Part 2. Decomposition and optimal operation

* Hierarchical decomposition. Control
layers.

* Design of overall control system for
economic process control

e CV selection
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Figure 4: Decomposition of “overall control system” for optimal operation in typical process
plant. This involves a vertical (hierarchical) decomposition [Richalet et al| (1978) into deci-
sion layers based on time scale separation, and a horizontal decomposition into decentralized
blocks/controllers, often based on physical distance. There is also feedback of measurements
(y, w, CV1, CV2) (possibly estimates) from the process to the various layers and blocks but
this is not shown in the figure. This paper considers the three lowest layers, with foeus on the

supervisory control layer.

CV1 = Economie controlled variables

CV2 = Regulatory /stabilizing controlled variables
RTO = Real-time optimization

MPC = Model predictive control

ARC = Advanced regulatory control

PID = Proportional-Integral-Derivative

RTO

MPC or ARC

PID control



Optimal operation and control of process

* Given process plant
* Want to Maximize profit P => Minimize economic cost J;=-P [S/s]

° JS = pg F+ po Q- P,P = cost feed + cost energy — value products
* Excluding fixed costs (capital costs, personell costs, etc)

e Subject to satisfying constraints on

* Products (quality)
* Inputs (max, min)
» States = Internal process variables (pressures, levels, etc)

« Safety
* Environment
* Equipment degradation

* Degrees of freedom = manipulated variables (MVs) = inputs u



Economic motivation for better control: Squeeze
and shift rule
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Figure 8: Squeeze and shift rule: Squeeze the variance by improving control and shift the

setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet|
1978).



Practical operation: Hierarchical (cascade) structure
based on time scale separation
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Two fundamental ways of decomposing the

controller

e Vertical (hierarchical;
cascade)

* Based on time scale
separation

e Decision: Selection of CVs
that connect layers

CV = controlled variable
MV = manipulated variable

Control
layer :

* Horizontal
(decentralized)

* Usually based on
distance

* Decision: Pairing of MVs
and CVs within layers



O NTNU
Main objectives operation

1. Economics: Implementation of acceptable (near-optimal) operation
: Stable operation around given setpoint

ARE THESE OBJECTIVES CONFLICTING?
IS THERE ANY LOSS IN ECONOMICS?

e Usually NOT

— Different time scales
Stabilization fast time scale

— Stabilization doesn’t “use up” any degrees of freedom
Reference value (setpoint) available for layer above
But it “uses up” part of the time window



Hierarchical structure: Degrees of freedom
unchanged

* No degrees of freedom lost as setpoints y,. replace inputs u as new
degrees of freedom for control of y,

Cascade control:

» Y

TCPID u\ G " Y2
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Systematic procedure for economic process control

Start “top-down” with economics (steady state):

* Step 1: Define operational objectives (J) and constraints ——
* Step 2: Optimize steady-state operation ek
 Step 3: Decide what to control (CVs) — ‘l’_ —
— Step 3A: Identify active constraints = primary CV1. "
— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)
* Step 4: Where do we set the throughput? TPM location AN
RTO N |
=1 Local optimization
Then bottom-up design of control system (dynamics): (hour) oV
————— - - 1
* Step 5: Regulatory control r o T 7
— Control variables to stop “drift” (sensitive temperatures, pressures, ....) MPCor | v_l , :
— Inventory control radiating around TPM Control : supervisoryconwrol | |
: (minutes) |Ia3::r°
. I cv2 | CV2
Finally: Make link between “top-down” and “bottom up” | 447\ o
* Step 6: “Advanced/supervisory control” contrr | Reguiatory convrol ||
* Control economic CVs: Active constraints and self-optimizing variables : — (seconds) :
* Look after variables in regulatory layer below (e.g., avoid saturation) ~  ~~~-7=7-°¢ T~~~ "
S

e Step 7: Real-time optimization (Do we need it?)

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).



Step 1. Define optimal operation (economics) ®NTNU
Usually steady state

Minimize cost J =J(u,x,d) J
subject to:
Model equations: f(u,x,d)=0

Operational constraints: g(u,x,d) <0

— u =degrees of freedom Jopt
— X = states (internal variables)
— d =disturbances

uopt

Typical cost function in process control:

J = cost feed + cost energy — value of products




constraint @ NTNU

Step 2. Optimize J

(a) Identify degrees of freedom

(b) Optimize for expected disturbances
Jopt

* Need good model, usually steady-state is OK

* Optimization is time consuming! But it is offline
* Main goal: Identify ACTIVE CONSTRAINTS

* A good engineer can often guess the active
constraints



Step 3. Decide what to control (Economic Cv1=Hy)

1. Control active constraints
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2. Control Self-optimizing variables |
* Look for a variable c that can be kept constant Pp————




Sigurd’s rules for CV selection

1. Always control active constraints! (almost always)

2. Purity constraint on expensive product always active (no overpurification):
(a) "Avoid product give away" (e.g., sell water as expensive product)
(b) Save energy (costs energy to overpurify)

Unconstrained optimum:

3. Look for “self-optimizing” variables. They should
e Be sensitive to the MV
*  have close-to-constant optimal value

4. NEVER try to control a variable that reaches max or min at the optimum

* In particular, never try to control directly the cost J

Assume we want to minimize J (e.g., ) =V = energy) - and we make the stupid choice os
selectingCv =V =
. Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)
. and setting J > Jmin: Forces us to be nonoptimal (which may require strange operation)



2. Control self-optimizing variables © NTNU

The less obvious case: Unconstrained optimum

A

* U = unconstrained MV )

* What to control? y=CV=?

Jopt | :




@ NTNU

Example: Optimal operation of runner

e Cost to be minimized, J=T
* One degree of freedom (u=power)
* What should we control?



1. Control active constraints © NTNU

1. Optimal operation of Sprinter

* 100m. J=T

* Active constraint control:
* Maximum speed (”no thinking required”)
e CV = power (at max)



2. Control self-optimizing variables © NTNU

2. Optimal operation of Marathon runner

e 40 km. J=T
 What should we control? CV=?
* Unconstrained optimum

A
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2. Control self-optimizing variables © NTNU

Marathon runner (40 km)

* Any self-optimizing variable (to control at
constant setpoint)?
* ¢, =distance to leader of race
* ¢,=speed
* ¢;= heart rate
* ¢, = level of lactate in muscles




2. Control self-optimizing variables

Conclusion Marathon runner

~
-_—

T Optimjzet”

- /H%f{\u\

~ ~
— g ~o
C'-.\'

select one measurement

N [t-murt-lm-nl/
Feedback CV1 = heart rate combination
' . | |
Controller [:H;I
u
Y
d P

_d o Sy -l

ﬁ/‘\ . Y n’

» CV = heart rate is good “self-optimizing” variable
» Simple and robust implementation
* Disturbances are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (c,)
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Unconstrained degrees of freedom

@ NTNU

The ideal “self-optimizing” variable is the gradient, J ,
c=0J/0u=],

* Keep gradient at zero for all disturbances (c = J =0)

cost J

Problem: Usually no measurement of gradient



Unconstrained degrees of freedom
ldeal: c = J,
In practise, use available measurements: ¢ = H y. Task: Select H!
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@ NTNU
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e Combinations of measurements:
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Unconstrained degrees of freedom

® NTNU
* Combinations of measurements, c= Hy

Nullspace method for H (Alstad):

HF=0 where F=dy, ./dd

Proof:y,,, = Fd
Copt = H Yopt = HF d

J Proof. Appendix B in:  Jaschke and Skogestad, “NCO tracking and self-optimizing control in the context of real-
time optimization”, Journal of Process Control, 1407-1416 (2011)



Unconstrained degrees of freedom

O NTNU
Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, =v [m/s]
c =Hy, H=[h; h,]]

F = dy,,,/dd = [0.25 -0.2]
HF=0 ->h,f,+h,f,=0.25h,—0.2 h, =0
Choose h,;=1-> h,=0.25/0.2=1.25

Conclusion:c=hr+1.25v
Control ¢ = constant -> hr increases when v decreases (OK uphill!l)



Step 4: Inventory control and TPM
(later!)



Step 5: Design of regulatory control layer

Usually single-loop PID controllers

Choice of CVs (CV2):
e CV2 = «drifting variables»

* Levels, pressures
* Some temperatures

* CV2 may also include economic variables (CV1) that need to be controlled on a fast time scale
* Hard constraints



Single-loop PID control

d
MV=u l y=CV
_’ _>
Process
Ep— - -

MV-CV Pairing. Two main pairing rules:
1.  “Pair-close rule”
* The MV should have a large, fast, and direct effect on the CV.

2.  “Input saturation rule”

* Pair a MV that may saturate with a CV that can be given up (when the MV saturates)

Additional rule for interactive systems:

3. “RGA-rule”

* Avoid pairing on negative steady-state RGA-element. Otherwise, the loop gain may
change sign (for example, if the input saturates) and we get instability with integral
action in the controller.



Step 6: Design of Supervisory layer
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Academia: (E)MPC

* MPC

* General approach, but we need a dynamic model
* MPC is usually based on experimental model
* and implemented after some time of operation

* Not all problems are easily formulated using MPC



Alternative simpler solutions to MPC

* Would like: Feedback solutions that can be implemented without a detailed models

* Machine learning?
* Requires a lot of data
* Can only be implemented after the process has been in operation

* But we have "advanced regulatory control” (ARC) based on simple control elements
* Goal: Optimal operation using conventional advanced control
* PID, feedforward, decouplers, selectors, split range control etc.
* Extensively used by industry
* Problem for engineers: Lack of design methods
e Has been around since 1940’s
* But almost completely neglected by academic researchers
* Main fundamental limitation: Based on single-loop (need to choose pairing)



How design ARC system based on simple elements?

* Main topic of this workshop
Advanced regulatory control (ARC) = Classical APC = Advanced PID contol

* Industrial literature (e.g., Shinskey).
Many nice ideas. But not systematic. Difficult to understand reasoning

e Academia: Little work

APC = Advanced process control



Step 7: Do we really need RTO?

e Often not!
* We can usually measure the constraints

* From this we can identify the active constraints
 Example: Assume it’s optimal with max. reactor temperature
* No need for complex model with energy balance to find the optimal cooling
* Just use a Pl-controller
e CV = reactor temperature (with setpoint=max)
e MV = cooling
* And for the remaining unconstrained variables
* Look for good variables to control (where optimal setpoint changes little)
e «self-optimizing» variables

RTO = real-time optimization



Summary: Systematic procedure for economic process control

Start “top-down” with economics (steady state):

* Step 1: Define operational objectives (J) and constraints ——
* Step 2: Optimize steady-state operation freet®
* Step 3: Decide what to control (CVs) — ‘l’_ —
— Step 3A: Identify active constraints = primary CV1. Ny
— Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H)
* Step 4: Where do we set the throughput? TPM location AN
RTO N
— Local optimization
Then bottom-up design of control system(dynamics): (howr) oV
————— - - 1
* Step 5: Regulatory control ] ot -
— Control variables to stop “drift” (sensitive temperatures, pressures, ....) MpCor v_l | :
— Inventory control radiating around TPM Control : swervsoryconwal | |
Finally: Make link between “top-down” and “bottom up” | = 1oy
“« . ) 2
* Step 6: “Advanced/supervisory control | 447\ :
 Control economic CVs: Active constraints and self-optimizing variables o o | — cont:ol |
* Look after variables in regulatory layer below (e.g., avoid saturation) | || seconds) '
e Step 7: Real-time optimization (Do we need it?) = !
MVs

S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).



Conclusion

* Move optimization into the control layer by selecting good CVs
* CV = Active constraints
Unconstrained degrees of freedom:

* CV = Self-optimizing variables
* CV = Gradients

CV = controlled varable
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