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Lecture outline

* SIMC rule for first order systems
* Choice of tuning constant t,

« Some cases




PID controller
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Time domain ("ideal" PID) |
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Laplace domain ("ideal"/"parallel” form)
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Usually 7, = 0. Only two parameters left (K. and t;)...

How difficult can it be?

— Surprisingly difficult without systematic approach!



Excellent work — especially considering that it was published only 3 years after the PID controller came on the market (Taylor Model 100 Fullscope, 1939)
Trans. ASME, 64, 759-768 (Nov. 1942).

Optimum Settings for Automatic Controllers

By J.G. ZIEGLER' and N. B. NICHOLS® « ROCHESTER, N. Y.

In this paper, the three principle control effects found varying its output air pressure, repositions a diaphragm-operated
in present controllers are examined and practical names valve. The controller may be measuring temperature, pressure,
and units of measurement are proposed for each effect. level, or any other variable, but we will completely divorce the
e APe1.7 pai // Reset-Rate Determination From Reaction Curve. Since the
% period of oscillation at the ultimate sensitivity proves to be 4 times
/ the lag. A substitution of 4 L for P, in previous equations for
5.0 optimum reset rate gives an equation expressing this reset rate in
terms of lag. For a controller with proportional and auto-matic- My notation:
a . .
L = reset responses, the optimum settings become . 1.0 .
3 jj/ A= S1gpe Model: R=Fk,L =6
Lol .
-0 T Sensitivity =09 psi perin. PI_bettlngb'
|2 RiL K. = 091
Reset Rate = 03 permin ¢ ko0
L T = 3.30
-1 At these settings the period will be about 5.7L, having been in-
08 9:8 MINUTES e g - creased, by both the lowering of sensitivity and the addition of
automatic reset. Comment: Very similar to SIMC

P Resemon Comye for integrating process with 7.=0

. . i (aggressive!):
Disadvantages Ziegler-Nichols: et

1.Aggressive settings 1=40

2.No tuning parameter
3.Poor for processes with large time delay (0)
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Internal Model Control. 4. PID Controller Design

Danilel E. Rivera, Manfred Morarl,* and Sigurd Skogestad
Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125

For a large number of single input-single output (SISO) models typically used in the process industries, the Internal
Modei Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
closed-loop bandwidth. On-line adjustments are therefore much simpler than for general PID controllers. As a
specilal case, PI- and PID-tuning rules for systems modeled by a first-order lag with dead time are derived
analytically. The superiority of these rules in terms of both closed-loop performance and robustness is demonstrated.
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Disadvantage IMC-PID (=Lambda tuning):
1.Many rules

2.Poor disturbance response for «slow» processes (with large t,/6)
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Abstract

The aim of this paper is to present analytic tuning rules which are as simple as possible and
still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules
of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance.
The integral term has been modified to improve disturbance rejection for integrating processes.
Furthermore, rather than deriving separate rules for each transfer function model, we start by
approximating the process by a first-order plus delay processes (using the “half method” ), and
then use a single tuning rule. This is much simpler and appears to give controller tunings with
comparable performance. All the tunings are derived analytically and are thus very suitable for
teaching.

1 Introduction

Hundreds, if not thousands, of papers have been written on tuning of PID controllers, and one must
question the need for another one. The first justification is that PID controller is by far the most
widely used control algorithm in the process industry, and that improvements in tuning of PID
controllers will have a significant practical impact. The second justification is that the simple rules
and insights presented in this paper may contribute to a significantly improved understanding into
how the controller should be tuned.
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Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple and still result in good closed-loop behavior.
The starting point has been the IMC-PID tuning rules that have achieved widespread industrial acceptance. The rule for the integral
term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for
each transfer function model, there is a just a single tuning rule for a first-order or second-order time delay model. Simple analytic rules
for model reduction are presented to obtain a model in this form, including the “half rule” for obtaining the effective time delay.

© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the proportional-integral-derivative (PID)
controller has only three parameters, it is not easy,
without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will
usually show that a large number of the PID controllers
are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this
material, where there are several objectives:

1. The tuning rules should be well motivated, and
preferably model-based and analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of
processes.

Step 2. Derive model-based controller settings. Pl-set-
tings result if we start from a first-order model, whereas
PID-settings result from a second-order model.

There has been previous work along these lines,
including the classical paper by Ziegler amd Nichols [1],
the IMC PID-tuning paper by Rivera et al. [2], and the
closely related direct synthesis tuning rules in the book
by Smith and Corripio [3]. The Ziegler—Nichols settings
result in a very good disturbance response for integrat-
ing processes, but are otherwise known to result in
rather aggressive settings [4,5], and also give poor per-
formance for processes with a dominant delay. On the
other hand, the analytically derived IMC-settings in [2]
are known to result in a poor disturbance response for
integrating processes (e.g., [6,7])., but are robust and



Process model: First-order with delay
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Open-loop step response
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SIMC PI tuning rule

1. Approximate process as first-order with delay
. k = process gain
. T, = process time constant
. 6 = process delay

2. Derive SIMC tuning rule:

1 1 1
k(te+6) k' (tc+0)

71 = min(7y, 4(7. + 0))

K.

T = 0: Desired closed-loop response time (tuning parameter)

Integpl/fme rule combines well-known rules:
IMC (Lambda-tuning): Same as SIMC for small 7, (t; = 14)

Ziegler-Nichols: Similar to SIMC for large t; (if we choose 1. = 0; aggressive!)

« Dominant 2" order process. Add derivative time 7, = 1, (note: this is for series PID-form)

S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003




Basis: Direct synthesis (IMC)
ld
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Closed-loop response to setpoint change:

gc
1+ gc

y=Tys T(s) =

|dea: specify desired response T and from this get the controller:

1
Cc=— 7
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SIMC-tunings
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Note: Process g has time delay (0)

3%

Desired step response

T ( ) — €
Ys / desired Tes+1 \

Time delay is not really desired
but it cannot be avoided

5 A 1o 12 14 18 18 20
time [zec)

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!



SIMC-tunings

IMC Tuning = Direct Synthesis

Algebra:

e Controller:  ¢(s) = H[IS} : — 1

7 ;
(v y-“'](lc'ﬂll‘v(l

e s

e Consider second-order with delay plant:  ¢(s) = k(nwi)(rg:;ﬂ)

e Desired first-order setpoint response: (i) R
Ys/ desired Tes+1
e Gives a “Smith Predictor’ controller:  ¢(s) = (Tl""“}éw""“]h ‘;Hl =
(= -k

e To get a PID-controller use ¢7% ~ 1 — fs and derive
- 1)(72 1 1
o(s) = (18 + 1)(m2s + 1)
k (1. +0)s

which is a cascade form PID-controller with

ﬁ’ 1 T1
= 7 v Tr=T1, Tp =T
“ kr.+6 ’

® 7. is the sole tuning parameter

IMC-tuning is the same as “Lambda-tuning”: 1. is sometimes called A

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay 8, than the Smith
Predictor controller from which it was derived. We are lucky ©.

Reference: Chriss Grimholt and Sigurd Skogestad. "Should we forget the Smith Predictor?" (2018)

In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .
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Example step setpoint response
(with choice T =0 =2)

Step Response

1.2 T T T T

SIMC-PI: Overshoot (y=1.04) is from approximation exp(-6s) = 1 - 8s

Amplitude
o
[=)]
T

s=tf(‘s’);

k=1; tau=10; theta=2;

g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Ke=(1/k)*(tau/(tauc+theta)); % Kc=2.5
taui=tau;

c = Kc*(1+ 1/(taui*s));

T =g*c/(1+g*c);

Tideal = exp(-theta*s)/(tauc*s+1);
step(T,Tideal,20)

0.4 —

02—

//"I;{ed: «ideal» = «originally desired» 1st order response (with Smith Predictor)

0 2 4 6 8 10 12 14 16
Time (seconds)

18

20

14



Input usage for setpoint response

ST | | T |
| Red: «ideal» (with Smith Predictor)
4.5 — —
sl \ -

Input u «overshoots» because we are are .
«speeding up» the response from t=10 to t,=2.

Amplitude

%Input usage R
figure(2);

KS = c/(1+g*c);

KSideal = (1/k)*(tau*s+1)/(tauc*s+1);
step(KS,KSideal,20);

axis([0 20 0 5])

0.5 —

Input starts from 0 o ' I | ! | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time (seconds)




Integral time

« Found: Integral time = dominant time constant (t, = 14)
» Gives P-controller for integrating process (1, = «)
— This works well for setpoint changes
— But: 1, needs to be modified (reduced) for integrating disturbances

d

u l -

VV'\<

\ 4
@)

Example. “Almost-integrating process” with disturbance at input:
G(s) = e®/(30s+1)
Original integral time t, = 30 gives poor disturbance response
Try reducing it!




Effect of decreasing 1,

1.8 " T T T T T

y(t)

0.6} SIMC modification:
Decrease integral time to
improve disturbance rejection

0.4r for slow processes (with large
7)!

0.2 “

0 1 . . : '
0 10 20 30 40 50 60
time

Fig. 3. Effect of changing the integral time t; for Pl-control of
“almost integrating” process g(s) =¢ */(30s + 1) with K. = 15. Unit
setpoint change at r=0; load disturbance of magnitude 10 at = 20.



Integral time correction

« Want to reduce the integral time for “integrating” processes

« But to avoid “slow oscillations” (not caused by the delay 0)
we must require k’K_t>4, which with the SIMC-rule for K,

gives:
1 > 4(1c + 0)

* Proof:

Gls) = k£~ & where K = £ C(s) = Ko (1+ 25

Closed-loop poles:
1+GC=0=1+%K, (1+%) =0=78°+ K Kcrrs+ K K. =0
To avoid oscillations we must not have complex poles:
B> —4AC > 0|= K K277 — AK' Kemr 2 0= (K Kerr > 45 71 2 75
Inserted SIMC-rule for K. = %%4_9 then gives
1 > 47, + 0)




Conclusion: SIMC-PID Tuning Rules

For cascade form PID controller:
1o 11

Ke=- — . 1
“kme4+60 K 1.+6 (1)
4
77 = min{7y, e } = min{m,4(7c + 0)} (2)
C
™D =T (3)

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis” )

2. Reduce integral time to get better disturbance rejection for slow or
4

integrating process (but avoid slow cycling = 77 > R E )
C

One tuning parameter: 1,




B Some special cases

Process q(s) K. T TEU
First-order k% O min{7,4(r. +0)} | -
Second-order, eq.(4) | kg Do) %ﬂ;‘re min{r, 4(7. +0)} |

Pure time delay'") ke % 0 0 ) -
Integrating!? k’% L. |::r¢1+~!i']| A(1, + 0) -
Integrating with lag ;Sii;:” = (:r¢1+ﬂ]| d(r. + 0) T
Double integrating'® ke o 4{%19]2 4 (1. +0) 4 (1 + 0)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7, as a tuning parameter).
(1) The pure time delay process is a special case of a first-order process with m, = 0.

(2) The integrating process is a special case of a first-order process with 7 — oc.

(3) For the double integrating process, integral action has been added according to eq.(27).

(4) The derivative time is for the series form PID controller in eq.(1).

(

. T def
*) Pure integral controller ¢(s) = %i with K = ‘f; = k{,rrlm},

One tuning parameter: t,

(1)(*) Note that we get pure I-controller for static process with delay.




2.1. Performance

In this paper, we quantify performance in terms of the integrated
absolute error (IAE),

IAE=] y(t) — ys(t)ide. (7)
0

To balance the servo/regulatory trade-off we choose a weighted
average of the IAE for a step input disturbance d, (load disturbance)
and a step output disturbance dy:

_ IAEqy(p) | 1AEg(p)
f(p)‘O'S( IAE;,, ' TAE, )

where lAEzy and IAE;, are weighting factors, and p denotes the
controller parameters. Note that we do not consider setpoint
responses, but instead output disturbances. For the system in Fig. 1,

(8)

Ms = Peak of [S(jw)| = 1/(smallest distance to (-1)-point). Want less than 1.7

Optimal Pl and PID control of first-order plus delay processes and
evaluation of the original and improved SIMC rules
Chriss Grimholt, Sigurd Skogestad*  Journal of Process Control 70 (2018) 36-46

Performance, J

Performance, J

2.5

Choice of SIMC-tuning parameter t_
1. Trade-off between robustness (Ms) and performance (J=IAE)

C. Grimholt, S. Skogestad / Journal of Process Control 70 (2018) 36-46

Pareto-optimal curves

v G(s)=e*

opt.PI/PID

: 6
1 «improved» Pl has t; = 3

«improved» PID has 1, =

1 1.5 2 2.5 3
Robustness, Mgy

1

1
|
|

g (cascade)

G(s) = /s

o e -

1

| | |
1:H 2 2.5 3
Robustness, My



Choice of tuning SIMC-parameter t_
E 2. Relationship betweent, and robustness (Ms, GM, PM, DM)

Conclusion: 1./0 = 1 gives a acceptable robustness (Ms=1.6, PM=60°, GM=3, DM=2)

PM
60°

argin, PM

Phase m

Im
1 L(J )
i i i i 1- +
1 i3 2 23 3 oy w=+oe Re
Closed loop tuning constant, v./¢ &
1\!
Ms — L(jwe)
' -05
DM=
= A
/ ; [ L{jw)
— <| ! | |
AO /O = NERWE
. = 2 ares = fra
GM > W1 PM > 2arcsin (2,-’\1_5-) = s [rad]

I - T [ Te ]
osf / ! 0 2 (9 + ) G _

TC 756 C] edloop 1= gcousl.:m.. /8 N 3 B T /e Closed loop tu IE cnus;téaut.'r,‘_.-'ﬁzls
SIMC: GM and DM increase lmearly with 1,

"Optimal PI-Control and Verification of the SIMC Tuning Rule".
Proceedings IFAC conference on Advances in PID control (PID'12), Brescia, Italy, 28-30 March 2012,




@ Typical closed-loop SIMC responses with the choice t.=0 (delay)

4F 4
>=al -
|—3 ~,
=2 ~
&2- IEE_H—.‘:- - " -
3 "b.h‘ '-.___ - 3
D ‘-"'"- ---_::
yg [ N ]

0 N 1 4

0 5 10 15 20 25 30 35 40

2- -

- case 1 (pure delay)
= = case 2 (Integrating)
=1 '='= case 3 (int.+lag)

— case 4 (double int.

----- case 5 (first-order)

-9 1 1 L 1
0 5 10 15 20 25 30 35 40
time
Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7. = #).

Unit setpoint change at ¢ = (; Unit load disturbance at ¢ = 20,
Simulations are without derivative action on the setpoint.
Parameter values: § = Lk=1kF = 1." = 1.
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6.3 Ideal PID controller

The settings given in this paper (K., 77, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting” ) form
PID controller

1 K! :
Ideal PID : ('(s) = K, (l + —+ ’Tbb) = —= (*r;'rbsz + 718 + l) (35)
Trs JE
we use the following translation formulas
- - D ™D D
ﬁ’,zﬁc(l —); - (1 —); = 36
[ + T Tf T1 + I T-.U ].+ 11'—‘?_ ( )

Example. Consider the second-order process g/s) = e */(s+1)? (E9) with the k=1, =1,1, =1
and 7, = 1. The series-form SIMC settings are K, = 0.5, 77 = 1 and 7p = 1. The corresponding
settings for the ideal PID controller in (35) are K! =1, 7} = 2 and 7}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.



@ When do we need «tight control»?
For hard constraints where backoff is costly

«SQEEZE and SHIFT» RULE

L o/ I New backoff
LI |

I

Squeeze

= J l variance Shift setpoint to reduce backoff

city Factor [%]
5

n l( |’1| RN <ctosint

Capa

Original Improved  Optimized
tuning tuning,, Qperation

time




SIMC-tunings
Selection of tuning parameter 7,

Two main cases

1. NCHNCONIROEBEETE: \Vant “fastest possible

control” subject to having good robustness

« Want tight control of active constraints (“squeeze and shift”)
» Select 1, = 0 (effective delay)

2. SMOOTH CONTROL (z, large): Want “slowest possible
control” subject to acceptable disturbance rejection
» Prefer smooth control if fast control is not required



SMOOTH CONTROL
Tuning for smooth control

Tuning parameter: t, = desired closed-loop response time
Selecting T.=0 1f we need “tight control” of y.

Other cases: “Smooth control” of y 1s sufficient, so select T, > 0 for
o slower control

o smoother input usage
less disturbing effect on rest of the plant

o less sensitivity to measurement noise
o better robustness

Question: Given that we require some disturbance rejection.
o What is the largest possible value for t_ ?
0 ANSWER: 1 ax =1/Wy (where wyis defined as the frequence where |g4(iwWg)| = Yimaxd/max )

Proof. y=Sgd d, where S=(1+L). Require |y|<ymax at all frequencies, so |S| < |gd| d/ymax at all frequencies.
The integral action takes care of most of the disturbance rejection, so usually, the «worst-case» frequency is where |S| reaches 1, which is approximately at wc=1/tauc.
So define wd as the frequency where (gd/g) d/ymax = 1 and we must require wc > wd or equivalently tauc < 1/wd. Thus we have tauc.maxc=1(wd.

This bound may be optimistic if there are disturbances with two or more «slow» poles, because then the worst-case frequency may be lower than wc.

Comment: An simpler (but sometimes conservative) answer is to select K¢,min =|ud|/[ymax| where |ud| is the input magnitude to reject the maximum
disturbance. (Given Kc,min we may obtain the corresponding tauc,max using the SIMC-rule for Kc).

More detailed proof: S. Skogestad, *"Tuning for smooth PID control with acceptable disturbance rejection", Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).




LEVEL CONTROL

@ Level control

Level control often causes problems
Typical story:
— Level loop starts oscillating

— Operator detunes by decreasing controller gain
— Level loop oscillates even more

. 277

Explanation: Level is by itself unstable and requires control.




LEVEL CONTROL

Level control (integrating process): Can have
both fast and slow oscillations

* Fast oscillations (K, too high): P <m 1,
— Caused by (effective) time delay

* Slow oscillations (K, too low): P> & 1,

— Caused by integral action in controller
— Avoid slow oscillations: k'K, .t; = 4.

P=period of oscillations = 2n/®




LEVEL CONTROL

How avoid slowly oscillating levels?

« Simplest: Use P-control only (no integral action)

 |If you insist on integral action, then make sure
the controller gain is sufficiently large

* |If you have a level loop that is oscillating then
use Sigurds rule (can be derived):

2 2 Tio Tip
P T ek ke Y
I 1 I I . where we have assumed ¢%< <1 (significant oscilla-
To avoid oscillations, increase K. - 1, by factor . o s o e o F g
2 troller gain and integral time is approximately
f=0.1- (P./1,1) o
D ID Keo-tio = (ZF)ZP (%::)
Wh e re To avoid oscillations (¢ = 1) with the new settings we
must from (21) require K. r;>4/k’, that is, we must

P, = period of oscillations [s] s
Ti0 = original integral time [s] > (3) “

Here l/n’2 2z (.10, so we have the rule:

0 '1 —t 1 /....[2 e To avoid “slow” oscillations of period Py the pro-
— l duct of the controller gain and inte§ral time should be

increased by a factor /= 0.1(Py /7).

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL
Case study oscillating level

 We were called upon to solve a problem with oscillations in a
distillation column

« Closer analysis: Problem was oscillating reboiler level in upstream
column

« Use of Sigurd’s rule solved the problem




LEVEL CONTROL
APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f ~ 0.1(Py/77)>.

Real Plant data:

Period of oscillations Py = 0.85h = 51min = f = 0.1 (51/1)* = 260

BERORE?  (Kc=- 05, teni= Tmia)

gy
- (wlveps.)
BN P SR TS " KV S P
AETER ¢ (Kes-385, donis Pewn)
Cievel) 7
" . mi'm'..u.."
- Dealve pos.)

o b h @k itk doh od aBk




@ Default Pl tunings

* In many cases the Pl controller can be tuned without any data




Default tuning: 5&5 Pl-rule for level controller (LC)

« Scale both flow (u) and level (y) in range 0-100%
* Rule: K. =5 %/%,t; = 57 (larger integral time 7, than normal 7, = 0.8 7 for SIMC)

— T =residence time atmax (100%) flow and full (100%) tank = Vmax/Fmax (= 10 min typical)
— K.=5%/% means: 1% change in level (y) gives 5% change in flowrate (u).

Note:

» K.=5 corresponds to 7, = -— = 0.2

c

 and gives K .k't; = 25 (which is well above the lower SIMC-limit of 4 to avoid oscillations)

Proof of notes: With this scaling, the model from flow [%] to level [%] is G(s) = k’/s where k'=1/tau.
SIMC: Kc=(1/k’)(1/tauc) -> tauc=(1/(k’Kc)) = 0.2 tau (with Kc=5).




@ Level (y) in response to step disturbance (1% increase inflow)
NTNU

In all cases, Kc=5%/%.
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E Input (u) (outflow) response to disturbance

= Level (y) Setpoint response =
(both have same transfer function T)

Step Response
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Default tuning: Flow controller (FC)*

* y = G(s)u, u=valve position (0-100%), y=flowrate (0-100%)

« Usually fast dynamics, G(s) = k, where k=1 %/% (linear valve)
. . & . . & . 1 1

— SIMC* gives pure I-controller, C(s) = - with K; = ey

* 1. = closed-loop response time: should be significantly larger than any delay 0 to avoid instability

— So the I-action is the most important for flow control (= K_.-value not so important)

« Comment: Whereas for level control, the P-action is most important (= t; -value not so important)

* FC with Pl-control (pick a k. = 0): From SIMC K;-value use:|t; = K. k1, = K, 1,
— K. =0.2. Givest; =021, (=1switht, =5s).
— K. =05 Givest; =051, (= 2.5switht, = 5s).
- K. =1* Gives 1; = 1, (= 5 swith 1, = 55s).
— According to SIMC, a larger Kc is for cases with a relatively large valve time constant .

Question to ABB: Does this seem reasonable?

. L . 6
« Note: From improved SIMC-PI, a better alternative is to fix t; = StT and use K, = kz
Cc

e0s 1 +2 0

«Improved» SIMC Pl-rule for G(s) = k——t Ke= - +39,r, =7+

Chriss Grimholt and Sigurd Skogestad, "Optimal Pl and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules" ,
Published in: J. Process Control, vol. 70 (2018), 36-46.



https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf
https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf
https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf

38

* A little more on PID control



SIMC-rule with measurement dynamics

This is simple: Combine the measurement
dynamics g,,(s) and the process model g(s)
and apply the SIMC-rules on gg,,.

This applies both to the model approximation (half rule) to get a
1st or 2" model and to the PI- or PID-tuning, including the choice
of 1.

See also the handwritten note for a «proofy», for example, that
the total delay also includes the delay in the
measurement g,...
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Measurement filter

Here C is the feedback controller (e.g., PID), whereas F; and F typically

Two degrees-of-freedom controller are lead-lag transfer functions, with a steady-state gain of 1. In process

E' """""""""""""""""""" K 1d control, we often use F = 1 (no measurement filter) or a first-order
CV, =y, | s () P Mv=u y flter

| setpoint C : Process F(s) = | (A.3)
! filter u ! . s+ 1
E : Here 7, is the measurement filter time constant, and the inverse
! e, CV= gy e Measure- (wp = 1/1p) is known as the cutoff frequency. However, one should
: filter ' ment be careful about selecting a too large filter time constant 7 as it
E E% acts as a effective delay as seen from the controller C; see also the
AR recommendation 7y < 7. /2 in (C.17).

Filter on D-action: Traditionally (in most older Simple analysis of choice of filter time constant ;..

books), a first-order filter is put on the D-action Assume the loop transfer function is L = C G G, F = ———1

(often with 7 = et with e = 0.1), but | . ~ Tes TS+
recommend to use instead the above approach The closed-loop polynomial (set 1+L(s)=0) becomes 1,7zs* + 705 + 1.

where the filter is on y (so also on the Pl-part) * T =025 1c: Real poles. tetps® + Tos 1 = (s + (T + 1)
o . ° K : =T, ~
- For cascade PID it is equivalent (because here . ;F _ Bcl o ,T[l: 8689 . :2: BF113 11371
the filter multiplies the whole controller) . TF B 0.256‘1:' , Tl o E oy ¢c— U F
« But for ideal PID the filtering of only the D-action A S
is difficult to interpret and ngt recor¥1mended * Tr > 0.257¢: Complex poles. tc7ps® +1cs +1=1s* + 2{zs + 1

h * 17x=057: 7=0717, ¢(=0.71
(see paper by Hagglund). * Note: tz = 0.5 7. is the maximum recommended value, but |

« Sodontuse C(s) =K, ( 1+ T—ls + Efil) prefer at least a factor 2 smaller (then it does not oscillate and
_ K ' 1 P robustness is better).
« useinstead C(s) =—= ( 1+—+ rDs>
TrS+1 IS




Setpoint filter F

« Can also be useful!
« Simpler alternative: Beta-factor on setpoint for P-action.

ptis+1
TiS+1

— Same as selecting F(s) =




CONCLUSION
Tuning of PID controllers

* SIMC tuning rules (“Skogestad IMC”)")

« Main message: Can usually do much better by taking
a systematic approach

« Key: Look at initial part of step response
Initial slope: k' = k/t,
* One tuning rule!

For cascade-form PID controller:

1 1
KC — k- (0+7¢)
77 = min(7y, 4(7. + 6))
’TD — Tz

» 1. desired closed-loop response time (tuning parameter)
* Forrobustness select: 1,2 0

Note: The delay 0 includes any measurement delay

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
(gAIso reprinted in MIC)

) “Probably the best simple PID tuning rules in the world”



Model
(read yourself)




Need a model for tuning

* Model: Dynamic effect of change in input u (MV) on output y (CV)

* First-order + delay model for Pl-control

« Second-order model for PID-control

G(s) = K

e—Hs
(T]_S + 1)(T25 + 1)

— Recommend: Use second-order model only if 7, > 6




1. Step response experiment

« Make step change in one u (MV) at a time

* Record the output (s) y (CV)




1A. Open-loop setting

1 I L] I Li
09} 4
RESULTING OUTPUT y
0.8} .
07 4
B s
0.6 -
ut) STEP IN INPUT u
05F A= === e e e s e e s s e s e e s s e s s — s - - -
1
04} : .
' Au :
03F |, - 0: Delay - Time where output does not change -
I - 1,: Time constant - Additional time to reach
02} : 63% of final change -
1 = k= A y(o)/A u : Steady-state gain
04f : : _
L
0 2 hr—— 1 L L ] |




Step response of integrating process

y(t)
, Ay /
Slope, k' = zxpAu

/N

Au

I
\4

0 At
Imagine this as a 1st order with "infinite" t;:

k k k'

G = ~
(S) 1S +1 1S




1B. Closed-loop setpoint response

« Shams’ method: P-controller with about 20-40% overshoot

k00=1 |.5
Ays=1

Ay.,

1. OBTAIN 5 DATA IN RED (wait for first overshoot
and undershoot), and then read off:

tp=4.4, dyp=0.79; dyu=0.54, Kc0=1.5, dys=1

dyinf = 0.45*(dyp + dyu)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys

A =1.152*Mo"2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

%2. OBTAIN FIRST-ORDER MODEL:
k = (1/Kc0) * abs(b/(1-b))

theta = tp*[0.309 + 0.209*exp(-0.61%r)]
tau = theta’r

4 3. CAN THEN USE SIMC Pl-rule

Example 2: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010)

+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012,
Sigurd Skogestad and Chriss Grimholt. '"The SIMC Method for Smooth PID Controller Tuning' (2012))



https://folk.ntnu.no/skoge/publications/2012/skogestad-improved-simc-pid/

2. Model reduction

« Start with complicated stable model on the form

(Tios + 1)(Tyos + 1) ...
O (1195 + D (1905 + 1) ...

—005

Go(s) =k

« Want to get a simplified model on the form

k

e 0s
(T]_S + 1)(T25 + 1)

G(s) =

* Most important parameter is the “effective” delay 6




OBTAINING THE EFFECTIVE DELAY 6

Basis (Taylor approximation):

1 1
e 5~ 1—-6s and e 5=

Effective delay =
“true” delay

+ inverse reponse time constant(s)

+half| of the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7

(or to 1 if use second-order model).

Details:

e Half rule: the largest neglected (denominator)
time constant (lag) is distributed evenly to the
effective delay and the smallest retained time
constant.

In summary, let the original model be in the form

(-7 +1)

i —ths 9
[Tzios +1 ¢ @ ©)

where the lags t;; are ordered according to their magni-
tude, and T}’]"" > 0 denote the inverse response (negative
numerator) time constants. Then, according to the half-
rule, to obtain a first-order model e /(t;5s + 1), we use

Tag LS h
I =TI0+ = 9:904_7_'_2.&_{,_'_2?—;’1\_'_;

2 P -
(10)

and, to obtain a second-order model (4), we use

T30
TI = TI; T2 =T +T:
11)
T30 inv h (
0 =6 +—+ o+ ) Ty +5

where /1 1s the sampling period (for cases with digital
implementation).

The main basis for the empirical half-rule is to main-
tain the robustness of the proposed PI- and PID-tuning
rules, as is justified by the examples later.




Example 1

Amplitucie

Oi1p
The second-order process

1

90(8) — (

Is+1)(0.65+1)

with

k=1, mn=1406/2=13; 6=0.6/2=0.3;




s=tf('s")
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]

g1 = exp(-2.1*s)/(6.5*s+1)
Xa l I l p e g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)]

step(9,91,92)

Step Response

0.8 -

Original (third-order with inverse response)
First-order approx. using half rule

0.6 -
) Second-order approx. using half rule
E‘ 04+ s 7 Step Rfesponse‘
0.35}
0.2
03f
0.25¢
0 é 0.2r
§ 0.15F
0.2 | | | | | | 01r
0 5 10 15 20 25 30
Time (seconds) 005
0

L L L L L L L L L
0.5 1 1.5 2 25 3 3.5 4 4.5
Time (seconds)

5

52



53

Slep Response
T T
i
0l >

Example 3

. (—0.35 4+ 1)(0.08s5 + 1)
9008) = N ) (Ts + 1)(0.4s + 1)(0.25 + 1)(0.055 + 13

half rule
Is approximated as-a first-order delay process with

T =2%1/2=25
#=1/24+04+0.2+43-0.05+0.3 —0.08=1.47
or as a second-order delay process with

T = 2

o=14+04/2=1.2
#=04/240.2+3-0.05+0.3—0.08=0.77

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) = m (rule T3).

28 Nov. 2024
Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) = 1 (rule T1b) which would reduce the effective delay by 0.05 (instead

of 0.08). In any case, it only has a small effect om the effective delay, so it does not matter much for the final result.
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Example 3
(—0.35s +1)(0.08s + 1)
go(s) =k 3
(23 + 1)(13 + 1)(0.4s 4+ 1)(0.2s 4+ 1)(0.05s + 1)
half rule
IS apprommate trst- ord delay process with

1=2+4+1
9—1/2 - 0.054+ 0.3 —0.08 =1.47

or as a s?éo/mfforge)//elay process with
T = 2/

TQ—l-I—O /2—12
#=04/24+0.2+3-0.05+0.3—0.08=0.77




step Response

e .|
Example 3.
Y o -
ey o -
g
T g0: Original complicated system
i (with 2 zeros and 8 poles) ]
= ' 92: 2nd order with delay (half rule, 6=0.77) ]
0 g1: 1st order with delay (half rule, 6=1.47) |
0 ; 1ICI 15

Time [aac)



E Example 4. Integrating process

_ k'
90(8) ~ s(120s+1)

Half rule gives

g(s) = ’L‘JES_& with ¢ = 220
Proof:
Note that integrating process corresponds to an infinite time constant
Write , ,

90(8) - ‘?'15(;:'2?54—1) - (T1S+f)(?205+1)
and then apply half rule as normal, noting that 7 + =32 =~ 7y:

. k’ﬁe_%ﬂﬁ — k! e_%D'S

where ™ — o

9(3) : (7-1_|_I%£L)S o s :: -
£ Doesn’t look so good
Example. g0 = 5/(s*(3*s+1)), "l But it's OK

step(g,g90,10) °|
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Approximation of LHP-zeros

[ To/ o for Ty > 19 > 1, (Rule T1), We should approximate T, by a “close-
e - by’, TO .
Tos + 1 To/7e forTo = e = 7 (Rule Tla), * BUT: The goal is to use the model for
= 1 for. = Tp = 10 (Rule T1b), control purposes, so we would like to
705 + 1 Tv/t0 forg = Ty = 51, (Rule T2), keep (i.e., not approximate) the t
(To/10) ~ def . which is closest to the desired ..
| G—To)s 1T for T7p = min(tp,5t.) > Tp (Rule T3).
Tys+1 e 10720 1, = desired closed-loop time constant
TsiDeatD “ il TS rm (Rule T4, 28 Nov. 2024)
Example E3. For the process (Ezample 4 in (Astrom et al. 1998)) In Example E3, we have two possible values for
(155 + 1 Ty, namely 20 and 1. Since T=15, it seems clear
gO go(s8) = (155 +1) (13) that we should select the closest 1, =20 and use
(20s+1)(s+1)(0.1s + 1)2 15541 0,75

rule T2. Get (Rule T2) m =~ 5+—1

* But what if T;=2, maybe selecting t,=1 is

Ios+1 1ds  __ better (and using rule T1)?

05 +1 205 0.75 * No, this is not clear. Since 7, is between 0.05
(PID) and 0.15 (PI), we may want to keep t
=1 which is closest to 7, ,that is, also in this
case select 1,= 20 (and use rule T2)

* This may seem surprising, but it turns out that
it will not matter very much in the case for the
PI/PID-tunings (try!), because k/taul (and
thus Kc) will not change much and because

we first introduce from Rule T2 the approzimation

(Rule T2 applies since Ty = 15 is larger than 50, where 0 is computed below). Using the half rule,
the process may then be approzimated as a first-order time delay model with

91 k=2-0.75= 1.5 9=0.1+%=0.15; r1=1+0é—1=1.05

or as a second-order time delay model with

k= 15, H = E — 005: = l Ty = 0.1+ E =0.15 taul = min(.tau,4(tauc+theta)).
2 2 * Of course, if T gets much closer to 1, then we
should select t,= 1.
PID-controller (from 2nd order model) will give performance . Rule T4 gives: —=2 _~ 1 (g1a)
(20s+1)(s+1) ~ 1.33s+1

improvement because 1, > 0

Generally, the LHP-zeros approximation
rules results in acceptable (robust) PI/PID-
settings, but notgecessarily the “optimal”
settings.




Amplitude

—
T

Step response (without control)

Step Response

0 5 10 15 20
Time (seconds)

Note: It’s the initial

response that matters

for feedback control

(time from 0 to about 5*tauc)

Amplitude

0.9 r

0.8

o
()]
T

o
w
T

)
I

0.3

0.2

0.1

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)"2)
g1=1.5*exp(-0.15%s)/(1.05*s+1)

gla = 2%exp(-0.15*s)/(1.38*s+1)
step(g0,91,92,91a,1)

Step Response

0 0.2 0.4 0.6 0.8
Time (seconds)
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B Simulation with control is as expected: Better
performance with controller based on g, (PID) than g, (PI) but
more input usage

1.8

1.6

a g y(t)

1.2 |

g = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)"2)
gd=g

|
0.8 | PID 1 Using g1:

PI. tauc=0.15
Kc=(1/1.5)*1.05/(2*0.15)=2.33
0.4 1 taui=min(1.05,8*tauc)=1.05
0.2 | i taud=0

0.6

°o 1 2 3 4 5 A 7 8 s 10 Using g2
PID. tauc=0.05
Kc=(1/1.5)*1.00/(2*0.05)=6.66
PID 1 taui=min(1.05,8*tauc)=0.4

] taud=0.15, tauf=0.015

A=Y

@ N 49 0 a2 N W A O O N
r— 1 1 7T T 1




Extra slide

Example: Approximation of zero for flow control

15s5+1 15
- Go() =12(555) |
Note that T, = 15 > t, = 9 so we get an overshoot in the step response 05 Step in u at t=10
0
How should we approximate this as a first-order with delay model? 0 S

It will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get:

1. Small tauc (tauc<9): (15s+1)/(9s+1) = 15/9 (Rule T1) = G(s)=k=1.2*15/9=2
2. Intermediate tauc (9<tauc<15): (15s+1)/(9s+1) = 15/tauc (Rule T1a) = G(s)= k = 1.2*15/tauc=18/tauc
3. Large tauc (tauc>15). (15s+1)/(9s+1) = 1 (Rule T1b) = G(s)=k=1.2

In all three cases we get G(s) = k so we get ; = 0 and in all three cases the SIMC PlI-controller
becomes a pure |-controller C(s)=Kl/s where Kl = 1/(k*tauc). Here tauc is free to choose.

Flow controller, The transfer function G(s) is typical for a control valve where u=z=valve position and y=F =flow.
Consider a typical valve equation F = Cz\/p; — p, . Following a step change in z, F will immediately jump (to 1.2*15/9=2),
but then it will drop down again (to 1.2) because of the reduction in the pressure drop p; — p, which for gases may take
some time (7o = 9 in this case). (See Exam 2022, Problem 5 for how to derive G)

— For liquids the dynamics are fast because of small compressibility and can be neglected. Thus, for liquids we always
have case 3 (tule T1b). However, the short-term flow overshoot may result in the phenomena of “water hammering”.

— For gases, also cases 1 or 2 may happen if the valve is close to a large gas holdup (large tank or large pipeline).

For a flow controller, a typical value is tauc=10s.

Some commercial controllers do not allow a pure I-controller. In this case, select taui as some small value (say taui=1s) and use Kc=KI*taui,
that is, Kc=(1/k)*(taui/tauc) .

However, if the dynamics for changing z or measuring F are slow compared to the desired closed-loop response time tauc, then a better
approximatiom of the valve may be G=k/(tau1*s+1). In this case a Pl-controller with tauc=tu1 is recommened (SIMC-rule).
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Problem 5 (25%). Modelling and control of flow and pressure

Consider a gas pipeline with two valves. We have measurements of the inflow F; and the
intermediate pressure p and these should be controlled. The volume of the pipeline can be

represented as a tank with volume V as shown in the figure above.

Steady-state data: F1=1 kg/s, z;=2,=0.5, p;=2 bar, p=1.88 bar, p=1.8 bar, V=130 m*, T=300 K,
Parameters: R=8 31 J/K mol, Mw=18e-3 kg/mol (50 the gas 1s steam).

The following model equations are suggested to describe the system.

(1) dm/dt = F1-F2
(2) m =k, p where k;=VM,/(RT)

(3) Fy = Cyzy\jp1—p
(4) F = C323,\/p — p2

(a) (3%) Explain what the variables and equations represent. What assumptions have been
made?

(b) (3%) Determine the parameters in the model (C1, C2, kp). What 1s the steady-state value of
m? What is the residence time of the gas, m/F;?

(c) (12%) Linearize the model and find the 2x2 transfer function model from z; and zz (inputs) to
F1 and p (controlled variables). (Note: To simplify, you can assume p1 and p2 are constant)

(d) (4%) What pairings do you suggest for single-loop control (with u = [z; z:], y= [F1 p])? How
could control be improved?

(e) (3%) (This can be answered without solving parts a-d). What control structure would you
propose if we instead of p want to control the downstream pressure p2? Thus, we have u=[z

2] and y = [F1 p2] -




Problem 5 (25%)

a) Model equations and assumptions.

(1) is the mass balance for the pipeline section [kg/s]

(2) is the ideal gas equation on mass basis with the temperature T is assumed constant.

(3) and (4) are the assumed valve equations. Note that we have assumed a linear valve
characteristic.

Variables:

F,oinlet flow

F,: outlet flow

z,: inlet valve opening

z,. outlet valve opening

C,: inlet valve constant

C,: outlet valve constant

m: mass of gas in the pipeline
p: pressure of gas in the pipeline
p,: pressure of gas at the inlet
p. pressure of gas at the outlet
V: volume of pipeline

T: temperature of the system
R:ideal gas constant

M,,. molar mass of gas

b) At steady state, F, = F,, and therefore:
F, 1

C = L= =5.773 kg/s - bar'?
YTofm—p 05xv2-188 9/
F 1
C = = =7.071 kg/s - bar'/?
o p—p: 05x\IBE-18 o/
VM, 130% 18 x 10~3m* X ,},‘m
k= =X X =  _mol_g3g6x 10-*kg/Pa = 93.86 kg /bar
PTRT T 8alx300 _I_ . x 9/Fa g/bar
mol K

m =k p=93.86 x 188 = 176457 kg
Residence time: t; = m/F, = 1764357 s
c) Linearizing the model. First linearize the two static valve equations (3) and (4):
y: = AF, = (C,/p; = p)| Az, + (—%}L Ap =2 Az, —4.166 Ap

Cyz,

AF, = (Ca fp —pz)|‘ﬂz: + (mﬂ Ap = 2Az, + 6.250 Ap
W LR

From (2) the mass balance (1) becomes kp dp/dt = F1 — F2 which gives the linearized model for
¥o = Op:

ky SE = AF, — AF, = 2 Az, — 2 Az; — 10.416 Ap

dip
= 93.86¥+ 10416 Ap = 2 Azy — 2 A=z,

dip
=9.011—— +4p = 0192 Az — 0.192 Az

Applying the Laplace transform to the last expression gives the transfer function for y, = Ap:

0.1925 0.1925 Az
9.011s+1" * 9.011ls+1 *

The expression for y, = AF, then becomes

Ap(s) =

0.1925 —0.1925
M[:(2—4.166x )&:{1—4.166)([ ) 3

9.011s+1 9.011s+1

0.800

2x (9.011 s+ l} — 4,166 = 0.1925
:( S.011s+1 )“”";.uzunwié‘z2
_ 18.022 5+ 1.200 0.3 15018541 0.2
_{ 5011z +1 ) A topiia s AT 1'2(9.011.s+1 ) Antgpirev A%
Conclusion
0.1925 —0.1925
Apy Az, _ 9011s+1 9.011s+ 1
ﬂﬁ] =6 [ﬂzz]‘ GGs) = (15.018 s+ 1) 0.8
“lopils+1 9.011s+1

Mote that the time constant of 9s is much smaller than the residence time of 176s. This is typical
for gas systems. Also note that u1=z1 has a direct effect on y2=F1(as expected from physics:;
see also element g21 in step response below which has an overshoot because of the zero).

Szﬁ{‘S‘) 3 Step Response
g11=0.1925/(9*s+1); g12=-g11; 027
g21=1.2*(15*s+1)/(9*s+1); )
g22=0.8/(9"s+1);

G=[g11 g12; g21 g22];
step(G*exp(-10"s)) % To make plot
clearer | put in a delay so that step is
att=10

Fram: In(1] From: Ini2)

Tox Out{1)

Amplitude

T Qu(2)

o 20 a0 B o 20 40 60
Time (geconds)

d)
Steady-state gain matrix: G(0) = [0'19225 _0613 25] >
- Y 1-1 0.1925%0.8
steady-state RGAmatrix: A= [, © . * 7] wherea == = 04.

From the steady-state RGA, the recommended pairing is then the off-diagonal pairing, that is,
F, —z, and p — z,. This happens to coincide with the intuitive pairing (“pair-close rule”) since z1
has a direct effect on F1. It also agrees with what we get from the RGA if we consider the initial
response (high frequency).

However, high steady-state interaction is to be expected, since A is far from the ideal case
(identity matrix). Possible solutions are the implementation of a decoupler (probably steady-
state decoupler is OK), or separating the timescales of the two loops.

Since the flow control has a direct effect from z1 to F1, this should probably be the fast loop,
and then the pressure loop can be about 5 times slower. But if both loops should be equally
fast, a decoupler is preferred.

What about the tuning of the flow loop? What model should we use? We have that

Gol(s) = l.2{155+1)

9s+1

Mote that TO=15 = tau0=9. How should we approximate this as a first-order with delay model? It
will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get.

Small tauc (tauc<9):  (15s+1)/(9s+1) = 15/9 (Rule T1) = Gs)=1.2"15/9=2
Intermediate tauc (9<taux<15) (15s+1)/(9s+1) = 15/tauc (Rule T1a) = G(s)=18/tauc
Large tauc (tauc=15). (15s+1)(9s+1) = 1 (Rule T1b) = G(s)=1.2
In all these three case the SIMC Pl-controller becomes a pure I-controller C{s)=Kl/s with Kl =
1/{k*tauc). Note that for the intermediate tauc we get KI=1/18 (independent of Kc).

e) This is a trick question, because it will not work. This control strategy would not be
consistent, as we can see that that is does not follow the radiation rule. In general, the
control of pressures that are external to the process is equivalent to a flow specification
(TPM), which in this case would conflict with the specification of F,.



Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

0.8 T — T T
N K=1.5
- Ay =1
0.6
Ay.,
0.5 Start from steady state and do step P-response

1. OBTAIN DATA IN RED (first overshoot
and undershoot), and then:

0.4

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)

Ayu=0 .54 b=dyinf/dys % offset parameter

A =1.152*Mo”2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

0.3

0.2

0.1 2. OBTAIN FIRST-ORDER with DELAY MODEL:
k = (1/Kc0) * abs(b/(1-b))
gy vy theta = tp*[0.309 + 0.209*exp(-0.61%r)]
0 tau = theta*r

0.1 | ) | ! ! ! 3. CAN THEN USE SIMC Pl-rule

0 2 @ 8 10 12 s e g=] ZU
N /]

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)
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Example E2 (Further continued) We want to derive Pl- and PID-settings for the
Process

(—0.35 + 10,085 + 1)
(25 + 1 ls + D045 + 100.25 + 130055 + 1)°

gols) =

using the SIMC tuning rules with the “default™ recommendation = = &. From the
closad-loop setpoint response, we obtained in a previous example a first-order model
with parameters £ = 0994, 8 = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with . =8 = 1.67 are

Ply: K.=09M, =13

From the full-order model gods) and the half rule, we obtained in a previous ex-
ample a first-order mode] with parameters k = 1,8 = 1.47, r; = 2.5. The resulting
SIMC PlI-settings with . =& = 1.47 are

PIh.n.lF-ruJ-l:: .ﬁ'—,_- ='|].3\5|:|, Tr =2.5.
From the full-order model go(s) and the half rule, we obtained a second-order model
with parameters k = 1,0 =0.77, 1 =2, 7 = 1.2. The resulting SIMC PID)-seftings
with . =8 =0.77 are

Series PID: K.=1200, 1,=2, tp=1.2

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f =1 4 to/t; = 1.60, and we have

Ideal PID: K. =K. f = 169, =1 f =32, p=1tn/f =0.75.
(5.30)
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