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“The goal of my research is to
develop simple yet rigorous
methods to solve problems of
engineering significance”
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Outline

What are input transformations?
— Tranformed input (v) = static function of physical input (u)
e |Inverting the input transformation
— Exact inverse (low relative order)
— Approximate inverse using feedback (cascade control)
* Systematic approaches for deriving input transformation
— From static model
— From dynamic model
— Comparison with «feedback linearization»
— Chain of transformations (Exact inverse for systems of higher order)
e Potential internal instability with exact inverse
— Linear analysis,
— Bode stability condition
e Qutput transformation

e Discussion/Conclusion

¢ ® NTNU



Motivation

* Industry frequently uses static model-based calculations blocks

e ...and sometimes combined with cascade control
* |dea: Use physical insight or model equations to derive control strategy

But no theory for when and how to use

. ®@NTNU



Definition of transformed inputs

v W
Y. Controller u y
2 ) > C ——
(dynamic)
y

Shinskey (1981): “There is no need to be limited to single measurable (y) or manipulable
variables (u). If a more meaningful variable happens to be a mathematical combination of two
or more measurable or manipulable variables, there is no reason why it cannot be used.”

u = physical input
y = controlled output
w = other measured output (state)

d = disturbance Transformed input: v=g(u,w,y,d) (static function)
Here d and w are assumed measured
Transformed output: z=g,(y,w,d)




Use of transformed inputs

Transformed system

R
I
| v
I
Controller v =g(u.w Input
s > > C g(u,w,y,d) L calculation
(dynamic) || (static)
I
— I
I
vl e
Transformed input v =g(u,w,y,d) Examples
* Replaces the physical input u for control of y. e = u/d
* Aim: Transformed system is easier to control e v=u./u
* May include: R U
* Decoupling * Vv=u;+Uu,

 Linearization
 Feedforward

) ®@NTNU

v=w(u) ->Cascade control




Use of transformed inputs requires inversion

Transformed system

]
I
| \ 4
| Input
Ys Controller v =g(u,w,y,d) || calculation
C > C ®l  (static)
(dynamic) : u=gv,wyd)
— |
| —
Yy

Input calculation block: Need to “invert / reverse” the transformation:
u=gt(vwy,d)

* Two main options:
* Exactinverse
* Approximate inverse by feedback




1. EXACT INVERSE

— — — — — — — — — — — — — — — —

I
I
I
I
I
"1 Exactl
Y, Controller ' |
. _ C ) (Static calculation
. block)
. I
e e | u=gi(v,wy,d)
— I
I
y .

Exact inverse requires that v=g(u,w,y,d) depends explicitly on u

Potential problems:
* Inverse may be complicated, easy to do mistakes
* May get internal instability (because of feedback from w and y)




2. INVERSE BY FEEDBACK

F—————————————
I
| Calculate d |
: transformed I
\% input (static) :
I(calculated) v=g(u,w,y,d) 1 |
| |
| |
Y Controller V, : Slave v- u I
'y > C T controller
. (setpoint) .
(dynamic) I (dynamic)
I
- I
Y

Only option when v=g(w(u),y,d) does not depend explicitly on u. Example: v =w
Other advantages:

* Avoid internal instability with exact inverse

* Avoid complicated inverse (and reduce errors!)

Disadvantages:

* Inverse not perfect dynamically (need fast slave controller)




Examples of transformed inputs

 Example 1: Mixing process (exact inverse)

 Example 2 (Industrial): Control of reactor temperature (inverse by feedback)




Example 1: Mixing of hot (u,) and cold (u,) water

Want to control
U, T y, = Temperature T

:

] F y, = total flow F

'  Want to use two SISO Pl-controllers

U,
TC
FC

Vo=sum  Get decoupled response with transformed inputs
=
TC sets flow ratio, v; = u,/u,
v,=ratio FC sets flow sum, v, = u; + u,

Exact inverse («static calculation block»):
u,=vy v,/ (1+v,)

u,=v,/ (1+v,)




1. EXACT INVERSE

Decoupled transformed system

Two SISO r—-—— """ ""~">">">">">"">"">">""”"”"7/""”"”7 |
controllers | Exact inverse h Process I
s v,=ratio | flowrate I
Ys ¥ 1 TC i Y u,=v, v,/ (1+v,) - T
> F _F >
N_s R | Ju,=v,/(1+v,) | F
FC v,=sum [ U,=co |
— | flowrate |
. |
Yy
Pairings: Note:
) :_ V1 * |n practice u=valve position (z)
[ ] — Vz

* So must add two flow controllers
* These generate inverse by feedback

No interactions for setpoint change




1. EXACT INVERSE actually requires flow controllers

Decoupled transformed system

Two SISO F———————————————————— ——
controllers |  Exact inverse
- .
Ts T vi=ratio
Ys YA " TC = u,=v, v,/ (1+vy) _T
VX FS_F | _ F >
> FC | :uz‘Vz/(l"'Vl)
T |
.
Y
Pairings: Note:
) :_ V1 * In practice u=valve position (z)
[ ] J— Vz

* So must add two flow controllers

No interactions for setpoint change + These generate inverse by feedback




[&]Perstorp
Example 2: Reactor temperature control

The reactor solution is circulated through a heat exchanger (cooler).
The reaction is very exothermic: it is important to control the temperature.
Typical variations/disturbances: Cooling water header pressure, CW temperature

Incoming
cooling water

Circulation loop

Thanks to: Krister Forsman



[&]Perstorp
New control structure: Power (E) control

/" Power controller

' @ PV @ E=FT, Ty

Tout! T,

cjitcl]

The slave power controller acts as a
temperature-corrected flow controller

Thanks to: Krister Forsman B NTNU




HEX power control reduces variations between batches
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Tkhanks to: Krister Forsman
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[&]Perstorp
New control structure: Power (E) control

v=E f—\ Power controller

020208

A A A 1
Touti T F . >

50 . B

Transformed input
5 v=g(wd)=E

1 Incomin

i l cooling Wa%cer = F(Tin_Tout)

! w, =F

W2 = Tout

Thanks to: Krister Forsman B NTNU



2. INVERSE BY FEEDBACK

Y=

wn

\ 4

Transformed system d= Tin

|(calculated)

s EC

<
<

(setpoirit) g

Must generate inverse by feedback (slave v-controller EC)
since v=E does not depend explicitly on u=z,




Looks good..... Works in practice...But is there any theory?

e Not too much

 Question 1: How to derive input transformations in a systematic matter?

e Question 2: Properties of transformed systems. Stability?
— Potential internal instability if transformed variable v depends on outputs (w)




Q1. Systematic derivation of input transformations

e From static model

* From dynamic model




Input transformation from static model

Write nonlinear process model on form ]

|
_ |
y =fo(u,w,d) i
* Introduce transformed inputs as RHS [ rr—
Ys Controller \ :
:
|
|

v=f,(u,w,d) (% T 1 aynamic (fb'(k’wd)
* Exactinverse: u is solution to (*) for given v:
u=f, (v, w,d)
e Resulting transformed system
y=7v
 Decoupled, linear and independent of disturbances

ke e e e e e e e — — — ———

* Assumptions
— Know model and measure all disturbances (d)
— The solution to the static inverse problem exists and satisfies certain properties.

* Note: If f, (and v) does not depend explicitly on u: Use feedback to generate approximate inverse

24 ®@NTNU




Input transformation from dynamic model

d
. . . Transformed process
* Write nonlinear dynamic process model on form i — J[
|
dy A Controller v =g(u,w,y,d) I Input
i ] caleulation
dt f (ul W, y ) d) ( dvngmic) I' (static)
— |
|

* Introduce transformed inputs from RHS
v=B7'f(uwyd —-Ay] (¥

* Tuning parameters (usually diagonal matrices): A and B.

* Exactinverse: u is solution to (*) for given v

e Resulting transformed dynamic system

dy _
0 = Ay + Bv

— linear, decoupled (with A and B diagonal) and independent of disturbances!

* Assumptions
— Know model and measure all disturbances (d)
— The solution to the static inverse problem exists and satisfies certain properties

* Note: If f (and v) does not depend explicitly on u: Use feedback to generate approximate inverse

vl e

25 ®@NTNU




Input transformation from dynamic model

d
. . . Transformed process
* Write nonlinear dynamic process model on form i — J[
|
dy A Controller v =g(u,w,y,d) I Input
i ] caleulation
dt f (ul W, y ) d) ( dvngmic) I' (static)
|
|

* Introduce transformed inputs B e A
v=B7'f(uwyd —-Ay] (¥

* Tuning parameters (usually diagonal matrices): A and B.

* Exactinverse: u is solution to (*) for given v

e Resulting transformed dynamic system

dy _
0 = Ay + Bv

e Choices for B

1. B=l, - — =Ay+v

2. B=-A, - — = A(y — v) (y=v at steady-state)




Feedback linearization for system of relative order =1
(Isidori)

Ys Controller

* Nonlinear dynamic system (process) (dynaric
) _
— =fwyd)=f,d) + [ du v

* Introduce transformed inputs
v=f(uyd)

* New transformed system is linear, integrating, decoupled and independent of
disturbances:

dy
dt
e Corresponds to B=l and A=0

=D




Why is A=0 a poor choice?
Feedback linearization: Transformed linear system is integrating:

A=0 (feedback linearization): Transform stable process into integrator
(positive feedback from y)

— Transformed system cannot be operated alone

— Unknown disturbances will integrate.

— Industrial experience: Bad!

Imagine that we want fast control of a process which is already fast.
— First make slow (integrating) by using A=0 (positive feedback)
— Then make fast again using controller C (negative feedback)
* Does not make much sense!
* Also: Integrating systems are not easy to control using C
Fortunately, it is not necessary to make choice A=0 in feedback
linearization
* Theory still holds
* A=0 was chosen as an example for simplicity (Isidori)

Feedback linearization theory applies to input transformations

Nonlinear Decoupling via Feedback: A
Differential Geometric Approach

ALBERTO ISIDORI, MEMBER, 1IEEE, ARTHUR J. KRENER, MEMBER, 1EEE, CLAUDIO GORI-GIORGI,
AND SALVATORE MONACO

Abstract— The paper deals with the pling ai
acting control problems. A coinplete solution to those problems is made
possible via a suitable nonlinear generalization of several powerful geomet-
ric pts already introduced in studying linear multivariable control
systems. The paper also includes algorithms concerned with the actual
construction of the appropriate control laws.

Manuscript received June 25, 1979; revised October 19, 1979 and
August 25, 1980. Paper recommended by M., Vidyasagar, Past Chairman
of the Stability, Nonlincar, and Distributed Systems Committee, This
work was supported by the University of Rome under Grant 7.8*P /1978
and by the National Research Council of Italy.

A. Isidori, C. Gori-Giorgi, and S. Monaco are with the Istituto di
Automatica, University of Rome, Rome, Italy.

A. J. Krener is with the Department of Mathematics, University of
California, Davis, CA 95616.

1. INTRODUCTION

ONSIDER a nonlinear system of the form
£=f(x)+g(x)u (1.1a)
x(0)=x° (1.1b)
y=h(x) (1.1¢)

where the input #, the output y, and the state x are /, m,
and » dimensional, f and h are vector-valued differentiable
functions, and g is a matrix-valued differentiable function,
all of the appropriate dimensions. We shall be more precise
later on. The input-output behavior of such a system can

0018-9286,/81 /0400-0331800.75 ©1981 IEEE

From: Alberto Isidori <albisidori@diag.uniromal.it>

Sent: Sunday, October 4, 2020 5:24 PM
To: Sigurd Skogestad <sigurd.skogestad@ntnu.no>

Subject: Re: Feedback linearization generalization

Dear Sigurd
It is nice to hear from you....

Let's move to your questions. | believe that an answer could be as follows.
In feedback linearization, one picks A=0 just as an example. .... The equation

fly,u) =Ay-v

must be solvable for u. This entails, in the higher-dimensional case, a

definition of "relative degree" ....

Best regards
Alberto

®@NTNU
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Choice of Tuning parameter A

: d : : :
— Oneidea: Select A = é at nominal operating point

* Then: No feedback from y into transformation (nominally)
* Transformed system has the same dynamics as the original system (nominally)
. . d
— To get decoupling may choose: A = dlag(é

* Will get some feedback from y also nominally.

— May want to «speed up» the response of the transformed systems by selecting a larger A.
e This involves negative feedback from y, and may as usual give robustness problems if time delay for y

* «Slowing down» the response (positive feedback from y) does not have robustness problems




B = -A gives steady-state gain I’

Ys

dy
¢ L= fuw,y,d)
* DefineT, =-A1 y

Controller
C
(dynamic)

d
Transformed process l
¥

Input

H (static)

|
|
|
IL calculation
|
|
|
|

_—_——— e, —_———a

 Selectv=TAf(u,w,y,d)+y

dy

* Get transformed system™: A= Yt

* Transformed system has linear «setpoint» response (from v to y) with

— time constant T,
— steady-state gain |

 May in theory avoid the outer feedback controller C
— But note that the transformation works by feedforward action

* The outer controller C is needed to correct for model errors and unknown

disturbances

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress

30
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Examples («magic»)

 Example 1 (revisit): Mixing with one static and one dynamic equation

 Example 2 (revisit): Reactor temperature control (dynamic)
 Example 3: Heat exchanger (static applied to dynamic system)
e Example 4: CSTR (with exact inverse using w)




Example 1. Mix hot (1) and ks
cold (2) water (shower), y=[q T] —k— -

q2, 12
Mass balance: q=qq+q> (static equation for y,=q)
Vg = CI1 + q>
Energy balance: CZ L, —-T)+12 (Tz — T) (dynamic equation for y,=T)

U, =%(T1—T)+"72(T2—T)—AT

New transformed inputs: vjand v,

* v, =sum of flows
* v,: not ratio (but would be similar to ratio if we used static energy balance)

Exact inverse transformation (with u,=q, and u,=q,):
_ V(va+AT)+v,(T-T,))

= =T Ye Controller

Q2 = Vo —q1 (dynaric

Tuning parameter, A = -(g/V)* (nominal) -




Example 1. Simulation responses with transformation only.

-> Perfect disturbance rejection and decoupling

[;] q1, 11
; V (m?)
7 T T T T T

115 q2, T
6 1
) 1.d,=T,: 20 ->22°C att=50s
2z 5 — ) ) 4
2 5 ] 2.d,=T,: 50 ->55°C att=100s
"5 = 10 -
g E 3.¥,=T.:35->36 °Catt=150s
3 5 95
g s - 1 4.y,=q.: 10 ->11 kg/satt =200 s
0 5(; 10(I) 15(I) 20(I) 25(; 300 K 0 5(; 10(') 15(') 20(') 25(‘) 200
Time,[s] Time,[s]
36
50 -
— 40 - _d 1 - 1
» d d =T G 385
) )
£ 30 | 2
g g
E o
e 20 | . .*. . § 35
0 50 100 150 200 250 300 0 5(; 10(') 15(') 20(') 25(') 200
Time,[s]

Time,[s]

®@NTNU



Example 2. Control of reactor temperature

Energy balance tank: ®v=%\ A

ml Cpl dT/dt - Q * er Touté T. T F T TSP E
Static energy balance for cold side: W@ @ | y=T

Q=Fc, (T~ T =Ec, C T e et
Neglecting heat of reaction Q,,, we get /2

dT/dt=kE, k=cy/lc;y m,) — T BT T
Transformed input with systematic approach e @ | l | l cooling water Wy = F

_____ W, = Toue

v = kE — AT

@ R d=T,

Note: choice v=E corresponds to A=0
* Some self-regulation removed by EC @
* Maybe not so bad for this process which

anyway needs to be stabilized (because of Q,,)

Q,,(T) is mainly a function of T. Can be handled by design of TC

®@NTNU



In practice

* May not measure all disturbances

* Transformation will not longer be «perfect» but still useful




Example 3. Heat exchanger (static)

MVs (original inputs):

u = Fec [kg/s]
CVs (outputs):
y = Ty [°C]
DVs (disturbances):
: di = T/ [°C]
u d =Ty [°q]
d3 = Fh [kg/S]
Energy balance, countercurrent flow, Q = UAAT, Ny, = FCUC‘:C Y. (c:ntéou.e: v =g(uwy,d)
Th=(1—€pn)T)" +ep T o _ Fepe y
N —— — Frcpn

eXP(_Ntu(C - 1))
C— exp(_Ntu(C - 1))

VO €c=1-
Input calculation:

. . . €n = €.C
Use numerical inverse (to find u for given T,=v,)




Simulation: Static v, with cell dynamic model —

0

Temperature (

Cold flow (kg/s)

27

26

25

24

15

10

d,=AT™" =

+2 °C

s Open loop

s Transformed only (FF)

EEER |Setpoint

500

1000 1500

Time (s)

500

1000 1500

Time (s)

0

Temperature (

Cold flow (kg/s)

244

243

242

24.1

5.3

52

5.1

4.9

d,= AT = +2°C

s Open loop

e Transformed only (FF)

EEER |Setpoint

500 1000 1500

Time (s)

500 1000 1500

Time (s)

®)

Temperature (

Cold flow (kg/s)

30

28

26

24

F, T

FCV TC

Fe, T

Vo= ATS = +5°C

giEEEEEEEER
[ ]
]
] i
- | r2nsformed only (FF)
: m m m m Setpoint
[ ]
]
- i
[ ]
[ ]
]
]

500 1000 1500

Time (s)
500 1000 1500
Time (s)




Extension: Chain of transformations

 |dea: Extend exact inverse to systems of higher relative order (whenv
does not depend explicitly on u)

* Model fory (static case) or dy/dt (dynamic case)

d
y=fowd) or —==f(wy,d)

— Until now: Cannot use exact inverse

e Alternative 1 (until now): Use feedback control to generate approximate inverse
e Alternative 2 (chain of transformations): Make use of known model for w

dw
E — f2(u? w,Yy, d2)

— Use two exact inverses; find w from f, find u from f,.
— May be viewed as alternative to «feedback linearization» for systems with high relative order

38 ®@NTNU




Chain of transformations

dy/dt = f(w,y,d) =Ay+v (Inverse 1: Solve for given v to find w?)
dw

— = fo (’u,, w,y, dg) =A,(w-v,] (Inverse 2: Solve for given given w® =v, to find u)

d
‘ ida
. Inverse input Inverse input
v P P . g P . u Process 2 w Process 1 y
transformationl —=| transformation2 —= . — . .
. . (nonlinear) [nonlinear)
(static) (static)
i r

* Input u has relative order 2 (from u to y)
* Get perfect disturbance rejection for d, (enters same place as u)
e But not for d since it must go through subystem 2

dw L=-A"

TQ—— = U2~ W — S
dt ()] w

* Note: Choose B=-A in inner transformations to get steady-state gain of | (v,=w?®)




Example4.CSTR.y = ¢4, u = Q,w =

Component balance: % = %(CAO —cy) —k(T)cy

Uy = %(CAO —c4) —k(T)cy — Acy

: al_4a _
Energy balance: — =, To—T)+

PCp PCp
Alternative 1: Cascade control of v,
Alternative 2: Use also model for w=T (energy balance)

q _ Q _ AHyyk(T)chy _ _
> (To —T) + oy Py = A, (T —vy,)

and use chain of transformations.

T

k:koexp<

q. ca0. 1o

A — B
V [m?]

Epqf1l 1

)




Alt.2 Chain of inverse transformations

Measured variables
% = %(CAO - CA) — k(T)CA = AcA + UA
t —

ar Q  AHpk(T) CAn g d_CAO'q'TO

rxk(T)C < V4
E:%(TO—T)‘FVPCP— prs 4= Ay)(T —vy,) P =

yS Controller VA Inverse static TS= Inverse static y:CA
— C — Vp input v > V,, input —
(dynamic) transformation | "A2 | transformation
Y
¢, cao0, 1o

* Make use of model forw=T ./ /N @@Sﬁ_
* Feedforward control for T, will be perfect, but not for C,,and qg. _ ;
 Need to invert expression for v, with respect to T -> invert k(T). v (] :

q, ca, T




Alt. 1. Cascade implementation Measured

Calculated variables

Va = %(CAO —ca) —k(T)cq — Acy DEHE inpu.t CAO'q d=CAOIqITO
transformation |«

v
Y. Controller Ve Slave v,- Y=C,
7' > C — controller —
. (setpoint) .
(dynamic) (dynamic)
Y

. ca0, T

Two reasons to use slave controller & ca0: 0

1. u=Qdoes not appearin v, -

2. Avoid inverting expression for v, with respectto T N *@‘

V [m]

But do not get perfect feedforward control for T,

q, ca, T

Q




Q2. Stability problems?

e Consider any transformed input, v = g(u,w,y,d)

 With exact inverse the transformed system may be internally unstable because we
treat w as disturbance, but actually w depends on u

= Happens when w causes unstable zero dynamics fromutov

e Stability problems can be avoided with feedback (cascade) implementation which
gives approximate inverse

——— e

———————————————— : Input d :
: I transformation I
| Iv (static) |
I : icalculated) v=g(u,w,y,d) i
: l i | A |
| |
Y. Controller Vv | (Exact Inlvlerse y Vs Controller Vi Slave v- u I
| Static caclulation . R —_
C . | block) C . (setpoinﬂ controllgr |
(dynamic) | u=g*(vwy,d) (dynamic) I (dynamic) |
| —_ | |
I

_—— e ———




Unstable zero dynamics Internal instability

Indirect effect through w may cause Unstable zero dynamics for T give internal unstable
e unstable zero dynamics for T (from u to v) tranformed system if we use exact inverse
* =inverse response from u to v (scalar)
S

I
I
T T T | !
Direct |
u static effect Transformed V Vo Exact Inverse
» input (static) —> — (static)
. v=g(u,w,d) u=g*(v,w,d)

4

‘ Indirect
dynamic effect

\ 4

— — — — — — — — — — — — — — — — — — — — — — — —

— — — — — — — — — — — — — — — — — — — — — — — —

Internally unstable:
v=Tu Response from v to y is stable (apparently),
but internal signals u and w are unstable

“ ®@NTNU




Example 5: Internal instability

Process
y=u+w+d Response to step disturbance (d=1)
—2u . . . - —
u = s Exact
4s +1 Zk s Cascade | | 2L
Transformed input > 0 - 0
m—Exact
—_— —_— m Cascade
’UO — g(ﬂ? ?,Uj d) = U _I_ w _I_ d -2 | 21 == Setpoint | |
Vo = As—=1 4 0 10 20 30 40 50 0 10 20 30 40 50
4s+1
. Exact == Fxact
Exact inverse TP 2 szgade ' 2} = Cascade | |
S
u=vyg-w—d |u=—(0d - o 50
Response of transformed system | ,
Yy = Yo




Linear analysis

Transformed input

| K I

Transformed input

v= K, u+K,w
=(K,+K,G,)u=Tu
where
T = (K, + K, G,) = K,(I+L,)
L, =K, 'K, G,

46
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Transformed system

Exact Inverse

u= K, (v-K,w)

— — — — — — — — — — — — — — — — — — — — — — — —

Transformed system with exact inverse
u=T1v=(I+L,)1K, v

For internal stability of transformed system:
T =(I+L,)? K, must be stable

Equivalently: Transfer function
T= K, (I+L,)

from u to v must have stable zero dynamics

Trick: Can use Nyquist/Bode stability condition for L,

®@NTNU



Linear stability theorems

_ Direct effect

l

\ 4

Kw

A

Transformed input

v=K,(l+L,) u
where
L= KK, Gy,

w=G,(s)u

\ 4

Indirect effect

Stability.
Transformed system is internally stable if and only if
(1+L,)1is stable

Bode stability condition: Internally stable
if and only if |L,(jw,g0) | <1 (scalar)

Small gain theorem. Stable
if |L,(jw)[<1latallw

In words: Stable if «indirect effect» K, G,, (through w)
is smaller than «direct effect» K (through u).




Bode stability condition

L, = K, 'Ky, Gy,
Bode (scalar): Internally stable if and only if |L,(jw,go) | <1

Two cases
1. L,(0)<0: Direct and indirect effect are opposite at steady-state. w,5,=0
Get internal instability iff [L,(0)|>1
* When Indirect effect is larger and opposite at steady state
Example 5: K =K, =1 and G, =-2/(4s+1) so L,(0)=-2 <->internally unstable
Note: Transfer function from u to vis T = K (I+L,,) = (4s-1)/(4s+1).

2. L,(O) > 0: Direct and indirect effect in same direction at steady state.
* Internal instability is less likely.
* Requires that indirect effect is large and that G, has unstable zeros (inverse response) or delay
Example 6: K =1, G, = (-s+1)/(s+1). w,go=>°. | L, | =K, at all w. Get internal instability iff K, >1.
Note: With K =2, transfer function from u to v is T= K (I+L,) = (3-s)/((s+1).




What if uncertain about internal instability?

e Use feedback (cascade) implementation

* Slave loop involves controlling v = T(s) u.

— T(s) =K, + K, G,(s)
— Unstable (RHP) zero or time delay in T(s) implies that slave loop cannot be fast

— Uncertain model: Can tune slave controller based on experimental T.




Transformed output

Zzgz(y,w,d)

Main idea: Simpler/more linear model for z than fory

Transformed system from v to z is simple to control

I_ ______________ I
| d |: y
< |
S Z \Vj I ) |u \ 2

Output S l Input _ ] Output | -~

q » »
transform C I transform Process > transform ||
Z=g,{y,W,d) —_ u=g-1v.w.d) W z=g,lyw,d) |

' Z
_______________ J

Since we use the same transformation on both y and y_, we will at steady state get y=y..

Example: y=T (temperature), z=H(T,p,x) (enthalpy).
Easy to write energy balance in terms of z=H




Further discussion...

 We have looked at many other examples

 And in particular we have looked at the effect of uncertainty
— No big surprises
— It’s fairly robust!

— Mater theses by Callum Kingstree and Simen Bjorvand




Conclusion

“Control structures with embedded knowledge through input and output transformations”
* Based on simple process models, easy to understand and implement
e Systematic approach for dynamic model

« W _
dit o f(u,w,y,d)

* Transformed input (B=l):v = f(u,w,y,d) — Ay
* Can also hande static models: y=f,(u,w,d). Use v, = f,(u,w,d)
* Resulting transformed system from v to y:

— Linear, independent of disturbances, decoupled

e Potential internal instability with exact inverse

— No problem if indirect effect on v through w is small

— Otherwise use cascade implementation







> Complex optimal centralized

Academic control community fish pond Solution (EMPC, FL)

Simple solutions
that work (PID++)
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Extra




Example 5x. Level control with flow controller

flow in
 y =1V (level), u = z (valve position), d = [g;,, AP] L ‘ _________ ]
av
* Model (mass balance): — = Qin ~ out y=V
. AP —
— where (valve equation): g, = Cva(z)\/;
u=z
— f,(z): nonlinear valve characteristic Fo——
N flow out
 Can use «standard method» with: f(y,u,d) = qin — ¢yf v () /?
- v, = frud)

— Invert f to find u from given v,
— Complicated + Valve characteristic f (z) uncertain + need measurement of DP
* Much better if q,,, is measured: Introduce w = q,,,, and use cascade control

— Tranformed input: v = @i, — Gout
— Equivalent to standard solution with cascade control based on flow controller




Cascade control of v V= Gin"Yout Static input dzqin
transformation | Measured
v =f(w,d)= g;,-0t W _q variables
- out
{' \ 4
Y. Controller V, Slave v- y
2 > C — controller —
. (setpoint) .
(dynamic) (dynamic)
Y
flow in : i
| ' Ys :
A .,_y_ E Qin
y Vs : Static input transformation
: qout
T U=z }

N
flow out |




Alternative: Cascade control of w

Y Controller
7y C
(dynamic)

\ 4

V=
Ain~Yout

qin

y

Inverse static
input
transformation

Y

y

W=qout

WS
—t

setpoint

Slave w- =7

controller
(dynamic)

d=a.
q'n Measured

variables

v



CONDENSER

Example 6: Distillation v GF v

Y1

REFLUX DRUM

y = distillate compostion
u= L (reflux)

REFLUX
L

Model reflux drum (component balance):

v o_ _

M= =V(yr—y)
Note: f = %(yT — vy) does not depend explicity on u=L.
But y; depends indirectly on L. Introduce w=y;

4
vy = f-Ay = (yr—y) — Ay

Solution: Cascade control of v, or w=y;
* vy is difficult to measure = Ts

e Buty;is closely related to temperature
* This leads us towards the conventional solution with temperature cascade!




Nonlinear decoupling and feedforward using calculation
blocks*

* Linear decoupling and feedforward often work poorly because of nonlinearity
 Example of nonlinear feedforward: Ratio control
* Generalization: Nonlinear calculation block

) | ¢
Calculation
\Y%
X 7Y » Controller > block u: Process VAR
(static)

y

Method: Select «transformed inputs» v as right hand side of steady state
model equations

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress @ NTNU
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Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water .

! 1
1 I 1
- I 1
Ths qn YS V! Calculation u Ly
1
. 7y »| Controller I: block »| Process ; >
.& — : (static) !
! 1
T.. g, Y T

Figure 1: Mixer system
g ) C
U= ( i )
Steady-state model Written as y—f(u,d):

_ 9nrTh+qcTc 'I}r
o qh+qc I'J]. = ( T )
q=4. + dh .
Select transformed inputs as right hand side, v =f ’ ( T)
_ 4hTh+qcTc [
1= onige. (Y q

V=4, + dh (2)
Model from v to y (red box) is then decoupled and with perfect disturbance rejection:
T=v,
q=W2
* Can then use two single-loop PI controllers for T and q!
* These controllers are needed to correct for model errors and unmeasured disturbances
* Note that v; used to control T is a generalized ratio, but it includes also feedforward
from Tc and Th.
Implementation (calculation block) : Solve (1) and (2) with respect to u=(qc gh):

_ W (v —T.)

’ b ® NTNU




Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process)
New system: T=v, and q=v,

Outer loop: Two I-controllers with 7o = 1's

44 , 1.2
S y =T y =q
— —
42 | 11
%
— =}
5 4 B
£ 3 1
g =
g 2
5 38 ) ) ) . = 09 . . | |
0 50 100 150 200 250 0 50 100 150 200 250
Time, [s] Time, [s]
0.6 0.8
T T T T
=q uo=q
— : _,_ — :
. ,_I_ .
£ E
s 1 s
= =
=] =2
= S
0.2 I I I I 0.4 I I I I
0 50 100 150 200 250 0 50 100 150 200 250
Time, [s] Time, [s]
44 1.2
T
v v
—] —]
2 | 11
] [ 5 ’
& a
g g
B 40 B i
£ £
£ £
S <
Z 7]
g g
s 38 I I I I = 09 I I I I
0 50 100 150 200 250 0 50 100 150 200 250
Time, [s] Time, [s]

1. T,: 60->70°C
2.T,;: 30->20°C
3. T}3: 40->42 °C
4.q¢% 1->1.1 L/s

att=>50s

att=100s
att=150s
att=200s




\ 4

Controller
C
(dynamic)

y




\ 4

Controller
C
(dynamic)

Transformed input

v=g(u,w,y,d)

y




\ 4

Controller
C
(dynamic)

v v

y

m—pt

Inverse input

tranformation
(Static)
u=g1(v,w,y,d)




Ys

\ 4

R4

Controller
C
(dynamic)

V

(calculated)

Input
transformation
(static)
v=g(u,w,y,d)

A

v

Vs

y

\ 4

(setpoint)

Slave v-
controller
(dynamic)




linear

g ——
I
I <
I
I A
Ys f v! Inverse input Y
>, Controfler C — tranformation >
1 dynamic
( y ) : (Static)
— [
y G [ . . I B B B BN B  AamE  BaEE  aaE O BaaE BaE BaE B S -




Special case (series system, f is independent of u) :
Control of by Chain of transformations

Process 1: % = f(y,w,d)

dw
Process 2: o fo(w,u,d)
d2 dl
Y | P | ) '
S o v Inver:elnput WS . Incverse Input U
C |I™ transform [ o [ * Process 2 Process1 >
ry ry
|




Some cases: Slave controller can be replaccledd by static block

\
Ys Controller C Inverse v-block u Process Y
(dynamic) (Static) (dynamic)

- ! " |

— NO: series system (f independent of u. Here a static block for u is impossible so we must use cascade control. Problem: may be difficult to
get fast slave loop)

— MAVYBE parallell system (dangerous: may get unstable zero dynamics, so recommend cascade)
— YES. recycle system (no big problem, at least if delayed, since recycle gives positive feedback, here a static block may be OK)
*  Recycle system

- ¥ =G U+t Gy)
- ¥y =G6/A-G6lu =T()u
_ GZ :kzex —0.s

dys)
— G1dz(s) _ L. o
T = )T exp (8o G, for initial response (s=infinity)

*  But be careful. Cascade is safer because then we can get real dynamics experimentally.
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