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Lecture outline

• SIMC rule for first order systems 

• Choice of tuning constant 𝜏𝑐

• Some cases
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PID controller

• Time domain ("ideal" PID)

𝑢 𝑡 = 𝑢0 + 𝐾𝑐 𝑒 𝑡 +
1

𝜏𝐼
න

0

𝑡

𝑒 𝜉 𝑑𝜉 + 𝜏𝐷

𝑑𝑒

𝑑𝑡

• Laplace domain ("ideal"/"parallel" form)

𝑐 𝑠 = 𝐾𝑐 1 +
1

𝜏𝐼𝑠
+ 𝜏𝐷𝑠

• Usually 𝜏𝐷 = 0. Only two parameters left (𝐾𝐶 and 𝜏𝐼)…

• How difficult can it be?

– Surprisingly difficult without systematic approach!
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Trans. ASME, 64, 759-768 (Nov. 1942).

Disadvantages Ziegler-Nichols:

1.Aggressive settings

2.No tuning parameter

3.Poor for processes with large time delay (𝜃)

Comment: Very similar to SIMC 

for integrating process with 𝜏c=0 

(aggressive!):

Kc = 1/k’ 1/𝜃
𝜏I = 4 𝜃

Excellent work – especially considering that it was published only 3 years after the PID controller came on the market (Taylor Model 100 Fullscope, 1939)
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Disadvantage IMC-PID (=Lambda tuning):

1.Many rules

2.Poor disturbance response for «slow» processes (with large 𝜏1/𝜃)
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Process model: First-order with delay

Open-loop step response

𝑔 𝑠 = 𝑘
𝑒−𝜃𝑠

𝜏1𝑠 + 1 

k = gain

θ = time delay

τ = time constant (additional time to reach 63%)

Initial slope:

k’ = k/ 𝜏1 

Slow/Integrating process: Don’t need τ for tuning – obtain slope k’ instead

So if not settling after about 5θ: stop experiment and read off slope k’. 

Initial slope

g
yu
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SIMC PI tuning rule

1. Approximate process as first-order with delay 
• k = process gain

• 𝜏1 = process time constant

• 𝜃 = process delay

2. Derive SIMC tuning rule:

• Dominant 2nd order process. Add derivative time 𝜏𝐷 = 𝜏2 (note: this is for series PID-form) 

S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003

𝜏𝐶 ≥ 𝜃: Desired closed-loop response time (tuning parameter)

Integral time rule combines well-known rules:

IMC (Lambda-tuning): Same as SIMC for small 𝜏1 (𝜏𝐼 = 𝜏1)

Ziegler-Nichols: Similar to SIMC for large 𝜏1 (if we choose 𝜏𝐶 = 0; aggressive!) 

𝐾𝑐 =
1

𝑘

𝜏1

(𝜏𝑐 + 𝜃)
=

1

𝑘′

1

𝜏𝑐 + 𝜃  
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Basis: Direct synthesis (IMC)

Closed-loop response to setpoint change:

𝑦 = 𝑇 𝑦𝑠, 𝑇 𝑠 =
𝑔𝑐

1 + 𝑔𝑐

Idea: specify desired response 𝑇 and from this get the controller:

𝑐 =
1

𝑔
⋅

1

1
𝑇 − 1



SIMC-tunings

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!

Time delay is not really desired

but it cannot be avoided
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Note: Process g has time delay (θ)



13

IMC Tuning = Direct Synthesis 

Algebra:

SIMC-tunings

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay θ, than the Smith 

Predictor controller from which it was derived. We are lucky ☺.
Reference: Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)

In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .

IMC-tuning is the same as “Lambda-tuning”: c is sometimes called λ

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018
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Example step setpoint response

(with choice τc=θ =2)

14

s=tf(‘s’);

k=1; tau=10; theta=2; 

g = k*exp(-theta*s)/(tau*s+1);

tauc=theta;

Kc=(1/k)*(tau/(tauc+theta));   % Kc=2.5

taui=tau;

c = Kc*(1+ 1/(taui*s));

T = g*c/(1+g*c);

Tideal = exp(-theta*s)/(tauc*s+1);

step(T,Tideal,20)

y (PI)

Red: «ideal» = «originally desired» 1st order response (with Smith Predictor)

SIMC-PI: Overshoot (y=1.04) is from approximation exp(-θs) ≈ 1 - θs 
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Input usage for setpoint response

15

%Input usage

figure(2);

KS = c/(1+g*c);

KSideal = (1/k)*(tau*s+1)/(tauc*s+1); 

step(KS,KSideal,20); 

axis([0 20 0 5])

u (SIMC-PI)

Red: «ideal» (with Smith Predictor)

Input u «overshoots» because we are are 

«speeding up» the response from  τ=10 to τc=2. 

Input starts from 0
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Integral time
• Found: Integral time = dominant time constant (I = 1)

• Gives P-controller for integrating process (I = ∞)
– This works well for setpoint changes

– But: I needs to be modified (reduced) for integrating disturbances

Example. “Almost-integrating process” with disturbance at input:

G(s) = e-s/(30s+1)
Original integral time I = 30 gives poor disturbance response

Try reducing it!

gc

d

yu
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Effect of decreasing 𝜏𝐼

SIMC

SIMC modification:

Decrease integral time to 

improve disturbance rejection

for slow processes (with large 

τ)!
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Integral time correction

• Want to reduce the integral time for “integrating” processes

• But to avoid “slow oscillations” (not caused by the delay θ) 
we must require k’KcτI≥4, which with the SIMC-rule for Kc 
gives:

• Proof:
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Conclusion: SIMC-PID Tuning Rules 

One tuning parameter: c  
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Some special cases

One tuning parameter: c

(1)(*) Note that we get pure I-controller for static process with delay.
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Choice of SIMC-tuning parameter c. 
1. Trade-off between robustness (Ms) and performance (J=IAE)

Conclusion: c= 𝜃 gives a good trade-off

Ms = Peak of |S(jω)| = 1/(smallest distance to (-1)-point). Want less than 1.7 

Pareto-optimal curves

«improved» PI has 𝜏𝐼 =
𝜃

3

«improved» PID has 𝜏𝐷 =
𝜃

3
(cascade) 
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SIMC: GM and DM increase linearly with τc

Ms

GM

PM

c / c /

DM=

 / =

PM/ωc

3

1

2

1.6

1

60o

1/Ms

Choice of tuning SIMC-parameter c. 
2. Relationship between c and robustness (Ms, GM, PM, DM) 

Conclusion: c/𝜃 = 1 gives a acceptable robustness (Ms=1.6, PM=60o, GM=3, DM=2)

1

1
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Typical closed-loop SIMC responses with the choice c= (delay)

TIGHT CONTROL



Too complicated

24
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When do we need «tight control»? 

For hard constraints where backoff is costly

«SQEEZE and SHIFT» RULE

Original

tuning
Improved

tuning

Optimized

operation

Setpoint

Squeeze

variance Shift setpoint to reduce backoff

time

New backoff
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Selection of tuning parameter c

Two main cases

1. TIGHT CONTROL (τc small):  Want “fastest possible 
control” subject to having good robustness

• Want tight control of active constraints (“squeeze and shift”)

• Select τc = θ (effective delay)

2. SMOOTH CONTROL (τc large):  Want “slowest possible 
control” subject to acceptable disturbance rejection

• Prefer smooth control if fast control is not required

SIMC-tunings
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Tuning for smooth control
SMOOTH CONTROL

◼ Tuning parameter: c = desired closed-loop response time 

◼ Selecting c= if we need “tight control” of y.

◼ Other cases: “Smooth control” of y is sufficient, so select c >  for 
❑ slower control

❑ smoother input usage
◼ less disturbing effect on rest of the plant

❑ less sensitivity  to measurement noise

❑ better robustness

◼ Question: Given that we require some disturbance rejection.
❑ What is the largest possible value for c ?

❑ ANSWER: c,max =1/ωd  (where ωd is defined as the frequence where |gd(jωd)| = ymax/dmax )

Proof. y=Sgd d, where S=(1+L). Require |y|<ymax at all frequencies, so |S| < |gd| d/ymax at all frequencies. 

The integral action takes care of most of the disturbance rejection, so usually, the «worst-case» frequency is where |S| reaches 1, which is approximately at wc=1/tauc.  

So define wd as the frequency where (gd/g) d/ymax = 1 and we must require wc > wd or equivalently tauc < 1/wd. Thus we have tauc.maxc=1(wd. 

This bound may be optimistic if there are disturbances with two or more «slow» poles, because then the worst-case frequency may be lower than wc.

Comment: An simpler (but sometimes conservative) answer is to select Kc,min =|ud|/|ymax| where |ud| is the input magnitude to reject the maximum 

disturbance. (Given Kc,min we may obtain the corresponding tauc,max using the SIMC-rule for Kc). 

.  

More detailed proof: S. Skogestad, ``Tuning for smooth PID control with acceptable disturbance rejection'', Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).
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Level control

• Level control often causes problems

• Typical story:
– Level loop starts oscillating

– Operator detunes by decreasing controller gain

– Level loop oscillates even more

– ......

• ???

• Explanation: Level is by itself unstable and requires control.  

LEVEL CONTROL
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Level control (integrating process): Can have 

both fast and slow oscillations

• Fast oscillations (Kc too high): P < π τI

– Caused by (effective) time delay

• Slow oscillations (Kc too low): P > π τI

– Caused by integral action in controller 

– Avoid slow oscillations: 𝑘′𝐾𝑐𝜏𝐼 ≥ 4.

LEVEL CONTROL

P=period of oscillations = 2π/ω 
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How avoid slowly oscillating levels?

LEVEL CONTROL

0.1 ¼ 1/2
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Case study oscillating level

• We were called upon to solve a problem with oscillations in a 

distillation column

• Closer analysis: Problem was oscillating reboiler level in upstream 

column

• Use of Sigurd’s rule solved the problem

LEVEL CONTROL
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LEVEL CONTROL
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Default PI tunings

• In many cases the PI controller can be tuned without any data
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Default tuning: 5&5 PI-rule for level controller (LC)

• Scale both flow (u) and level (y) in range 0-100%

• Rule: Kc=5 %/%,𝝉𝑰 = 𝟓𝝉 (larger integral time 𝜏𝐼 than normal 𝜏𝐼 = 0.8 𝜏 for SIMC)

– 𝝉 = residence time at max (100%) flow and full (100%) tank = Vmax/Fmax  (= 10 min typical)

– Kc=5%/% means: 1% change in level (y) gives 5% change in flowrate (u).

Note:

• Kc=5 corresponds to 𝜏𝑐 =
𝜏

𝐾𝑐
= 0.2 𝜏

• and gives 𝐾𝑐𝑘′𝜏𝐼 = 25 (which is well above the lower SIMC-limit of 4 to avoid oscillations)

Proof of notes: With this scaling, the model from flow [%] to level [%] is G(s) = k’/s where k’=1/tau.

SIMC: Kc=(1/k’)(1/tauc) ->  tauc=(1/(k’Kc)) = 0.2 tau (with Kc=5).
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Level (y) in response to step disturbance (1% increase inflow)

In all cases, Kc=5%/%.

PI. 5&5 rule (taui=5) 

PI, «normal» SIMC. Critical damping, Kc’k’*taui=4 (taui=0.8) 

P only (taui=infinity) 

Time (x residence time)

%
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Input (u) (outflow) response to disturbance

y = T ys

u = T du

PI. 5&5 rule (taui=5) 

PI. Normal SIMC (taui=0.8) 

P only (taui=infinity) 

Time (x residence time)

%

= Level (y) Setpoint response = 
(both have same transfer function T)
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Default tuning: Flow controller (FC)*

• 𝑦 = 𝐺 𝑠  𝑢,  u=valve position (0-100%), y=flowrate (0-100%)

• Usually fast dynamics, 𝐺 𝑠 ≈ 𝑘,  where k=1 %/% (linear valve)

– SIMC* gives pure I-controller, 𝐶 𝑠 =
𝐾𝐼

𝑠
 𝑤𝑖𝑡ℎ 𝐾𝐼 =

𝐾𝑐

𝜏𝐼
=

1

𝑘 (𝜏𝑐+𝜃)
=

1

𝜏𝑐
 

• 𝜏𝑐  = closed-loop response time: should be significantly larger than any delay θ to avoid instability

– So the I-action is the most important for flow control (⇒ 𝐾𝑐-value not so important)

• Comment: Whereas for level control, the P-action is most important (⇒ 𝜏𝐼  -value not so important)

• FC with PI-control (pic𝑘 𝑎 𝐾𝑐 ≠ 0): From SIMC 𝐾𝐼-value use: 𝜏𝐼 = 𝐾𝑐𝑘 𝜏𝑐 =  𝐾𝑐 𝜏𝑐

– 𝐾𝑐 = 0.2.  𝐺𝑖𝑣𝑒𝑠 𝜏𝐼 = 0.2 𝜏𝑐 = 1 𝑠 𝑤𝑖𝑡ℎ 𝜏𝑐 = 5𝑠 .

– 𝐾𝑐 = 0.5 𝐺𝑖𝑣𝑒𝑠 𝜏𝐼 = 0.5 𝜏𝑐  = 2.5 𝑠 𝑤𝑖𝑡ℎ 𝜏𝑐 = 5𝑠 .

– 𝐾𝑐 = 1∗∗ 𝐺𝑖𝑣𝑒𝑠 𝜏𝐼 =  𝜏𝑐  = 5 𝑠 𝑤𝑖𝑡ℎ 𝜏𝑐 = 5𝑠 .

– According to SIMC, a larger Kc is for cases with a relatively large valve time constant τ.

• Note: From improved SIMC-PI, a better alternative is to fix 𝜏𝐼 =
𝜃

3
+ 𝜏 and use 𝐾𝑐 =

𝜏𝐼

𝑘 𝜏𝑐

«Improved» SIMC PI-rule for 𝐺 𝑠 = 𝑘
𝑒−𝜃𝑠

𝜏 𝑠+1
∶  𝐾𝑐 =

1

𝑘

𝜏+
𝜃

3

𝜏𝑐+𝜃
, 𝜏𝐼 = 𝜏 +

𝜃

3
. 

Question to ABB: Does this seem reasonable?

Chriss Grimholt and Sigurd Skogestad, ''Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules'' ,

Published in: J. Process Control, vol. 70 (2018), 36-46.

https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf
https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf
https://skoge.folk.ntnu.no/publications/2018/grimholt-skogestad-jpc-2018-Optimal-PI-and-PID-control-of-first-order-plus-delay-processes/grimholt-jpc-pid-2018.pdf


• A little more on PID control
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SIMC-rule with measurement dynamics

This is simple: Combine the measurement 

dynamics gm(s) and the process model g(s) 

and apply the SIMC-rules on ggm. 

This applies both to the model approximation (half rule) to get a 

1st or 2nd model and to the PI- or PID-tuning, including the choice 

of τc.

See also the handwritten note for a «proof», for example, that 

the total delay also includes the delay in the 

measurement gm. 
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Measurement filter

Filter on D-action:  Traditionally (in most older 

books), a first-order filter is put on the D-action 

(often with 𝜏𝐹 = 𝜖𝜏𝐷 with 𝜖 = 0.1 ), but I 

recommend to use instead the above approach 

where the filter is on y (so also on the PI-part)
• For cascade PID it is equivalent (because here 

the filter multiplies the whole controller)

• But for ideal PID the filtering of only the D-action 

is difficult to interpret and not recommended 

(see paper by Hägglund). 

• So don’t use 𝐶 𝑠 = 𝐾𝑐  1 +
1

𝜏𝐼 𝑠
+

𝜏𝐷𝑠

𝜖𝜏𝐷𝑠+1

•  use instead C 𝑠 =
𝐾𝑐

𝜏𝐹𝑠+1
 1 +

1

𝜏𝐼 𝑠
+ 𝜏𝐷𝑠

Simple analysis of choice of filter time constant τF. 
Assume the loop transfer function is L = 𝐶 𝐺 𝐺𝑚𝐹 =

1

𝜏𝑐𝑠

1

𝜏𝐹𝑠+1

The closed-loop polynomial (set 1+L(s)=0) becomes 𝜏𝐶𝜏𝐹𝑠2 + 𝜏𝐶𝑠 + 1. 
• 𝜏𝐹 ≤ 0.25 𝜏𝐶: Real poles. 𝜏𝐶𝜏𝐹𝑠2 + 𝜏𝐶𝑠 + 1 = (𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

• 𝜏𝐹 ≪ 𝜏𝐶 ∶ 𝜏1≈ 𝜏𝑐,  𝜏2 ≈ 𝜏𝐹

• 𝜏𝐹 =  0.1 𝜏𝐶 ∶ 𝜏1= 0.89 𝜏𝑐, 𝜏2 =  0.113 𝜏𝐶 =  1.13 𝜏𝐹

• 𝜏𝐹 =  0.25 𝜏𝐶 ∶ 𝜏1 =  𝜏2 =  0.5 𝜏𝐶 = 2 𝜏𝐹

• 𝜏𝐹 > 0.25 𝜏𝐶: Complex poles. 𝜏𝐶𝜏𝐹𝑠2 + 𝜏𝐶𝑠 + 1 = 𝜏2𝑠2 + 2𝜁𝜏𝑠 + 1
• 𝜏𝐹 =  0.5 𝜏𝐶 ∶  𝜏 = 0.71 𝜏𝑐,  𝜁 = 0.71
• Note: 𝜏𝐹 = 0.5 𝜏𝐶 is the maximum recommended value, but I 

prefer at least a factor 2 smaller (then it does not oscillate and 

robustness is better).
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Setpoint filter Fs

• Can also be useful!

• Simpler alternative: Beta-factor on setpoint for P-action.

– Same as selecting 𝐹 𝑠 =
𝛽𝜏𝐼𝑠+1

𝜏𝐼𝑠+1
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Tuning of PID controllers

• SIMC tuning rules (“Skogestad IMC”)(*)

• Main message: Can usually do much better by taking 
a systematic approach

• Key: Look at initial part of step response
Initial slope: k’ = k/1

• One tuning rule! 

• c: desired closed-loop response time (tuning parameter)

• For robustness select: c ≥ 

CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:

Note: The delay θ includes any measurement delay
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Model

(read yourself)
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Need a model for tuning

• Model: Dynamic effect of change in input u (MV) on output y (CV) 

• First-order + delay model for PI-control

𝐺 𝑠 =
𝑘

𝜏1𝑠 + 1
𝑒−𝜃𝑠

• Second-order model for PID-control

𝐺 𝑠 =
𝑘

𝜏1𝑠 + 1 𝜏2𝑠 + 1
𝑒−𝜃𝑠

– Recommend: Use second-order model only if 𝜏2 ≥ 𝜃
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1. Step response experiment

• Make step change in one u (MV) at a time

• Record the output (s) y (CV)
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1A. Open-loop setting

STEP IN INPUT u

RESULTING OUTPUT y

: Delay - Time where output does not change

1: Time constant - Additional time to reach 

63% of final change

k =  y(∞)/ u : Steady-state gain

Δy(∞)

Δu
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Step response of integrating process

Δy

Δt

Imagine this as a 1st order with "infinite" 𝜏1:

𝐺 𝑠 =
𝑘

𝜏1𝑠 + 1
≈

𝑘

𝜏1𝑠
=

𝑘′

𝑠
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1B. Closed-loop setpoint response

• Shams’ method: P-controller with about 20-40% overshoot

Kc0=1.5

Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

1. OBTAIN 5 DATA IN RED (wait for first overshoot

and undershoot), and then read off:

tp=4.4, dyp=0.79; dyu=0.54, Kc0=1.5, dys=1

dyinf = 0.45*(dyp + dyu)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)

b=dyinf/dys

A = 1.152*Mo^2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

%2. OBTAIN FIRST-ORDER MODEL:

k = (1/Kc0) * abs(b/(1-b))

theta = tp*[0.309 + 0.209*exp(-0.61*r)]

tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010) 

+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012, 

Sigurd Skogestad and Chriss Grimholt. ''The SIMC Method for Smooth PID Controller Tuning'' (2012))

Δy∞

https://folk.ntnu.no/skoge/publications/2012/skogestad-improved-simc-pid/
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2. Model reduction

• Start with complicated stable model on the form

𝐺0 𝑠 = 𝑘0

𝑇10𝑠 + 1 𝑇20𝑠 + 1 …

𝜏10𝑠 + 1 𝜏20𝑠 + 1 …
𝑒−𝜃0𝑠

• Want to get a simplified model on the form

𝐺 𝑠 =
𝑘

𝜏1𝑠 + 1 𝜏2𝑠 + 1
𝑒−𝜃𝑠

• Most important parameter is the “effective” delay 𝜃
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Details:
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Example 1

Half rule
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s=tf('s')

g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]

g1 = exp(-2.1*s)/(6.5*s+1)

g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)] 

step(g,g1,g2)
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Example 2

Original (third-order with inverse response)

First-order approx. using half rule

Second-order approx. using half rule

52



half rule

3

MODEL, Approach 2

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) ≈
1

0.2−0.08 𝑠+1 
(rule T3).  

28 Nov. 2024

Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) ≈ 1 (rule T1b) which would reduce the effective delay by 0.05 (instead 

of 0.08).  In any case, it only has a small effect om the effective delay, so it does not matter much for the final result. 
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half rule

3

MODEL, Approach 254



g0: Original complicated system 

      (with 2 zeros and 8 poles) 

g2: 2nd order with delay (half rule, θ=0.77)

g1: 1st order with delay (half rule, θ=1.47)

Example 3.
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Example 4. Integrating process

Example. g0 = 5/(s*(3*s+1)), 

                 g = 5*exp(-1.5*s)/s,

                 step(g,g0,10)
56

Doesn’t look so good

But it’s OK
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Approximation of LHP-zeros

τc  = desired closed-loop time constant

58

We should approximate T0 by a “close-

by” 0 . 

• BUT: The goal is to use the model for 

control purposes, so we would like to 

keep (i.e., not approximate) the 

which is closest to the desired c. 

In Example E3, we have two possible values for 

0 , namely 20 and 1. Since T0=15, it  seems clear 

that we should select the closest 0 = 20 and use 

rule T2.  Get (Rule T2): 
15𝑠+1

(20𝑠+1)(𝑠+1)
≈

0,.75

𝑠+1

• But what if T0=2, maybe selecting 0 = 1 is 

better (and using rule T1)? 

• No, this is not clear. Since c is between 0.05 

(PID) and 0.15 (PI), we may want to keep 

=1 which is closest to c ,that is, also in this 

case select 0 = 20 (and use rule T2)

• This may seem surprising, but it turns out that 

it will not matter very much in the case for the 

PI/PID-tunings (try!), because k/tau1 (and 

thus Kc) will not change much and because 

tauI = min(tau,4(tauc+theta)).

• Of course, if T0 gets much closer to 1, then we 

should select 0 = 1.

• Rule T4 gives: 
15𝑠+1

(20𝑠+1)(𝑠+1)
≈

1

1.33𝑠+1
(g1a)

Generally, the LHP-zeros approximation 

rules results in acceptable (robust) PI/PID-

settings, but not necessarily the “optimal” 

settings.

g0

g2

g1

PID-controller (from 2nd order model) will give performance 

improvement because τ2 > θ

𝑇0𝑠+1

(𝜏10𝑠+1)(𝜏20𝑠+1)
≈

1

𝜏𝑠+1
 𝜏 =

𝜏10𝜏20

𝑇0
(Rule T4, 28 Nov. 2024)
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Step response (without control)

59

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)

g1=1.5*exp(-0.15*s)/(1.05*s+1)

g2=1.5*exp(-0.05*s)/((s+1)*(0.15*s+1))

g1a = 2*exp(-0.15*s)/(1.38*s+1)

step(g0,g1,g2,g1a,1)

Note: It’s the initial

response that matters

for feedback control

(time from 0 to about 5*tauc)

g1

g0
g1, g2

g1a

g0
g2

g1a
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Simulation with control is as expected: Better 

performance with controller based on g2 (PID) than g1 (PI) but 

more input usage

60

g = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)

gd=g

Using g1:

PI. tauc=0.15

Kc=(1/1.5)*1.05/(2*0.15)=2.33

taui=min(1.05,8*tauc)=1.05

taud=0

Using g2

PID. tauc=0.05

Kc=(1/1.5)*1.00/(2*0.05)=6.66

taui=min(1.05,8*tauc)=0.4

taud=0.15, tauf=0.015

y(t)

u(t)

y(t)
PI

PID

PI

PID
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Example: Approximation of zero for flow control 

– 𝐺0 𝑠 = 1.2
15𝑠+1

9 𝑠+1

• Note that 𝑇0 = 15 > 𝜏0 = 9 so we get an overshoot in the step response

• How should we approximate this as a first-order with delay model?                                                             

It will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get:

1. Small tauc (tauc<9):  (15s+1)/(9s+1) ≈ 15/9  (Rule T1)  ⇒ G(s)= k = 1.2*15/9 = 2

2. Intermediate tauc (9<tauc<15):  (15s+1)/(9s+1) ≈ 15/tauc (Rule T1a)  ⇒ G(s)= k = 1.2*15/tauc=18/tauc

3. Large tauc (tauc>15) . (15s+1)/(9s+1) ≈ 1  (Rule T1b)  ⇒ G(s)= k = 1.2

• In all three cases we get 𝐺 𝑠 = 𝑘 so we get 𝜏1 = 0 and in all three cases the SIMC PI-controller 

becomes a pure I-controller C(s)=KI/s where KI = 1/(k*tauc). Here tauc is free to choose.

• Flow controller, The transfer function G0(s) is typical for a control valve where u=z=valve position and y=F =flow.  
Consider a typical valve equation 𝐹 = 𝐶𝑧 𝑝1 − 𝑝2 . Following a step change in z, F will immediately jump (to 1.2*15/9=2), 

but then it will drop down again (to 1.2) because of the reduction in the pressure drop 𝑝1 − 𝑝2 which for gases may take 

some time (𝜏0 = 9 in this case). (See Exam 2022, Problem 5 for how to derive G0)

– For liquids the dynamics are fast because of small compressibility and can be neglected. Thus, for liquids we always 

have case 3 (tule T1b).  However, the short-term flow overshoot may result in the phenomena of “water hammering”.

– For gases, also cases 1 or 2 may happen if the valve is close to a large gas holdup (large tank or large pipeline).

For a flow controller, a typical value is tauc=10s. 

Some commercial controllers do not allow a pure I-controller. In this case, select taui as some small value (say taui=1s) and use Kc=KI*taui, 

that is, Kc=(1/k)*(taui/tauc) . 

However, if the dynamics for changing z or measuring F are slow compared to the desired closed-loop response time tauc, then a better 

approximatiom of the valve may be G=k/(tau1*s+1). In this case a PI-controller with tauc=tu1 is recommened (SIMC-rule). 61

Step in u at t=10

y(t)

Extra slide
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Shams’ method: Closed-loop setpoint response 

with P-controller with about 20-40% overshoot

Kc0=1.5

Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

Start from steady state and do step P-response

1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)

b=dyinf/dys % offset parameter

A = 1.152*Mo^2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/Kc0) * abs(b/(1-b))

theta = tp*[0.309 + 0.209*exp(-0.61*r)]

tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)

Δy∞

Alternative to Ziegler-Nichols closed-loop experiment: Obtains more information and avoids cycling. 
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