
Part 2. Decomposition and optimal operation

• Hierarchical decomposition. Control 
layers.

• Design of overall control system for 
economic process control

• CV selection



Optimal operation and control of process

• Given process plant 
• Want to Maximize profit P => Minimize economic cost J$=-P [$/s]

• J$ = pF F + pQ Q – PpP = cost feed + cost energy – value products 
• Excluding fixed costs (capital costs, personell costs, etc)

• Subject to satisfying constraints on
• Products (quality)
• Inputs (max, min)
• States = Internal process variables (pressures, levels, etc)

• Safety
• Environment
• Equipment degradation

• Degrees of freedom = manipulated variables (MVs) = inputs u



Economic motivation for better control: Squeeze
and shift rule

y



Practical operation: Hierarchical (cascade) structure
based on time scale separation

Manager

Process engineer

Operator/RTO

Operator/Advanced regulatory control (ARC)/MPC

PID-control
May include some
ratio/feedforward and cascade control

u = valves

NOTE: Control system is
decomposed both
- Hierarhically (in time)
- Horizontally (in space)

Status industry:
• RTO is rarely used.
• MPC is used in the petrochemical

and refining industry, but in 
general it is much less common
than was expected when MPC 
«took off» around 1990

• ARC is common
• Manual control still common…
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Two fundamental ways of decomposing the
controller

• Vertical (hierarchical; 
cascade)

• Based on time scale 
separation

• Decision: Selection of CVs 
that connect layers

• Horizontal 
(decentralized)

• Usually based on 
distance

• Decision: Pairing of MVs 
and CVs within layers

CV1

CV2

CV = controlled variable
MV = manipulated variable 6



Main objectives operation

ARE THESE OBJECTIVES CONFLICTING?
IS THERE ANY LOSS IN ECONOMICS?

• Usually NOT 
– Different time scales

• Stabilization fast time scale
– Stabilization doesn’t “use up” any degrees of freedom

• Reference value (setpoint) available for layer above
• But it “uses up” part of the time window 

1. Economics: Implementation of acceptable (near-optimal) operation

2. Regulation: Stable operation around given setpoint 



Hierarchical structure: Degrees of freedom 
unchanged
• No degrees of freedom lost as setpoints  y2s replace inputs u as new 

degrees of freedom for control of y1

GCPID
y2s u

y2

y1

u=Original DOFy2s=New DOF

Cascade control:



Systematic procedure for economic process control
Start “top-down” with economics (steady state): 
• Step 1: Define operational objectives (J) and constraints
• Step 2: Optimize steady-state operation
• Step 3: Decide what to control (CVs) 

– Step 3A: Identify active constraints = primary CV1. 
– Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H) 

• Step 4: Where do we set the throughput? TPM location 

Then bottom-up design of control system (dynamics):
• Step 5: Regulatory control 

– Control variables to stop “drift” (sensitive temperatures, pressures, ....) 
– Inventory control radiating around TPM

Finally: Make link between “top-down” and “bottom up” 
• Step 6: “Advanced/supervisory control” 

• Control economic CVs: Active constraints and self-optimizing variables 
• Look after variables in regulatory layer below (e.g., avoid saturation)

• Step 7: Real-time optimization (Do we need it?)
S. Skogestad, ``Control structure design for complete chemical plants'', 
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). 

CV1

CV2

Process

MVs

RTO



Step 1. Define optimal operation (economics)
              Usually steady state

Minimize cost J = J(u,x,d)
subject to:
 Model equations:  f(u,x,d) = 0
 Operational constraints:    g(u,x,d) < 0

– u = degrees of freedom
– x = states (internal variables)

– d = disturbances

J = cost feed + cost energy – value of products

J

uopt

Jopt

Typical cost function in process control:



(a) Identify degrees of freedom 
(b) Optimize for expected disturbances

• Need good model, usually steady-state is OK
• Optimization is time consuming! But it is offline
• Main goal: Identify ACTIVE CONSTRAINTS
• A good engineer can often guess the active

constraints

Step 2.  Optimize J

uopt

Jopt

constraint



Step 3.  Decide what to control (Economic CV1=Hy)

“Move optimization into the control 
layer by selecting the right CV1” 

(Morari et al., 1980): “We want to find a function c of the process 
variables which when held constant, leads automatically to the 
optimal adjustments of the manipulated variables, and with it, the 
optimal operating conditions.”

Economic CV1:
1. Control active constraints
2. Control Self-optimizing variables
• Look for a variable c that can be kept constant

Optimizer 
(RTO)

PROCESS

Supervisory 
controller 
(MPC)

Regulatory 
controller 
(PID) H2 H

y

ny

d

Stabilized process

Physical
inputs (valves)

Optimally constant valves
Always active constraints CV1

s CV1

CV2
s CV2



Sigurd’s rules for CV selection

1. Always control active constraints! (almost always)
2. Purity constraint on expensive product always active (no overpurification): 

(a) "Avoid product give away" (e.g., sell water as expensive product) 
(b) Save energy (costs energy to overpurify) 

Unconstrained optimum: 
3. Look for “self-optimizing” variables. They should

• Be sensitive to the MV 
• have close-to-constant optimal value

4. NEVER try to control a variable that reaches max or min at the optimum
• In particular, never try to control directly the cost J
• Assume we want to minimize J (e.g., J = V = energy) - and we make the stupid choice os 

selecting CV = V  = J 
• Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)
• and setting J > Jmin: Forces us to be nonoptimal (which may require strange operation) 



The less obvious case: Unconstrained optimum

• u = unconstrained MV
• What to control? y=CV=?

J

uopt

Jopt

2. Control self-optimizing variables



• Cost to be minimized, J=T
• One degree of freedom (u=power)
• What should we control?

Example: Optimal operation of runner



1. Optimal operation of Sprinter

• 100m. J=T
• Active constraint control:

• Maximum speed (”no thinking required”)
• CV = power (at max)

1. Control active constraints



• 40 km. J=T
• What should we control? CV=?
• Unconstrained optimum

2. Optimal operation of Marathon runner

u=power

J=T

uopt

2. Control self-optimizing variables



• Any self-optimizing variable (to control at 
constant setpoint)?

• c1 = distance to leader of race
• c2 = speed
• c3 = heart rate
• c4 = level of lactate in muscles

Marathon runner (40 km)

2. Control self-optimizing variables



Conclusion Marathon runner

CV1 = heart rate

select one measurement

• CV = heart rate is good “self-optimizing” variable
• Simple and robust implementation
• Disturbances are indirectly handled by keeping a constant heart rate
• May have infrequent adjustment of setpoint (cs)

c=heart rate

J=T

copt

2. Control self-optimizing variables



The ideal “self-optimizing” variable is the gradient, Ju
c = ∂ J/∂ u = Ju

• Keep gradient at zero for all disturbances (c = Ju=0)

Unconstrained degrees of freedom

u

cost J

Ju=0
Ju<0

Ju<0

uopt

Ju 0

Problem: Usually no measurement of gradient



H

Ideal: c = Ju
In practise, use available measurements: c = H y. Task: Select H!

Unconstrained degrees of freedom



• Combinations of measurements, c= Hy

Nullspace method for H (Alstad): 

 HF=0 where F=dyopt/dd

• Proof. Appendix B in: Jäschke and Skogestad, ”NCO  tracking  and  self-optimizing  control  in  the  context  of  real-
time  optimization”, Journal of Process Control, 1407-1416 (2011)

Unconstrained degrees of freedom

Proof: yopt = F d
            copt = H yopt = HF d 



Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y1 = hr [beat/min], y2 = v [m/s]
c = Hy, H = [h1 h2]]

F = dyopt/dd = [0.25  -0.2]’
HF = 0  -> h1 f1 + h2 f2 = 0.25 h1 – 0.2 h2 = 0
Choose h1 = 1 -> h2 = 0.25/0.2 = 1.25

Conclusion: c = hr + 1.25 v
Control c = constant -> hr increases when v decreases (OK uphill!)

Unconstrained degrees of freedom



Step 4: Inventory control and TPM
(later!)



Step 5: Design of regulatory control layer

Usually single-loop PID controllers
Choice of CVs (CV2):

• CV2 = «drifting variables» 
• Levels, pressures
• Some temperatures

• CV2 may also include economic variables (CV1) that need to be controlled on a fast time scale
• Hard constraints

ProcessMV CV



MV-CV Pairing. Two main pairing rules:
1. “Pair-close rule” 

• The MV should have a large, fast, and direct effect on the CV. 

2. “Input saturation rule”
• Pair a MV that may saturate with a CV that can be given up (when the MV saturates) 

3. “ RGA-rule”
• Avoid pairing on negative steady-state RGA-element. Otherwise, the loop gain may

change sign (for example, if the input saturates)  and we get instability with integral 
action in the controller. 

Process

MV=u y=CV

d

Single-loop PID control

Additional rule for interactive systems:



Step 6: Design of Supervisory layer

Alternative implementations:
1. Model predictive control (MPC)
2. Advanced regulatorty control (ARC)

• PID, selectors, etc.



Academia: (E)MPC

• MPC 
• General approach, but we need a dynamic model

• MPC  is usually based on experimental model 
• and implemented after some time of operation

• Not all problems are easily formulated using MPC



Alternative simpler solutions to MPC

• Would like: Feedback solutions that can be implemented without a detailed models

• Machine learning?
• Requires a lot of data
• Can only be implemented after the process has been in operation

• But we have "advanced regulatory control“ (ARC) based on simple control elements 
• Goal: Optimal operation using conventional advanced control
• PID, feedforward, decouplers, selectors, split range control etc.
• Extensively used by industry
• Problem for engineers: Lack of design methods

• Has been around since 1940’s
• But almost completely neglected by academic researchers

• Main fundamental limitation: Based on single-loop (need to choose pairing)



How design ARC system based on simple elements?

• Main topic of this workshop

Advanced regulatory control (ARC) = Classical APC = Advanced PID contol

• Industrial literature (e.g., Shinskey). 
Many nice ideas. But not systematic. Difficult to understand reasoning

• Academia:  Little work

APC = Advanced process control



Step 7: Do we really need RTO?

• Often not!
• We can usually measure the constraints
• From this we can identify the active constraints

• Example: Assume it’s optimal with max. reactor temperature
• No need for complex model with energy balance to find the optimal cooling
• Just use a PI-controller 

• CV = reactor temperature (with setpoint=max)
• MV = cooling

• And for the remaining unconstrained variables
• Look for good variables to control (where optimal setpoint changes little)
• «self-optimizing» variables

RTO = real-time optimization



Summary: Systematic procedure for economic process control
Start “top-down” with economics (steady state): 
• Step 1: Define operational objectives (J) and constraints
• Step 2: Optimize steady-state operation
• Step 3: Decide what to control (CVs) 

– Step 3A: Identify active constraints = primary CV1. 
– Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H) 

• Step 4: Where do we set the throughput? TPM location 

Then bottom-up design of control system(dynamics):
• Step 5: Regulatory control 

– Control variables to stop “drift” (sensitive temperatures, pressures, ....) 
– Inventory control radiating around TPM

Finally: Make link between “top-down” and “bottom up” 
• Step 6: “Advanced/supervisory control” 

• Control economic CVs: Active constraints and self-optimizing variables 
• Look after variables in regulatory layer below (e.g., avoid saturation)

• Step 7: Real-time optimization (Do we need it?)

S. Skogestad, ``Control structure design for complete chemical plants'', 
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). 

CV1

CV2

Process

MVs

RTO



Conclusion

• Move optimization into the control layer by selecting good CVs

• CV = Active constraints

Unconstrained degrees of freedom:
• CV = Self-optimizing variables
• CV = Gradients

CV = controlled varable
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