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1. Basis: Difference in boiling points

(volatility)

Liquid

x

y
Gas (vapor)

Relative volatility:

Example. iso-pentane (L) – pentane (H). 

Boiling points: 28 oC(L) and 36.2 oC(H)

L – light component
H – heavy component

I.J. Halvorsen and S. Skogestad, ``Distillation Theory'', In: Encyclopedia of Separation Science. Ian D. Wilson, Academic Press, 2000, pp. 1117-1134.



8

1545 1593

Batch distillation with no reflux (-> N=1) 

2020
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Continuous distillation with reflux (L)

V

L

stage 1
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When use distillation?

• Liquid mixtures with difference in boiling point

• Unbeatable for high-purity separations
• Essentially same energy usage independent of purity!

• Number of stages increases only as log of impurity!
Fenske: Nmin = ln S / ln α

• Well suited for scale-up
» Columns with diameters over 15 m

• Examples of unlikely uses of distillation: 
» High-purity silicon for computers (via SiCl3 distillation)

» Water – heavy-water separation (boiling point difference only 
1.4oC)

Close-boiling mixture (α close to 1)
• Need a lot of energy (heat) 
• and many stages
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«Distillation is an inefficient process»

• This is a myth!

• By itself, distillation is an efficient process

– Typically, thermodynamic efficiency >50% 

• It’s the heat integration that may be 

inefficient.

– Yes, it can use a lot of energy (Qr=heat), but it 

provides ~ the same energy as cooling (Qc) at 

a lower temperature
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• Separation into pure components 

• Plot is for liquid feed, binary 
mixture

Thermodynamic efficiency of distillation

𝛼 = 10 𝛼 = 1

z = fraction light component in feed

𝜂

α = relative volatility
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Plot from I.J. Halvorsen.
Ref: S. Skogestad, Chemical and Energy process engineering, CRC Press, 2009, pp. 224
Ref: C.J. King, Separation processes, McGraw-Hill, 1971, 1980
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2. Simple to model. Equilibrium stage concept

VLE: “Relative volatility model”
Usually most important!
• Activity coefficient (e.g. UNIFAC)
• Or: Equation of state (e.g. SRK, PR)

Mi

VLE = Vapor-Liquid Equlibrium

Francis weir formula:
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2. Simple to model. Equilibrium stage concept

VLE: “Relative volatility model”
Usually most important!
• Activity coefficient (e.g. UNIFAC)
• Or: Equation of state (e.g. SRK, PR)

Mi

Modelling. Adjusting parameters
1. VLE. May need experimental data
2. Stages (N)

• Use steady-state model
• Match steady-state compositions and temperature profiles

• Adjust N to get theoretical stages in each section (also for packed column)
• Tray column: Can use Murphee efficiency. I use bypass on V and/or L

3. Holdup Mi. Match with dynamic data for compositions
• Typical column holdup, ML = ΣMi

Tray column: 10% of column volume
Packed column: 5% of column volume

4. Liquid dynamics: Make step in L and see how long it takes for change to reach bottom

• Francis weir formula: θL ≈ (2/3) ML / L
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3. Dynamics

Example . Propylene-propane (C3-splitter, column D)

Mtot

F
=
σiMi

F
= 111min

N = 110 theoretical stages

ΔTB=5.6K

 = 1.12 (relative volatility at 15 bar) 

Purities: 99.5% propylene (top) and 90% propane (bottom) 

Assume constant molar flows

L/D = 19, D/F = 0.614
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External flow change

Propylene-propane. Simulated composition response. 

Increase reflux 0.4% (L = +0.05,  D=-0.05) with V constant: 
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External flow change.

Propylene-propane. Simulated composition response with detailed model. 

Increase boilup (V: +0.05, D: +0.05) with L constant
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• What happens if we increase both L and V 

at the same time?

• Then D and B are constant

• Internal flow change

V

L
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Internal flow change.

Propylene-propane. Simulated composition response with detailed model. 

Increase both L and V by same amount ( V =  L = +0.05)
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External and Internal Flows

Large effect on composition (large “gain”)

One products get purer – the other less pure

Small effect on composition (small “gain”)

Both products get purer or both less pure

Steady–state composition profiles (column A) 

COMP
COMP

0 0

stage

External flows Internal flows (10X)

 L =  B = -  D = (-0.1, -0.01, 0, 0.01, 0.1)  V= L = (1, 0, -1).     B= D=0

Column A: N=40, α=1.5, xD & xB: 99%, L/D= 5.4 

«ILL-CONDITIONED INTERACTIVE PROCESS». Problem for control? 
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Liquid flow dynamics are essential for 

control

• Liquid flow dynamics ”break” the initial two-way

interaction between top and bottom. 

– Want to close one loop (temperature or composition) with

closed-loop time constant faster than the liquid flow dynamics

S. Skogestad, “Dynamics and control of distillation columns - A tutorial introduction”, Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

http://folk.ntnu.no/skoge/publications/1997/dist_plenary
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Nonlinearity

Li
i

Hi

  X =ln
x

x

Use logarithmic compositions

btm i
i

i top

T -T
X ln

T -T
»

S. Skogestad, ``Dynamics and Control of Distillation Columns - A Critical Survey‘’, IFAC-symposium DYCORD+'92, Maryland, Apr. 27-29, 1992. 
Reprinted in Modeling, Identification and Control, Vol. 18, 177-217, 1997.



S. Skogestad, “Dynamics and control of distillation columns - A tutorial introduction”, Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

With logarithmic compositions

http://folk.ntnu.no/skoge/publications/1997/dist_plenary
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Conclusion dynamics

• Dominant first order response – often close to integrating

from a control point of view

• Liquid flow dynamics decouples the top and bottom on a

short time scale, and make control easier

• Logarithmic transformations linearize the response



4. Optimal operation distillation column

• Dynamic degrees of freedom (with given F):  5 

• Steady state (control levels and pressure): 2 degrees of freedom (e.g. L,V)

• Optimal operation: Minimize cost J subject to satisfying constraints

• Cost to be minimized (economics)

J = - P    where    P= pD D + pB B – pF F – pV V

• Constraints

xD, impurity < max

xB, impurity < max

Column capacity (flooding): V < Vmax, etc.

value products

cost energy (heating+ cooling)

cost feed
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Expected active constraints distillation

• Valueable product: Purity spec. always active
– Avoid product “give-away” 

(“Sell water as methanol”)

– Saves energy 

• Control implications: 
1. Control valueable product at spec.

• Control D at 0.5% water

2. Overpurify other end to reduce loss

• Control B with methanol < 2%

• Overpurifying may not cost much energy (V) if 
enough stages

• If “few” stages: May be optimal to operate at max 
energy (V) to minimize loss of valuable product

valuable 
product
methanol 

+ max. 0.5% 
water

cheap product
(byproduct)
water 
+ max. 2%
methanol

methanol
+ water
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5. Control

S. Skogestad, “The dos and don'ts of distillation columns control”,
Chemical Engineering Research and Design (Trans IChemE, Part A), 85 (A1), 13-23 (2007).

http://folk.ntnu.no/skoge/publications/2007/skogestad_distillation-dos-and-donts_special-issue-of-cherd
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Two objectives for control

Have 5 dynamic degrees of freedom

1. Stabilize (avoid drift)

• Levels (MD, MB, pressure)

• Temperature profile («level of heavy component»)

NOTE: Temperature setpoint can be used as degree of freedom for 

composition control

2. Optimize operations

• Normally control product compositions (xD, xB)
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Issues distillation control

• The “configuration” problem 

(pairings for level and pressure)

– Which are the two remaining 

degrees of freedom? 

• e.g. LV-, DV-, DB- and L/D V/B-

configurations

• The temperature control problem

– Which temperature (if any) should 

be controlled?

• Composition control problem

– Control two, one or no 

compositions?

TCTs TC

L

V
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Stabilize temperature profile (“level of 

heavy component”)

LIGHT

HEAVY

F

D

B

TC

• Temperature sensor should be located at «sensitive» stage (with high gain)
• Typically in middle of top or bottom section
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Which stage? Binary column

slope closely correlated with steady state gain

STAGE

TEMPERATURE PROFILE
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Multicomponent column

Slope NOT correlated with 
steady-state gain

TEMPERATURE PROFILE

Conclusion: Temperature slope alone OK only for binary columns
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Which configuration?

Level control top: Use L or D?

Seems almost impossible to control level with D 
(small range because need D>0)

LC

D (small)
L (large)

VT (large)

FORTUNATELY: 
1. Tight level control is NOT important
2. Fast inner temperature loop gives indirect level control!

Conclusion: Recommend using D (and B) for level control!!
Gives LV-configuration

However, for  large L/D  (>5): 

Would like to use D because L is most effective for composition control
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Conclusion configurations

• Normally use LV-configuration

because it is 

– simplest 

– level tunings do not matter for column 
behavior

– can get smooth variations in product 
rates D and B 

• Usually add temperature loop using L or V
– Especially for difficult separations with 

large L and V

– Gives indirect level control

– Breaks interactions

LV-configuration
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LV-configuration with temperature loop 

and dual composition control

CC

LV

TC

Ts xB

CC xD

• Inner fast T-loop should be in the «important» end 
• The figure above is when bottom composition is most important

• Temperature sensor should be located at «sensitive» stage.

FAST
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Myth of slow control

• Let us get rid of it!!!

Compare manual (“perfect operator”) and automatic control for column A: 

• 40 stages, 

• Binary mixture with 99% purity both ends, 

• relative volatility = 1.5

• L/D = 5.4

– First “one-point” control: Control of top composition only

– Then “two-point” control: Control of both compositions

S. Skogestad, “Dynamics and control of distillation columns - A tutorial introduction”, Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

http://folk.ntnu.no/skoge/publications/1997/dist_plenary
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“Perfect operator”: Steps L directly to 
correct steady-state value 
(from 2.70 to 2.74) 

Disturbance 
in V

Want xD constant

Can adjust reflux L

Myth about slow control

One-point control
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“Perfect operator”: Steps L directly
Feedback control: Simple PI control
Which response is best?

Disturbance 
in V

CC xDS

Myth about slow control

One-point control
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Myth about slow control

One-point control
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Myth about slow control

Two-point control

“Perfect operator”: Steps L and V directly 
Feedback control: 2 PI controllers
Which response is best?

CC xDS: step up

CC xBS: constant

V

L
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Myth about slow control

Two-point control

V

L
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Myth about slow control

Conclusion:

• Experience operator: Fast control impossible

– “takes hours or days before the columns settles”

• BUT, with feedback control the response can be fast!

– Feedback changes the dynamics (eigenvalues)

– Requires continuous “active” control 

• Most columns have a single slow mode (without control)

– Sufficient to close a single loop (typical on temperature) to 

change the dynamics for the entire column
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Advanced control

May also add feedforward control from F (ratio V/F in this case)  

Constraint on pressure drop, DP
Top product valueable, xD

Overpurify bottom

xBmin: Constraint
xB*:Optimal xB (overpurify)

TC
T

DPmax
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Case with valuable bottom product, xB.

Split range control (SRC):
1.  Normally control xB with boilup V

…. But boilup V may reach constraint
2. First let reflux L take over 
3. Then cut back on feedrate F if top reaches constraint

"Systematic Design of Active Constraint Switching Using Classical Advanced Control Structures". A. Reyes-Lua and S. Skogestad, Ind. Eng. Chem. Res. 2020, 59 (6), 2229-2241.

Advanced control….
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Conclusion distillation control

• Not as difficult as often claimed

• LV-configurations recommended 
for most columns

• Use log transformations to 
reduce nonlinearity

• Use composition estimators 
based on temperature 

• Usually: Close temperature loop 
(P-control OK)

• May use MPC if strong 
interactions between loops

CC

LV

Two-point
LV-configuration
with inner T-loop

TC

Ts

xB

CC
xD

S. Skogestad, “The dos and don'ts of distillation columns control”,
Chemical Engineering Research and Design (Trans IChemE, Part A), 85 (A1), 13-23 (2007).

http://folk.ntnu.no/skoge/publications/2007/skogestad_distillation-dos-and-donts_special-issue-of-cherd
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Conclusion

1. Distillation as a separation process
• In spite of claims to the contrary it's an efficient process 

- it's the heat integration that may be inefficient

• Unbeatable for high-purity separations

2. Modelling  
• In principle it's simple  

• Normally use equilibrium stage model

• The thermodynamics (VLE) are the most important 

3. Dynamics
• There is one dominant slow (drifting) mode

• related to the holdup of light and heavy key components inside the column

4. Optimal operation 
• Minimize energy usage (V) and maximize recovery of valuable component (J = pF F – pD D – pB B + pV V)

• subject to satisfying purity specifications

• Always active constraint: Purity of valueable product («avoid give-away»)

5. Control
• Fist: stabilize the column (levels, pressure and one temperature)

• The temperature loop will speed up the slow mode, break interactions and provide indirect level control

• Next: Control active constraints and keep operation close to optimal

• May use MPC, but can usually do OK with advanced single-loop control

https://folk.ntnu.no/skoge/distillation/

https://folk.ntnu.no/skoge/distillation/

