Part 1

Notation

Introduction to advanced regulatory
control (ARC)

* The three main inventions of process control
PID control
Scaling of variables (0-100%)
Feedforward control



Operation hiearchy

What is the difference between control and optimization?

Control layers keep operation at setpoints

J=(y—vy)?
Degrees of freedom may be valve positions (z) or setpoints to
other loops (CV2, — cascade control)

Optimization layers minimize economic cost

Js=pg F+paQ—ppP [$/s]
Pegrees of freedom may be setpoints (y, = CV1,) for control
ayer
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Figure 4: Decomposition of “overall control system” for optimal operation in typical process
plant. This involves a vertical (hierarchical) decomposition Richalet et al.| (1978) into deci-
sion layers based on time scale separation, and a horizontal decomposition into decentralized
blocks /controllers, often based on physical distance. There is also feedback of measurements
(y,w, CV1, CV2) (possibly estimates) from the process to the various layers and blocks but
this is not shown in the figure. This paper considers the three lowest layers, with focus on the
supervisory control layer.

CV1 = Economic controlled variables

CV2 = Regulatory /stabilizing controlled variables

RTO = Real-time optimization

MPC = Model predictive control

ARC = Advanced regulatory control

PID = Proportional-Integral-Derivative




«Advanced» control

 This is a relative term

e Usually used for anything than comes in addition to (or in top of)
basic PID loops

* Main options
» Standard «Advanced regulatory control» (ARC) elements
e Cascade, ratio
* Feedforward, split range control, selectors, VPC
* This option is preferred if it gives acceptable performance and it’s not too complicated
* Model predictive control (MPC)

* Requires a lot more effort to implement
* Can have large benefits «predictive» feedforward control (+ interactive process)



NOTATION and BLOCK DIAGRAMS

lrﬁf
CV, = ys e I - } MV =u | b I Y
> {_8)_> - ’rocess >
‘ =
CV =

® [ Measure-
= Y l ment
I n

Figure 3: Block diagram of common “one degree-of-freedom” negative feedback control system.

u = process input (adjustable) = manipulated variable (MV) = controller output)
d = disturbance (non-adjustable)
y = process output (with setpoint y,) = controlled variable (CV) (controller input)

w = extra measured process variable (state x, y,)

Block diagrams: All lines are signals (information)



Advanced regulatory control
(ARC)

Uses Flowsheets rather than Block diagrams




Feedback control

Flowsheet (P&ID) of feedback control
Example: Level control with given outflow)

Inflow (u) |
l‘>f<“ l - Hs
: H Y
.@ Solid lines: mass flow (streams) ———
. Dashed lines: signals (control) - -----
P s e
Outflow (d)

CLASSIFICATION OF VARIABLES FOR CONTROL (MV, CV, DV):

INPUT (u, MV): INFLOW
OUTPUT (y, CV): LEVEL
DISTURBANCE (d, DV): OUTFLOW

MV = manipulated vartiable (input u)
CV = controlled variable (output y)
DV = disturbance variable (d)



Feedback control

Level control when inflow is given
(alternative input/output-pairing)

Inflow (d) i H
| ! S
e
s
Outflow (u)

CLASSIFICATION OF VARIABLES FOR CONTROL (MV, CV, DV):

INPUT (u, MV): OUTFLOW (Input for control!)
OUTPUT (y, CV): LEVEL
DISTURBANCE (d, DV): INFLOW



QUIZ
What are the three most important inventions of process
control?

* Hint 1: According to Sigurd Skogestad
* Hint 2: All were in use around 1940

SOLUTION

1. PID controller, in particular, I-action

2. Cascade control

3. Ratio control (special case of feedforward which needs no explicit model)

Which one is the oldest?



u — Y
—» Process

Invention 2. Cascade control —,

yl=primary output (given setpoint)
y2=secondary output (adjustable setpoint)

Idea: make use of extra “local” output measurement (y,)
Implementation: Controller (“master”) gives setpoint to another controller (“slave”)

* Without cascade: “Master” controller directly adjusts u to control primary outputy,)
With cascade: Local “slave” controller (fast) uses u to control “extra”/fast measurement (y,). *
“Master” (slow) controller adjusts setpoint y,..

Example: Flow controller on valve (very common!)
y, = level Hin tank
u = valve position (z)
y, = flowrate q through valve

WITHOUT CASCADE WITH CASCADE
flow in ! flow in !
| : HS Hs
e e
- MV=z . MV=y,.=q,
| i valve position @ Y>=Q
> — measured
lI> Q » l\*l/lu z 't flow
flow out 5w out |

*Comment: Another approach that uses extra measurements to improve control is «Full state feedback».



Block diagram of cascade control

master

—

d= d
slave l \

Ch
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MV, = w, ®
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cva =u]
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flow in

flow out

y=y,=H (measured level)

u=z (valve position)

w =Yy, =q (measured outflow)
C,=LC  (P-controller)

C,=FC (l-controller)

G, =k'/s (levelis integrating)

G, = valve model (nonlinear, static)
d, = downstream pressure

d, = inflow



Cascade control

What are the benefits of adding a flow controller
(slave=inner cascade)?

qS w
¥,
ﬂ w i/p
Extra measurement y,= q ~— q
PV () ‘ :
p1 [> 2l > > 2
FUT4AA cY

Flow rate: ¢ = C, f(2)4/ % [m? /s]

1. Fast local control: Eliminates effect of disturbances in p, and p,
(FC reacts faster than outer level loop)

‘ 2. Counteracts nonlinearity in valve, f(z) 1 0\& i
. With fast flow control we can assumeq=q,  f(2) \\Qeo‘“ ;

0 1
(valve opening)

o
Ny



Shinskey (1967)

The principal advantages of cascade control are these:
1. Disturbances arising within the secondary Iomp are corrected b}? the

\ 4

secondary controller before they can influence the primary variable.

2. Phase lag existing in the secondary part of the process is reduced
measurably by the secondary loop. This improves the speed of response
of the primary loop.

3. Gain variations in the secondary part of the process are overcome

\ 4

within its own loop.
4. The secondar}f loop permits an exact manipulation of the flow of
mass or energy b}r the primary controller.



Time scale separation is needed for cascade
control to work well

* Inner loop (slave) should be at least 4 times™ faster than the outer
loop (master)

* This is to make the two loops (and tuning) independent.

* Otherwise, the slave and master loops may start interacting

* The fast slave loop is able to correct for local disturbances, but the outer loop does not
«know» this and if it’s too fast it may start «fighting» with the slave loop.

e Often recommend 10 times faster, ¢ = zﬂ = 10.
c2
* A high o 1s robust to gain variations (in both inner and outer loop)

* The reason for the upper value (c =10) is to avoid that control gets too slow, especially if we have many layers

* Shinskey (Controlling multivariable processes, ISA, 1981, p.12)



Time-scale separation

Response of linear first-order system (with time constant 1)

Standard form¥*: T% = —y + ku,.

Initially at rest (steady state): (0) = yo. u G(s) = - y
’ 7541

Make stepinuatt=0: Au

Block diagram with transfer function

. . _ —t/T for first-order process
Solution: y(t) = (1-e kA
y(t) = yo + (AN
Ay(t=o00)
p Initial slope crosses final value at t = T (time constant) ,
y (o) " ——~———— t/r 1—e %" Value Comment
/i e 98 99%
| e 95% 0 1-e'= 0
. 88% 0.1 1—e0l— 0005
iy 05 1—e = 0303
/", K\‘EE‘” of change 1 l—e 1= 0.632 63% of change is reached after time t = 7
e a 9 2 l—e2= 0.865
."{}f S It _ — 3 1—e¢ 4= 0.950
ff 15'fl{ ) AY(t oo) kAu 1 1—e*= 0.982 98% of change is reached after time { = 47
/ | 5 1—e 5= 0993
y (0) o [ | | | | x l—e™= 1
0] T 2t 3t 4t 5t time

Convergence rate (of inner loop):

* 63% after 1t

* 98% after 4t (recommended lower limit)
* To be safe (process changes): 10 T




Invention 3. Ratio control

Example: Process with two feeds d=q, and u=q,, where ratio should be constant.

Use multiplication block (x):

(u/d)s=(02/q4)s

(desired flow ratio)

d=qy _ I
(measured (MV: manipulated variable)

flow
disturbance)



Jsually: Combine ratio (feedforward) with
feedback

Example cake baking: Use recipe (ratio control = feedforward),
but a good cook adjusts the ratio to get desired result (feedback)

“——

G

1,(



EXAMPLE: RATIO CONTROL FOR MIXING PROCESS

q1,m q2,s
g4 [Mm3/s]
C, [mol/m3] doum C,=0
Concentrate ” l ” e
____________Ei; _________________ }H@
Ch C ) '
g [m3/s]
1 N ¢ [mol/mg3]

Diluted product

Later: Will see that this is a special case of input transformation:
Transformed input (as seen from feedback controller CC) is v = (g,/q,),



he three main inventions of process control can

only indirectly and with effort be implemented
with MPC

1. Integral action with MPC: Need to add artificial integrating disturbance

in estimator
* ARC: Just add an integrator in the controller (use PID)

2. Cascade control with MPC: Need model for how u and d affect y, and y,.

* ARC: Just need to know that control of y, indirectly improves control of y,

3. Ratio control with MPC: Need model for how u and d affect property y
* ARC: Just need the insight that it is good for control of y to keep the ratio R=u/d constant

Because of this, MPC should be on top of a regulatory control layer with the setpoints for y, and R as MVs.



PID control

ur
rm——
de(t K. [t
u(t) = Kee(t) + K.mp 2 + C/ e(t")dt" +uqg
N ———
bias=b

K. = controller gain
77 = integral time [s, min]

Tp = derivative time s, min]

 «You need a PhD to tune a PID»
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Internal Model Control. 4. PID Controller Design

Daniel E. Rivera, Manfred Morarl,* and Sigurd Skogestad
Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125

For a large number of single input-single output (SISO) modeils typically used in the process industries, the Internal
Model Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
closed-loop bandwidth. On-line adjustments are therefore much simpler than for general PID controllers. As a
speclal case, PI- and PID-tuning rules for systems modeled by a first-order lag with dead time are derived
analytically. The superiority of these rules in terms of both closed-loop performance and robustness is demonstrated.



SIMC tuning rule = Generalized Lambda-tuning



Probably the best simple PID tuning rules in the world
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Abstract

The aim of this paper is to present analytic tuning rules which are as simple as possible and
still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules
of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance.
The integral term has been modified to improve disturbance rejection for integrating processes.
Furthermore, rather than deriving separate rules for each transfer function model, we start by
approximating the process by a first-order plus delay processes (using the “half method” ), and
then use a single tuning rule. This is much simpler and appears to give controller tunings with
comparable performance. All the tunings are derived analytically and are thus very suitable for
teaching.

1 Introduction

Hundreds, if not thousands, of papers have been written on tuning of PID controllers, and one must
question the need for another one. The first justification is that PID controller is by far the most
widely used control algorithm in the process industry, and that improvements in tuning of PID
controllers will have a significant practical impact. The second justification is that the simple rules
and insights presented in this paper may contribute to a significantly improved understanding into
how the controller should be tuned.
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Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple and still result in good closed-loop behavior.
The starting point has been the IMC-PID tuning rules that have achieved widespread industrial acceptance. The rule for the integral
term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for
each transfer function model, there is a just a single tuning rule for a first-order or second-order time delay model. Simple analytic rules
for model reduction are presented to obtain a model in this form, including the “half rule” for obtaining the effective time delay.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Process control; Feedback control; IMC; Pl-control; Integrating process: Time delay

1. Introduction

Although the proportional-integral-derivative (PID)
controller has only three parameters, it is not easy,
without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will
usually show that a large number of the PID controllers
are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this
material, where there are several objectives:

1. The tuning rules should be well motivated, and
preferably model-based and analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of
processes.

Step 2. Derive model-based controller settings. Pl-set-
tings result if we start from a first-order model, whereas
PID-settings result from a second-order model.

There has been previous work along these lines,
including the classical paper by Ziegler amd Nichols [1],
the IMC PID-tuning paper by Rivera et al. [2], and the
closely related direct synthesis tuning rules in the book
by Smith and Corripio [3]. The Ziegler—Nichols settings
result in a very good disturbance response for integrat-
ing processes, but are otherwise known to result in
rather aggressive settings [4,5], and also give poor per-
formance for processes with a dominant delay. On the
other hand, the analytically derived IMC-settings in [2]
are known to result in a poor disturbance response for
integrating processes (e.g., [6,7])., but are robust and



Main idea of SIMC-tuning (and Lambda-tuning)

CV, = < Dy(=)
I RESULTING OUTPUT y |
_95 X
e _ -\li'ﬂfurﬂ‘- "Toss
) =k R o [ w STEPINNPUTY
. . 0.4f EAU |
° TC — d681red Closed_loop tlme ConStant — 7\‘ T : ?;:[;?jralgéons‘rant-Gﬂ/b of final change
] . . 02 E k = A y(o0)/A u : Steady-state gain
* The ideal «loop shape» for setpoints is ot
GC=1/1_s (integrator). e
* Gives setpoint response Y _ GC __1 Step response integrating process
Vs 1+GC TcS+1
_ N
[ ) (t)
Find C by algebra Slope, K — <A1 /

1
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Anti windup is needed for [-action.
Recommended «tracking» implementation:

Actuator
u [_/—: i
{5 )
er =11 —u

Figure 7: Recommended PID-controller implementation with anti-windup using tracking of
the actual controller output (i), and without D-action on the setpoint. (Astrom & Higglund|
1988]).

| = integral = % in Laplace domain

% = derivative = s in Laplace domain

K¢ = controller gain

77 = integral time [s, min]

Tp = derivative time [s, min]

7r = tracking time constant for anti-windup [s, min]

T = tracking time (tuning parameter for anti windup)
Common choice: 1. = 1, (integral time) — same as «external reset» - which is implemented in industrial systems



SIMC PID tuning rule | 65

o e
1 1

K.=——
k! 0

77 = min (7, 4(z)+ 6))

Tp=T1)

Only one tuning parameter:
Closed-loop time constant:

T, =6

(gives Gain Margin>3)



SIMC PID tuning rule

1 1
K.=——
I i,
T = min (7, AT+ 6))
Ip — D

Only one tuning parameter:
Closed-loop time constant:

T, =6

(gives Gain Margin>3)

d
—0s

MV = u y e
—_— rocess G = k =

=The «ideal» controller for an integrating process (t
=00) is a P-controller

 But need integral action for disturbances, t; = 4(t. + 6)
* Level controller

=The «ideal» controller for a delay process (1=0) is a
pure |-controller.

* So use small integral time

* Optimal for pure delay process: t,=0/3

* Flow controller

* Intermediate cases, select 7; = 7 (Lambda—tuning)



Normal PID:

uy
e

Anti-windup ..more details.. | . o770

Appendiz C.6.1. Simple anti-windup schemes

Many industrial anti-windup schemes exist. The simplest is to limit u in
to be within specified bounds (by updating wug), or to limit the bias b =
ug + 1y to be within specified bounds (also by updating ug). These two options
have the advantage that one does not need a measurement of the actual applied

input value (@), and for most loops these simple anti-windup approaches suffice
(Smith| 2010) (page 21).

Appendiz C.6.2. Anti-windup using external reset

A better and also common anti-windup scheme is “external reset” (e.g.,

‘Wade (2004) Smith| (2010)) which originates from Shinskey. This scheme is

found in most industrial control systems and it uses the “trick” of realizing

Appendiz C.6.3. Recommended: Anti-windup with tracking

The “external reset” solution is a special case of the further improved “track-

ing” scheme in Figure |7 which is recommended by ‘Astrém & Héi.gglund‘ deSSD.

The tracking scheme (sometimes referred to as the “back-calculation” scheme

dAstr'dm & HﬁgglundL ‘2006[)) has a very useful additional design parameter,

namely the tracking time constant 7p, which tells how fast the controller out-
put u tracks the actual applied value @. This makes it possible to handle more
general cases in a good way, e.g., switching of CVs., In the simpler “exter-
nal reset” scheme, the tracking time is “by design” equal to the integral time

(t0 =11) dAst.rEjm & HéigglundL ‘IQBSD.

dt T Jt,

(. "

bias=b

Actuator

TR () Bl b

(1)
)

Figure 7: Recommended PID-controller implementation with anti-windup using tracking of
the actual controller output (@), and without D-action on the setpoint. (]Astrt')m & Hagglund

1988).

Bl
~

With AW:

u;)&t)
] g t d R ’ N -:
u(t) = K.e(t)+ KCTD@ + / (hce(tj + leT(t)) dt +uq (C.14)
dt i=ty \ TI T
bias=b

to choose the tracking time equal to the integral time (70 = 77). With this value,
we get at steady state that the output from the integral part (ur) is such that the

bias b is equal to the constraint valud, b = wy;y,. To derive this, note that with



MV-MV switching

Anti-windup with cascade control

Outer loop

Inner loop

{'Irg
valve

u u (- YI1Y2 (.
D

| I
- T e 9
~ () :
I o
femmm= = ' tracks 1
— utracksii | e o
| 71 | e Vs tracks y, 7
when valve ] —
saturates* '

Figure 25: Cascade control with anti windup using the industrial switching approach (Leal

et al.||2021).

* Normally, it’s opposite: vy, is tracking y,..




Filters for setpoints and measurements

Two degrees-of-freedom controller

T TTTTTTTTTTTTTTT TSI mT T \ ld
]
. 1
1 1
CV, =y, Es e ) Mv=u ] v
—>| setpomt :{'g} > C - ?l Process >
:
1
]
1
]

filter 1

Measure-
i —
ment

e

-

=

2~

EE

E 3 cl
|

L

Fig. A.41. Two degrees-of-freedom control system with setpoint filter F, and measurement filter F. All blocks are possibly nonlinear.

* Measurement filter F. Typical use first-order F=1/(ts+1).
. . T
* Filter time constant, 7 < EC (preferably much smaller to avoid introducing effective delay in loop)

* Setpoint filter F.. Typical use lead-lag.
ptis+1
TiS+1

« B-factor on P-action for setpoints corresponds to: F;(s) =



Scaling of variables

Scale input u and output y to be 0-100%
e u =original physical units, u’ = scaled units (0-100%)

I
U —U min

u = -100%

Advantages:
* Controller gain is dimensionless

* Can control actuator (valve) to max and min position
u=0%: Valve closed
u=100%: Valve fully open

Example level control (often poorly tuned!)

* Model: dM/dt=F —F, ., [kg/s]
* Scaling: u=F/Fmax- 100%
y = (M/Mmax) - 100%
* Scaled model: dy/dt =k’ (u;,, — u,,),
=1/t, t=M_  /F._ = tank residence time

max max

* P-control. Averaging level control, K.= 2 %/%
* Add I-action, but avoid slow cycling for integratring process (SIMC): K. 1, =>4 1

Fin [kg/s] —

Four [kg/s]

J— 0




Feedforward control: Measure disturbance (d)

dm gdm d
' Jd Process
Cra
e
Ys + - _lu q 1_r\+ hy'
- ' 7 g c = Feedback controller
Ym Crq = Feedforward controller
Om

Get:y = (gCrqg 9am+9a) d

ldeal y=0 = crg = —9'94 Gam * (invert process model)

Usually: Add feedforward when feedback alone is not good enough,
for example, because of measurement delay in g,

Main problem with feedforward:
Sensitive to model error



Main problem feedforward: Sensitive to model error

* “If process gain increases by more than a
factor 2, then ideal feedforward control is
worse than no control”

* Why? Overcompensate in wrong direction

* Proof:y=gu+g,d where u=c.,g, d

* Response with feedforward controller:
Y = (8 Crr Bam * 84) d |

* Ideal: Use Cepigeal = - 84/8 Bym- Givesy = (-g4+84) d=0d

* But note that g is C 4, is @ model

* Real: If the real process gain (g) has increased by a factor x then
y=(-Xgyq +8y) d=(x+1)g,d
For x>2: |-x+1|>1 (worse than no control)....



Examples. Krister



Discussion: What is best? Feedback or
feedforward?




Example: Feedback vs. feedforward for setpoint control of uncertain process

MV= u_[ G | v
J

Process Y v, " . " [ y
—{ Cry ;® : . ;L Process J—'

y=G(s) u N meeeememammmemmamaaa-
Figure A.42: Block diagram of feedforward control system with linear combination of feedfor-
ke . ward from measured disturbance (d) and setpoint (ys) (E14).
G(s) = E=3.7=6 (B2
Ts + 1 Feedforward solution. We use feedforward from the setpoint
(Fig. A.42):
| 1 u=~Cr,(s)y;
Desired response : y = m—ry TYs = T3 n TYs where we choose
— 1 s+ 1 1 6s5s+1
Cp,(s) = Gis)™' = — = - B.3
() r.s+ 1 () kr.s+1 34s+1 (B-3)

The output response becomes as desired,

y= : Vs (B.4)

ds + 1




Example: Feedback vs. feedforward for setpoint control of uncertain process

ld
CV, = E!,l'a:@ € l\_JICI MV = u » E]_L

MV=wu [ , G _ 1 v
roCess J T » Measure-
CV =y, ® i ment
y = G(s) u k

Figure 3: Block diagram of common “one degree-of-freedom™ negative feedback control system.

G{S) = . k=3, 7=6 (B.2) Feedback solution. We use a one degree-of-freedom feedback con-
Ts+1 troller (Fig. 3) acting on the error signal e = y, — »:

u=C(s)y; —y)

1 1 We choose a PI-controller with K. = 0.5 and r; = r = 6 (using the SIMC
Y= —_p—ry lys = 1s o lys Pl-rule with [r, = 4} see Appendix C.2):
c

Desired response :

C(s) =K, (1 + L) —0s59*] (B.5)
T[S bs

Note that we have selected r; = v = 6, which implies that the zero

dynamics in the PI-controller C, cancel the pole dynamics of the process

G. The closed-loop response becomes as desired:

1 1
= y
r(.5+]y'T 4s+17°

(B.6)

Proof. y = T(s)y, where T = L/{l1+ L)and L = GC = kK_/(1;s5) =

_0325/s
0.25/5. S0 T = {50 = 7.




Thus, we have two fundamentally different solutions that give the
same nominal h‘espﬂnse, both in terms of the process input u(r) (not
shown) and the process output y(¢) (black solid curve in Fig. B.43).

* But what happens if the process changes?

* Consider a gain change so that the model is wrong
* Process gain from k=3 to k’'=4.5



=== Setpoint
== N ominal feedback = nominal feedforward |
== Feedforward with gain error

= Feedback with gain error

====Feedback with gain error and delay

0 5 10 15
Time [s]

Figure B.43: Setpoint response for process (B.2) demonstrating the advantage of feedback
control for handling model error.

Gain error (feedback and feedforward): From k=3 to k’=4.5
Time delay (feedback): From 8 = 0to 6 = 1.5
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