=cA

Measured variables

• Make use of model for w=T
• Feedforward control for T0 will be perfect, but not for CA0 and q.
• Need to invert expression for vA with respect to T -> invert k(T).

Alt.2 Chain of inverse transformations

CA0,q

Inverse static
vA2 input 

transformation

T0

𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

=
𝑞𝑞
𝑉𝑉 𝑐𝑐𝐴𝐴𝐴 − 𝑐𝑐𝐴𝐴 − 𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐴𝐴

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉
𝑇𝑇0 − 𝑇𝑇 + 𝑄𝑄

𝑉𝑉𝑉𝑉𝑐𝑐𝑝𝑝
− Δ𝐻𝐻𝑟𝑟𝑟𝑟𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴

𝜌𝜌𝑐𝑐𝑝𝑝
= 𝐴𝐴2(𝑇𝑇 − 𝑣𝑣𝐴𝐴2 )

Ts=
vA2

cA
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Controller
C

(dynamic)

Slave  vA-
controller
(dynamic)

Process
(dynamic)

ys

y

u=Q y=cA

Static input 
transformation

vA

d=CA0,q,T0𝑣𝑣𝐴𝐴 =
𝑞𝑞
𝑉𝑉
𝑐𝑐𝐴𝐴𝐴 − 𝑐𝑐𝐴𝐴 − 𝑘𝑘 𝑇𝑇 𝑐𝑐𝐴𝐴 − 𝐴𝐴𝑐𝑐𝐴𝐴

(setpoint)

vAs

w=T y=cA

Measured
variablesCalculated

Two reasons to use slave controller
1. u=Q does not appear in vA
2. Avoid inverting expression for vA with respect to T

But do not get perfect feedforward control for T0

CA0,q

Alt. 1. Cascade implementation
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Q2. Stability problems?
• Consider any transformed input, v = g(u,w,y,d)
• With exact inverse the transformed system may be internally unstable because we

treat w as disturbance, but actually w depends on u
 Happens when w causes unstable zero dynamics from u to v

• Stability problems can be avoided with feedback (cascade) implementation which
gives approximate inverse
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Process
(dynamic)

u

w(u)

vTransformed 
input (static)

v=g(u,w,d)

Unstable zero dynamics
Indirect effect through w may cause

• unstable zero dynamics for T (from u to v)
• = inverse response from u to v (scalar)

Direct 
static effect

Indirect
dynamic effect

Process
(dynamic)

u y

w

v Exact Inverse
(static)  

u=g-1(v,w,d)

Internal instability
Unstable zero dynamics for T give internal unstable
tranformed system if we use exact inverse

y
Internally unstable: 
Response from v to y is stable (apparently),
but internal signals u and w are unstable

v = T u

u = T -1 v
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Example 5: Internal instability
Process

Transformed input

Exact inverse

Response to step disturbance (d=1)

Response of transformed system
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Process

Gw(s)

u

w = Gw(s) u

v
Process

(dynamic)
u y

w = Gw(s) u

v Exact Inverse
u= Ku

-1(v-Kww)

Transformed system with exact inverse
u = T-1 v = (I+Lw)-1 Ku

-1 v  
For internal stability of transformed system:

T-1 = (I+Lw)-1 Ku
-1 must be stable

Equivalently: Transfer function
T= Ku(I+Lw) 

from u to v must have stable zero dynamics
Trick: Can use Nyquist/Bode stability condition for Lw

Transformed input

Ku
Kw

Transformed input
v =  Ku u + Kw w

= (Ku + Kw Gw)u = T u
where

T = (Ku + Kw Gw) = Ku(I+Lw)  
Lw = Ku

-1 Kw Gw

Linear analysis Transformed system
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Process

Gw(s)

u

w = Gw(s) u

v
Ku

Kw

Linear stability theorems

Stability.
Transformed system is internally stable if and only if

(I+Lw)-1 is stable

Bode stability condition: Internally stable
if and only if |Lw(jω180)|<1 (scalar)

Small gain theorem. Stable
if |Lw(jω)|<1 at all ω

In words: Stable if «indirect effect» KwGw (through w) 
is smaller than «direct effect» Ku (through u).

Transformed input
v = Ku(I+Lw) u

where
Lw = Ku

-1 Kw Gw

Direct effect

Indirect effect
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Bode stability condition

Lw = Ku
-1 Kw Gw

Bode (scalar): Internally stable if and only if |Lw(jω180)|<1

Two cases
1. Lw(0) < 0: Direct and indirect effect are opposite at steady-state. ω180=0

Get internal instability iff |Lw(0)|>1  
• When Indirect effect is larger and opposite at steady state

Example 5: Ku=Kw=1 and Gw=-2/(4s+1) so Lw(0)=-2  <-> internally unstable
Note: Transfer function from u to v is T = Ku(I+Lw) = (4s-1)/(4s+1). 

2. Lw(0) > 0: Direct and indirect effect in same direction at steady state.
• Internal instability is less likely. 
• Requires that indirect effect is large and that Gw has unstable zeros (inverse response) or delay

Example 6: Ku=1,  Gw = (-s+1)/(s+1). ω180=∞. |Lw|=Kw at all ω. Get internal instability iff Kw>1.
Note: With Kw=2, transfer function from u to v is T= Ku(I+Lw) = (3-s)/((s+1). 
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What if uncertain about internal instability?

• Use feedback (cascade) implementation
• Slave loop involves controlling v = T(s) u.

– T(s) = Ku + Kw Gw(s)
– Unstable (RHP) zero or time delay in T(s) implies that slave loop cannot be fast
– Uncertain model: Can tune slave controller based on experimental T. 
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Transformed output 

C Input 
transform

u=g-1(v,w,d)
Process

ys V

d
u

z

Output 
transform
z=gz(y,w,d)

y
Output 

transform
z=gz(y,w,d)

Transformed system from v to z is simple to control

zs

w

z=gz(y,w,d)
Main idea: Simpler/more linear model for z than for y

Since we use the same transformation on both y and ys, we will at steady state get y=ys.

Example: y=T (temperature), z=H(T,p,x) (enthalpy). 
Easy to write energy balance in terms of z=H
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Further discussion…

• We have looked at many other examples
• And in particular we have looked at the effect of uncertainty

– No big surprises
– It’s fairly robust!
– Mater theses by Callum Kingstree and Simen Bjorvand
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Conclusion
• “Control structures with embedded knowledge through input and output transformations”
• Based on simple process models, easy to understand and implement
• Systematic approach for dynamic model

• 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒖𝒖,𝒘𝒘,𝒚𝒚,𝒅𝒅)

• Transformed input (B=I): 𝑣𝑣 = 𝑓𝑓(𝑢𝑢,𝑤𝑤,𝑦𝑦,𝑑𝑑) − 𝐴𝐴𝐴𝐴
• Can also hande static models: y=f0(u,w,d). Use 𝑣𝑣0 = 𝑓𝑓0 𝑢𝑢,𝑤𝑤,𝑑𝑑
• Resulting transformed system from v to y: 

– Linear, independent of disturbances, decoupled

• Potential internal instability with exact inverse
– No problem if indirect effect on v through w is small
– Otherwise use cascade implementation
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Complex optimal centralized 
Solution (EMPC, FL)

Sigurd

Academic control community fish pond

Simple solutions
that work (PID++)
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Extra
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Example 5x. Level control with flow controller

• 𝑦𝑦 = 𝑉𝑉 (level), 𝑢𝑢 = 𝑧𝑧 (valve position), 𝑑𝑑 = [𝑞𝑞𝑖𝑖𝑖𝑖,Δ𝑃𝑃]

• Model (mass balance): 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑖𝑖𝑖𝑖 – 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜

– where (valve equation): 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑉𝑉𝑓𝑓𝑉𝑉 𝑧𝑧
Δ𝑃𝑃
𝜌𝜌

– fv(z): nonlinear valve characteristic

• Can use «standard  method» with: 𝑓𝑓 𝑦𝑦,𝑢𝑢,𝑑𝑑 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑉𝑉𝑓𝑓𝑉𝑉 𝑧𝑧
Δ𝑃𝑃
𝜌𝜌

– 𝑣𝑣𝐴𝐴 = 𝑓𝑓(𝑦𝑦,𝑢𝑢,𝑑𝑑)
– Invert f to find u from given vA

– Complicated + Valve characteristic fv(z) uncertain +  need measurement of DP
• Much better if qout is measured: Introduce 𝑤𝑤 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 and use cascade control

– Tranformed input: 𝑣𝑣 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
– Equivalent to standard solution with cascade control based on flow controller

flow in

flow out

y=V

u=z
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Controller
C

(dynamic)

Slave v-
controller
(dynamic)

Process
(dynamic)

ys

y

u=z y

Static input 
transformation

v = f(w,d)= qin-qout

d=qinv = qin-qout

(setpoint)

vs

w=qout

Measured
variables

LC
y

ys
flow in

flow out

vs

FC qout
u=z

master

slave

qin

v

Cascade control of v

Static input transformation
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Controller
C

(dynamic)

Slave w-
controller
(dynamic)

Process
(dynamic)

ys

y

u=z yInverse static
input 

transformation

d=qinqin

(setpoint)

v =
qin-qout

w=qout

Measured
variables

LC
y

ysflow in

flow out

v=qin-qout

FC w=qout
u=z

master

slave

qin

Alternative: Cascade control of w

ws

qout,s
Inverse static input transformation
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Example 6: Distillation

y = distillate compostion
u= L (reflux)

L
y

V
yT

D
y

V
yT

Model reflux drum (component balance): 

𝑀𝑀𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉(𝑦𝑦𝑇𝑇 − 𝑦𝑦)

Note: 𝑓𝑓 = 𝑉𝑉
𝑀𝑀

(𝑦𝑦𝑇𝑇 − 𝑦𝑦) does not depend explicity on u=L.
But yT depends indirectly on L.  Introduce w=yT

𝑣𝑣𝐴𝐴 = 𝑓𝑓 – 𝐴𝐴𝐴𝐴 = 𝑉𝑉
𝑀𝑀

(𝑦𝑦𝑇𝑇 − 𝑦𝑦) − 𝐴𝐴𝐴𝐴
Solution: Cascade control of vA or w=yT
• yT is difficult to measure
• But yT is closely related to temperature
• This leads us towards the conventional solution with temperature cascade!
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Nonlinear decoupling and feedforward using calculation 
blocks*
• Linear decoupling and feedforward often work poorly because of nonlinearity
• Example of nonlinear feedforward: Ratio control
• Generalization: Nonlinear calculation block

Controller
Calculation

block
(static)

Process
ys

y

V

d

u y

Method: Select «transformed inputs» v as right hand side of steady state 
model equations

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress



65

Controller
Calculation

block
(static)

Process
ys

y

V

d
u y

Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water



1. Th:  60->70 °C at t = 50 s
2. Tc:  30->20 °C at t = 100 s
3. Th

s: 40->42 °C at t = 150 s
4. qs:  1->1.1  L/s       at t = 200 s

0 50 100 150 200 250

Time, [s]

38

40

42

44

Te
m

pe
ra

tu
re

, [
°

 C
]

y
1

 = T

0 50 100 150 200 250

Time, [s]

0.9

1

1.1

1.2

To
ta

l f
lo

w
, [

L/
s]

y
2

 = q

0 50 100 150 200 250

Time, [s]

0.2

0.4

0.6

H
ot

 fl
ow

, [
L/

s]

u
1

 = q
h

0 50 100 150 200 250

Time, [s]

0.4

0.6

0.8

C
ol

d 
flo

w
, [

L/
s]

u
2

 = q
c

0 50 100 150 200 250

Time, [s]

38

40

42

44

Tr
an

sf
or

m
ed

 in
pu

t

v
1

0 50 100 150 200 250

Time, [s]

0.9

1

1.1

1.2

Tr
an

sf
or

m
ed

 in
pu

t

v
2

Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process) 
New system: T=v1 and q=v2
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Controller
C

(dynamic)

Process
(dynamic)

ys

y

u y

d

w
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Controller
C

(dynamic)

Process
(dynamic)

ys

y

u y

d

w

?

Transformed input
v=g(u,w,y,d)
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Controller
C

(dynamic)

Process
(dynamic)

ys

y

u y

d

w
v Inverse input

tranformation
(Static)

u=g-1(v,w,y,d)
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Controller
C

(dynamic)

Slave v-
controller
(dynamic)

Process
(dynamic)

ys

y

u y

Input 
transformation

(static)
v=g(u,w,y,d)

dv
(calculated )

(setpoint)

vs

w
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Controller C
(dynamic)

Inverse input
tranformation

(Static)

Process
(dynamic)

ys

y

v

d

u y

linear
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Special case (series system, f is independent of u) : 
Control of by Chain of transformations

Process 1:   𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒚𝒚,𝒘𝒘,𝒅𝒅)

Process 2:   𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇𝟐𝟐(𝒘𝒘,𝒖𝒖,𝒅𝒅)

w
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Some cases: Slave controller can be replaced by static block

– NO: series system (f independent of u. Here a static block for u is impossible so we must use cascade control. Problem: may be difficult to 
get fast slave loop)

– MAYBE parallell system (dangerous: may get unstable zero dynamics, so recommend cascade)
– YES. recycle system (no big problem, at least if delayed, since recycle gives positive feedback, here a static block may be OK)

• Recycle system
– 𝑦𝑦 = 𝐺𝐺1 (𝑢𝑢 + 𝐺𝐺2𝑦𝑦)
– 𝑦𝑦 = 𝐺𝐺1/(1 − 𝐺𝐺2) 𝑢𝑢 = 𝑇𝑇(𝑠𝑠) 𝑢𝑢

– 𝐺𝐺2 = 𝑘𝑘2 exp −𝜃𝜃2𝑠𝑠
𝑑𝑑2 𝑠𝑠

– 𝑇𝑇 = 𝐺𝐺1𝑑𝑑2 𝑠𝑠
𝑑𝑑2 𝑠𝑠 −𝑘𝑘2 exp −𝜃𝜃2𝑠𝑠

= 𝐺𝐺1 for initial response (s=infinity)

• But be careful. Cascade is safer because then we can get real dynamics experimentally.
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