

Distillation modelling and control

Sigurd Skogestad, NTNU

Webinar, Malaysia, April 2021

Sigurd Skogestad

- 1955: Born in Norway
- 1978: MS (Siv.ing.) in chemical engineering at NTNU
- 1979-1983: Worked at Norsk Hydro co. (distillation)
- 1987: PhD from Caltech (supervisor: Manfred Morari)
 - Thesis: "Studies om robust control of distillation columns"
- 1987-present: Professor of chemical engineering at NTNU
 - 42 Phd students graduated (9 with distillation in title of thesis)
- 1999-2009: Head of Department
- 2015- : Director SUBPRO
- 200+ journal publications
- Book: Multivariable Feedback Control (Wiley 1996; 2005)
- Book: Chemical and energy process engineering (CRC Press, 2008)
 - 1989: Ted Peterson Best Paper Award by the CAST division of AIChE
 - 1990: George S. Axelby Outstanding Paper Award by the Control System Society of IEEE
 - 1992: O. Hugo Schuck Best Paper Award by the American Automatic Control Council
 - 2006: Best paper award in Computers and chemical engineering.
 - 2011: Process Automation Hall of Fame (US)
 - 2012: Fellow of American Institute of Chemical Engineers (AIChE)
 - 2014: Fellow of International Federation of Automatic Control (IFAC)
 - 2019: Best paper award at the ESCAPE 2019 Symposium (Eindhoven)
 - 2019: Computing in chemical engineering award from the American Institute of Chemical Engineers

Geiranger fjord

Outline

- 1. Introduction / Distillation as a separation process
- 2. Modelling
- 3. Dynamics
- 4. Optimal operation
- 5. Control

1. Basis: Difference in boiling points (volatility)

Relative volatility: $\alpha = \frac{K_L}{K_H} = \frac{y_L/x_L}{y_H/x_H}$ $\ln \alpha \approx \underbrace{\frac{\Delta H^{vap}}{RT_B}}_{\text{typical:}\approx 9-15} \cdot \underbrace{\frac{\Delta T_B}{T_B}}$

 ΔH^{vap} - avg. heat of vap. at T_B [kJ/mol]

 ΔT_B - boiling point difference [K] T_B - geometric avg. boiling point [K] L – light component H – heavy component

Example. iso-pentane (L) – pentane (H). Boiling points: 28 °C(L) and 36.2 °C(H) $\Delta T_B = 8.2 \text{ K}, \quad \alpha \approx e^{10 \cdot \frac{8.2}{300}} = 1.32$

I.J. Halvorsen and S. Skogestad, ``Distillation Theory'', In: Encyclopedia of Separation Science. Ian D. Wilson, Academic Press, 2000, pp. 1117-1134.

Batch distillation with no reflux (-> N=1)

Abb. 11. Destillationsapparatur mit Kühlung in zwei Rohren, nach [44].

1545

Abb. 13. Destillationsapparatur mit Kühlung in vertikaler Kühlschlange, nach [46].

1593

2020

Continuous distillation with reflux (L)

When use distillation?

- Liquid mixtures with difference in boiling point
- Unbeatable for high-purity separations •
 - Essentially same energy usage independent of purity!

 $\frac{V_{min}}{F} \approx \frac{1}{\alpha - 1} + \frac{D}{F}$

Number of stages increases only as log of and many stages ٠ Fenske: $N_{min} = \ln S / \ln \alpha$

- Close-boiling mixture (α close to 1)
 - Need a lot of energy (heat)

- Well suited for scale-up
 - Columns with diameters over 15 m **》**
- Examples of unlikely uses of distillation:
 - High-purity silicon for computers (via SiCl₃ distillation) **》**
 - Water heavy-water separation (boiling point difference only **》** 1.4°C)

«Distillation is an inefficient process»

- This is a myth!
- By itself, distillation is an efficient process
 - Typically, thermodynamic efficiency >50%
- It's the heat integration that may be inefficient.
 - Yes, it can use a lot of energy (Q_r=heat), but it provides ~ the same energy as cooling (Q_c) at a lower temperature

Thermodynamic efficiency of distillation

$$\eta = \frac{W_s^{id}}{W_{s,carnot}} = \frac{-FRT_0 \sum_{i=1}^{N} z_i \ln z_i}{Q_r T_0 (\frac{1}{T_c} - \frac{1}{T_H})}$$

Separation into pure components

 Plot is for liquid feed, binary mixture

$$\eta = \frac{W_s^{id}}{W_{s,tot}} = \frac{-(z \ln z + (1-z)\ln(1-z))}{(z+\frac{1}{\alpha-1})\ln\alpha}$$

Plot from I.J. Halvorsen.

Ref: S. Skogestad, Chemical and Energy process engineering, CRC Press, 2009, pp. 224 Ref: C.J. King, Separation processes, McGraw-Hill, 1971, 1980

 α = relative volatility

2. Simple to model. Equilibrium stage concept

- (i) Component material balances $\frac{dN_{ij}}{dt} = L_{i+1}x_{i+1,j} + V_{i-1}y_{i-1,j} - L_i x_{i,j} - V_i y_{i,j}$
- (ii) Overall material balance (flow dynamics)

$$\frac{d}{dt}M_i = \frac{d}{dt}(M_{iL} + M_{iV}) = L_{i+1} + V_{i-1} - L_i - V_i$$

(iii) Energy balance

$$\frac{dU_i}{dt} = L_{i+1}h_{L,i+1} + V_{i-1}h_{V,i-1} - L_ih_{Li} - V_ih_{Vi} \quad \text{where} \quad U_i = M_{Li}$$

(iv) Algebraic relations for hydraulics and pressure drop

$$L_i = f_1(M_{Li}, V_i, \Delta p_i); \quad V_i = f_2(M_{Li}, \Delta p_i)$$

(v) Algebraic equations for VLE between phases: $y_i = K(x_i, p, T)$ etc..

VLE = Vapor-Liquid Equibrium

 $u_{Li} + M_{Vi} u_{Li}$

Francis weir formula: $L_i = M_{L_i}^{2/3}$

VLE: "Relative volatility model" Usually most important!

- Activity coefficient (e.g. UNIFAC)
- Or: Equation of state (e.g. SRK, PR)

2. Simple to model. Equilibrium stage concept

- (i) Component material balances $\frac{dN_{ij}}{dt} = L_{i+1}x_{i+1,j} + V_{i-1}y_{i-1,j} - L_ix_{i,j} - V_iy_{i,j}$
- (ii) Overall material balance (flow dynamics)

$$\frac{d}{dt}M_i = \frac{d}{dt}(M_{iL} + M_{iV}) = L_{i+1} + V_{i-1} - L_i - V_i$$

Modelling. Adjusting parameters

- 1. VLE. May need experimental data
- 2. Stages (N)
 - Use steady-state model
 - Match steady-state compositions and temperature profiles
 - Adjust N to get theoretical stages in each section (also for packed column)
 - Tray column: Can use Murphee efficiency. I use bypass on V and/or L
- 3. Holdup Mi. Match with dynamic data for compositions
 - Typical column holdup, M_L = ΣM_i Tray column: 10% of column volume Packed column: 5% of column volume
- 4. Liquid dynamics: Make step in L and see how long it takes for change to reach bottom
 - Francis weir formula: $\theta_L \approx (2/3) M_L / L$

3. Dynamics

Example . Propylene-propane (C3-splitter, column D)

- **4** N = 110 theoretical stages
- $\Delta T_{B} = 5.6 K$
- $\alpha = 1.12$ (relative volatility at 15 bar)
- **4** Purities: 99.5% propylene (top) and 90% propane (bottom)
- **4** Assume constant molar flows

$$L/D = 19, D/F = 0.614$$

$$\frac{4}{F} \quad \frac{M_{tot}}{F} = \frac{\sum_{i} M_{i}}{F} = 111 \text{min}$$

External flow change Propylene-propane. Simulated composition response. Increase reflux 0.4% ($\Delta L = +0.05$, $\Delta D = -0.05$) with V constant:

Increase in L +0.05

External flow change. Propylene-propane. Simulated composition response with detailed model. Increase boilup (V: +0.05, D: +0.05) with L constant

- What happens if we increase both L and V at the same time?
- Then D and B are constant
- Internal flow change

Internal flow change.

Propylene-propane. Simulated composition response with detailed model. Increase both L and V by same amount ($\Delta V = \Delta L = +0.05$)

External and Internal Flows

 $\Delta L = \Delta B = -\Delta D = (-0.1, -0.01, 0, 0.01, 0.1)$

Large effect on composition (large "gain") One products get purer – the other less pure Internal flows (10X)

 Δ V= Δ L = (1, 0, -1). Δ B= Δ D=0

Small effect on composition (small "gain") Both products get purer or both less pure

«ILL-CONDITIONED INTERACTIVE PROCESS». Problem for control?

Liquid flow dynamics are essential for control

- Liquid flow dynamics "break" the initial two-way interaction between top and bottom.
 - Want to close one loop (temperature or composition) with closed-loop time constant faster than the liquid flow dynamics

S. Skogestad, "Dynamics and control of distillation columns - A tutorial introduction", Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

Condenser

Nonlinearity

Use logarithmic compositions

$$X_i = ln \frac{x_{Li}}{x_{Hi}}$$

$$X_i \gg ln \frac{T_{btm} - T_i}{T_i - T_{top}}$$

S. Skogestad, ``Dynamics and Control of Distillation Columns - A Critical Survey", *IFAC-symposium DYCORD+'92*, Maryland, Apr. 27-29, 1992. Reprinted in *Modeling, Identification and Control*, Vol. 18, 177-217, 1997.

Figure 7: Nonlinear response in distillate composition for changes in L of 0.1%, 1%, 10% and 50%. Right plot: Logarithmic composition

S. Skogestad, "Dynamics and control of distillation columns - A tutorial introduction", Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

Conclusion dynamics

- Dominant first order response often close to integrating from a control point of view
- Liquid flow dynamics decouples the top and bottom on a short time scale, and make control easier
- Logarithmic transformations linearize the response

4. Optimal operation distillation column

- Steady state (control levels and pressure): 2 degrees of freedom (e.g. L,V)
- Optimal operation: Minimize cost J subject to satisfying constraints
- Cost to be minimized (economics)

$$J = -P \quad \text{where} \quad P = p_D D + p_B B - p_F F - p_V V$$

$$value \text{ products} \quad cost \text{ feed}$$

$$F_{,z_F}$$

$$K_{D, \text{ impurity}} < max$$

$$K_{B, \text{ impurity}} < max$$

Column capacity (flooding): $V < V_{max}$, etc.

Expected active constraints distillation

• Valueable product: Purity spec. always active

- Avoid product "give-away" ("Sell water as methanol")
- Saves energy

Control implications:

- 1. Control valueable product at spec.
 - Control D at 0.5% water

2. Overpurify other end to reduce loss

- Control B with methanol < 2%
- Overpurifying may not cost much energy (V) if enough stages
- If "few" stages: May be optimal to operate at max energy (V) to minimize loss of valuable product

water

+ max. 2% methanol

5. Control

DISTILLATION CONTROL

 Studied in hundreds of research and industrial papers over the last 40 years

Problem industrial papers: Ad-hoc Problem academic papers: Not distillation, but show that "my control theory is best"

S. Skogestad, <u>"The dos and don'ts of distillation columns control"</u>, Chemical Engineering Research and Design (Trans IChemE, Part A), **85** (A1), 13-23 (2007).

Two objectives for control

Have 5 dynamic degrees of freedom

1. Stabilize (avoid drift)

- Levels (M_D, M_B, pressure)
- Temperature profile («level of heavy component»)

NOTE: Temperature setpoint can be used as degree of freedom for composition control

2. Optimize operations

Normally control product compositions (x_D, x_B)

Issues distillation control

- The "configuration" problem (pairings for level and pressure)
 - Which are the two remaining degrees of freedom?
 - e.g. LV-, DV-, DB- and L/D V/Bconfigurations
- The temperature control problem
 - Which temperature (if any) should be controlled?
- Composition control problem
 - Control two, one or no compositions?

Stabilize temperature profile ("level of heavy component")

- Temperature sensor should be located at «sensitive» stage (with high gain)
- Typically in middle of top or bottom section

Which stage? Binary column

slope closely correlated with steady state gain

Multicomponent column

Conclusion: Temperature slope alone OK only for binary columns

Which configuration? Level control top: Use L or D?

Would like to use D because L is most effective for composition control

However, for large L/D (>5): Seems almost impossible to control level with D (small range because need D>0)

FORTUNATELY:

- 1. Tight level control is NOT important
- 2. Fast inner temperature loop gives indirect level control!

Conclusion: Recommend using D (and B) for level control!! Gives LV-configuration

Conclusion configurations

- Normally use LV-configuration
 because it is
 - simplest
 - level tunings do not matter for column behavior
 - can get smooth variations in product rates D and B
- Usually add temperature loop using L or V
 - Especially for difficult separations with large L and V
 - Gives indirect level control
 - Breaks interactions

LV-configuration with temperature loop and dual composition control

- Inner fast T-loop should be in the «important» end
 - The figure above is when bottom composition is most important
- Temperature sensor should be located at «sensitive» stage.

Myth of slow control

• Let us get rid of it!!!

Compare manual ("perfect operator") and automatic control for column A:

- 40 stages,
- Binary mixture with 99% purity both ends,
- relative volatility = 1.5
- L/D = 5.4
- First "one-point" control: Control of top composition only
- Then "two-point" control: Control of both compositions

S. Skogestad, "Dynamics and control of distillation columns - A tutorial introduction", Trans IChemE, Part A (Chemical Engineering Research and Design), 75, Sept. 1997, 539-562

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Myth about slow control Two-point control

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

Myth about slow control Two-point control

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

Myth about slow control

Conclusion:

- Experience operator: Fast control impossible
 - "takes hours or days before the columns settles"
- BUT, with feedback control the response can be fast!
 - Feedback changes the dynamics (eigenvalues)
 - Requires continuous "active" control
- Most columns have a single slow mode (without control)
 - Sufficient to close a single loop (typical on temperature) to change the dynamics for the entire column

Advanced control

May also add feedforward control from F (ratio V/F in this case)

Advanced control....

Case with valuable bottom product, x_{B.} Split range control (SRC):

- 1. Normally control x_B with boilup V
 - But boilup V may reach constraint
- 2. First let reflux L take over
- 3. Then cut back on feedrate F if top reaches constraint

"Systematic Design of Active Constraint Switching Using Classical Advanced Control Structures". A. Reyes-Lua and S. Skogestad, Ind. Eng. Chem. Res. 2020, 59 (6), 2229-2241.

Conclusion distillation control

- Not as difficult as often claimed
- LV-configurations recommended for most columns
- Use log transformations to reduce nonlinearity
- Use composition estimators based on temperature
- Usually: Close temperature loop (P-control OK)
- May use MPC if strong interactions between loops

Chemical Engineering Research and Design (Trans IChemE, Part A), 85 (A1), 13-23 (2007).

S. Skogestad, "The dos and don'ts of distillation columns control",

Conclusion

- 1. Distillation as a separation process
 - In spite of claims to the contrary it's an efficient process
 it's the heat integration that may be inefficient
 - Unbeatable for high-purity separations
- 2. Modelling
 - In principle it's simple
 - Normally use equilibrium stage model
 - The thermodynamics (VLE) are the most important
- 3. Dynamics
 - There is one dominant slow (drifting) mode
 - related to the holdup of light and heavy key components inside the column
- 4. Optimal operation
 - Minimize energy usage (V) and maximize recovery of valuable component (J = pF F pD D pB B + pV V)
 - subject to satisfying purity specifications
 - Always active constraint: Purity of valueable product («avoid give-away»)
- 5. Control
 - Fist: stabilize the column (levels, pressure and one temperature)
 - The temperature loop will speed up the slow mode, break interactions and provide indirect level control
 - Next: Control active constraints and keep operation close to optimal
 - May use MPC, but can usually do OK with advanced single-loop control

https://folk.ntnu.no/skoge/distillation/

