Part 2. Plantwide process control «Control architectures»

Sigurd Skogestad

Plantwide control (Control architecture)

- Objective: Put controllers on flow sheet (make P&ID)
- Two main objectives for control: Longer-term economics (CV1) and shorterterm stability (CV2)
- Regulatory (basic) control layer for CV2 and supervisory (advanced) control layer for CV1

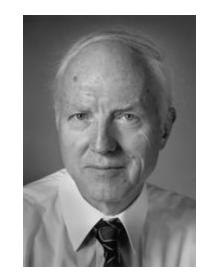
How can we design a control system for a complete chemical plant?

Where do we start?

What should we control? And why?

Sigurd at Caltech (1984)

How we design a control system for a complete chemical plant?


- Where do we start?
- What should we control? and why?
- etc.
- etc.

Control system structure*

Alan Foss ("Critique of chemical process control theory", AIChE Journal, 1973):

The central issue to be resolved ... is the determination of control system structure*.

Which variables should be measured, which inputs should be manipulated and which links should be made between the two sets?

*Current terminology: Control system architecture

Plantwide control = Control structure (architecture) design

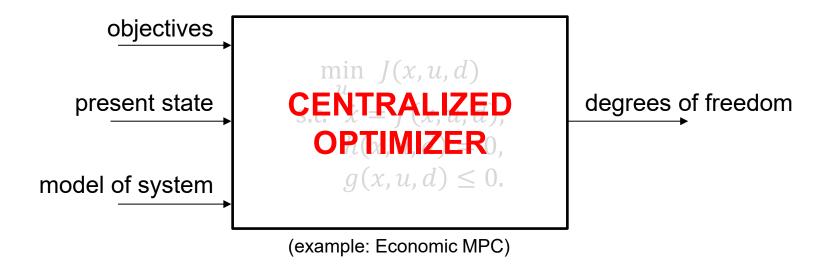
- Not the tuning and behavior of each control loop...
- But rather the *control philosophy* of the overall plant with emphasis on the *structural decisions*:
 - Selection of controlled variables ("outputs")
 - Selection of manipulated variables ("inputs")
 - Selection of (extra) measurements
 - Selection of control configuration (structure of overall controller that interconnects the controlled, manipulated and measured variables)
 - Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.)

Main objectives of a control system

- 1. Economics: Implementation of acceptable (near-optimal) operation
- 2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

- Usually NOT
 - Different time scales
 - Stabilization → fast time scale
 - Stabilization doesn't "use up" any degrees of freedom
 - Reference value (setpoint) available for layer above
 - But it "uses up" part of the time window (frequency range)


Optimal operation

General approach: minimize cost / maximize profit, subject to satisfying constraints (product quality, environment, resources)

Mathematically,

$$\min_{u} J(x, u, d)$$
s.t. $\dot{x} = f(x, u, d)$,
$$h(x, u, d) = 0$$
,
$$g(x, u, d) \leq 0$$
.

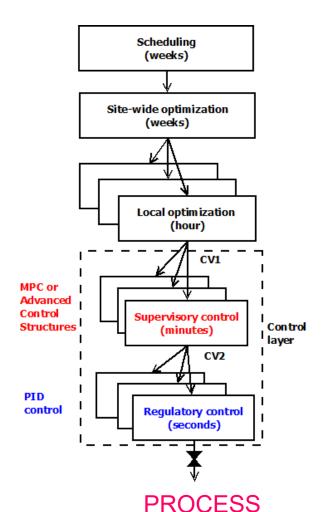
Optimal operation (in theory)

Procedure:

- Obtain model of overall system
- Estimate present state
- Optimize all degrees of freedom

Problems:

- Model not available
- Optimization is complex
- Not robust (difficult to handle uncertainty)
- Slow response time

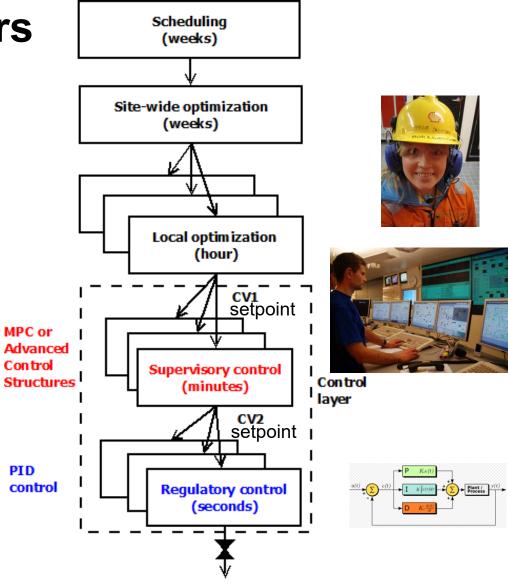

Engineering systems

- Most (all?) large-scale engineering systems are controlled using hierarchies of quite simple controllers
 - Large-scale chemical plant (refinery)
 - Commercial aircraft
- 100's of loops
- Simple components:

on-off + PI-control + nonlinear fixes + some feedforward

Two fundamental ways of decomposing the controller

- Vertical (hierarchical; cascade)
- Based on time scale separation
- Decision: Selection of CVs that connect layers

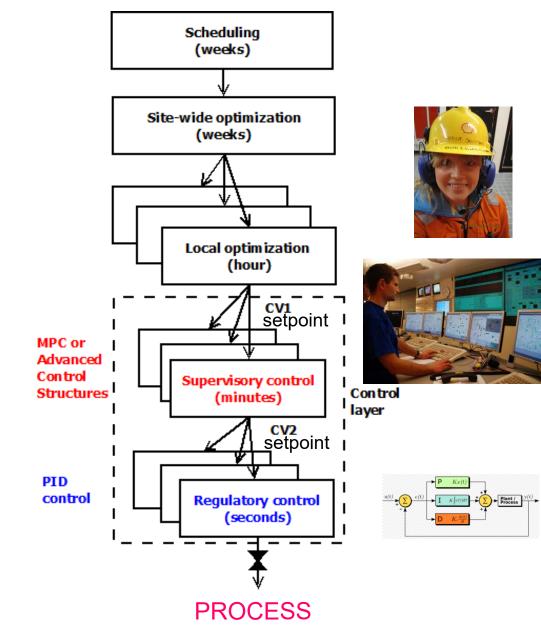

- Horizontal (decentralized)
- Usually based on distance
- Decision: Pairing of MVs and CVs within layers

In addition: Decomposition of controller into smaller elements (blocks): Feedforward element, nonlinear element, estimators (soft sensors), switching elements

Time scale separation: Control* layers

Two objectives for control: Stabilization and economics

- Supervisory ("advanced") control layer Tasks:
 - Follow set points for CV1 from economic optimization layer
 - Switch between active constraints (change CV1)
 - Look after regulatory layer (avoid that MVs saturate, etc.)
- Regulatory control (PID layer):
 - Stable operation (CV2)

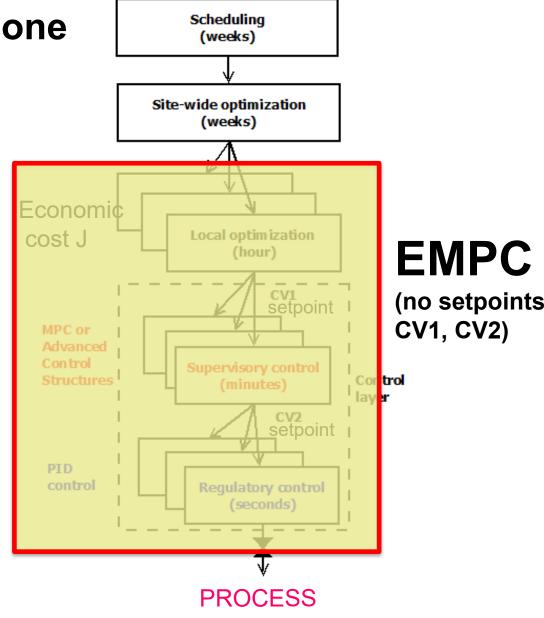


PROCESS

^{*}My definition of «control» is that the objective is to track setpoints

«Advanced» control

- Advanced: This is a relative term.
- Usually used for anything than comes in addition to (or in top of) basic PID loops
- Mainly used in the «supervisory» control layer
- Two main options
 - Standard «Advanced regulatory control» (ARC) elements
 - Based on decomposing the control system
 - Cascade, feedforward, selectors, etc.
 - This option is preferred if it gives acceptable performance
 - Model predictive control (MPC)
 - Requires a lot more effort to implement and maintain
 - Use for interactive processes
 - Use with known information about future (use predictive capanulities)


Combine control and optimization into one layer?

EMPC: Economic model predictive "control"

NO, combining layers is generally not a good idea! (the good idea is to separate them!)

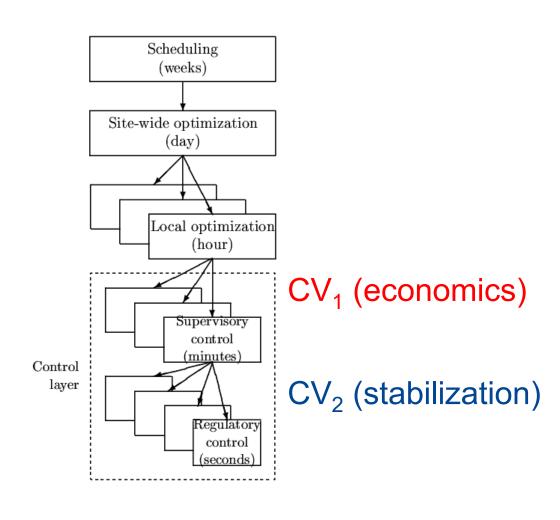
One layer (EMPC) is optimal theoreretically, but

- Need detailed dynamic model of everything
- Tuning difficult and indirect
- Slow! (or at least difficult to speed up parts of the control)
- Robustness poor
- Implementation and maintainance costly and time consuming

What about «conventional» RTO and MPC?

- Yes, it's OK
- Both has been around for more than 50 years (since 1970s)
 - but the expected growth never came
- MPC is still used mostly in large-scale plants (petrochemical and refineries).
- MPC is far from replacing PID as some expected in the 1990s.

Alternative solutions for advanced control


Machine learning?

- Requires a lot of data, not realistic for process control
- And: Can only be implemented after the process has been in operation

"Classical advanced regulatory control" (ARC) based on single-loop PIDs?

- YES!
- Extensively used by industry
- Problem for engineers: Lack of design methods
 - Has been around since 1930's
 - But almost completely neglected by academic researchers
- Main fundamental limitation: Based on single-loop (need to choose pairing)

Optimal operation and control objectives: What should we control?

Skogestad procedure for control structure design:

- I. Top Down (analysis)
 - <u>Step S1</u>: Define operational objective (cost) and constraints
 - Step S2: Identify degrees of freedom and optimize operation for disturbances
 - Step S3: Implementation of optimal operation
 - What to control? (CV1) (self-optimizing control)
 - Step S4: Where set the production rate (TPM)? (Inventory control)
- II. Bottom Up (design)
 - Step S5: Regulatory control: What more to control (CV2)?
 - Step S6: Supervisory control
 - Step S7: Real-time optimization

TPM = Throughput manipulator

ABB: Skip rest of these slides (read yourself)

Step S2b: Optimize for expected disturbances

What are the optimal values for our degrees of freedom u (MVs)?

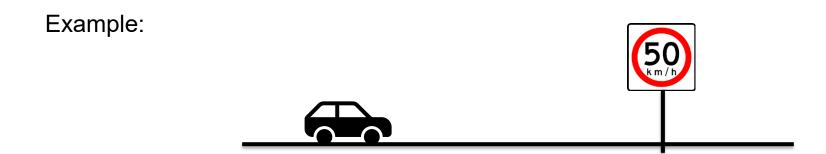
$$J = cost feed + cost energy - value products$$

Minimize J with respect to u for given disturbance d (usually steady-state):

$$\min_{u} J(x, u, d)$$

subject to:

- Model equations : $\dot{x} = f(x, u, d) = 0$

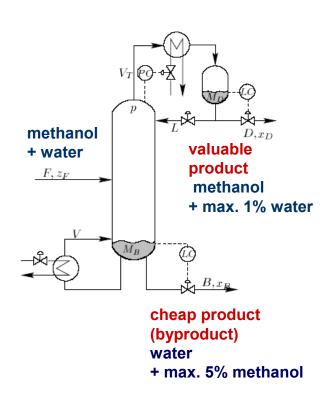

- Operational constraints: $g(x, u, d) \le 0$

OFTEN VERY TIME CONSUMING

- Commercial simulators (Aspen, Unisim/Hysys) are set up in "design mode" and often work poorly in "operation (rating) mode".
- Optimization methods in commercial simulators often poor
 - We can use Matlab or even Excel "on top"

Step S2b: Optimize for expected disturbances

- Need good model, usually steady-state
- Optimization is time consuming! But it is offline
- Main goal: Identify ACTIVE CONSTRAINTS (optimal to maintain)
- A good engineer can often guess the active constraints:


Cost J = T[h]

Constraint: v ≤ 50 km/h

Control implementation: Cruise control with setpoint 50 km/h (active constraint)

Example Step S2b: Active constraints for distillation

- Both products (D, B) generally have purity specs
- Rule 1: Purity spec. always active for valuable product
 - Reason: 1. Maximize amount of valuable product (D or B)
 - Avoid product "give-away" (So "sell water as methanol")
 - Reason 2: Save energy (because overpurification costs energy)
- Rule 2: May overpurify (not control) cheap product
 - Reason: Increase amount of valuable product ("reduce loss of methanol in bottom product")
 - This typically results in an unconstrained optimum because overpurification costs energy ("optimal purity of cheap product")

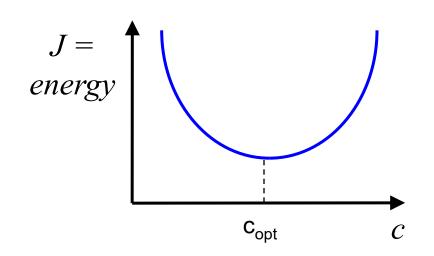
Step S2b: Optimize for expected disturbances

min J = cost feed + cost energy – value products

Generally: Two main cases (modes) depending on market conditions:

Mode 1 (low product price). Given throughput (feed rate)

Mode 2 (high product price). Maximum production (more constrained)

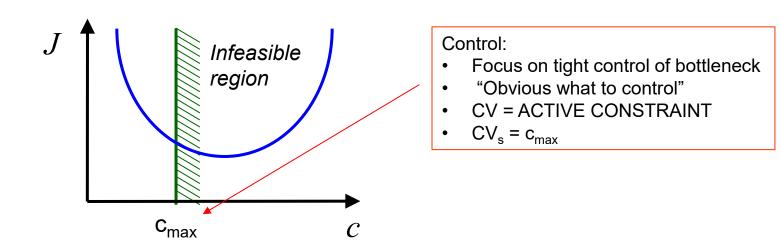

Comment: Depending on prices, Mode 1 may include many subcases (active constraints regions)

Mode 1. Given feedrate

Amount of products is then usually indirectly given and

Optimal operation is then usually unconstrained

"maximize efficiency (energy)"

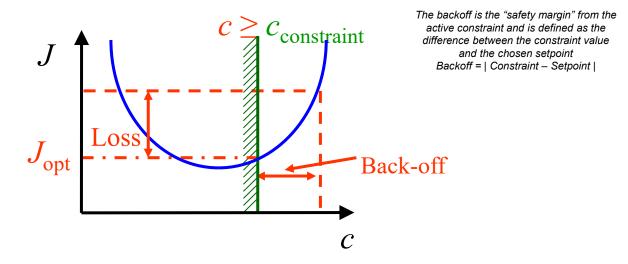

Control:

- Operate at optimal trade-off
- NOT obvious what to control
- CV = Self-optimizing variable

Mode 2. Maximum production

J = cost feed + cost energy – value products

- Assume feed rate is degree of freedom
- Assume products much more valuable than feed
- Optimal operation is then to maximize product rate
- "max. constrained", prices do not matter



Step S3. Implementation of optimal operation

- Assume we have analyzed the optimal way of operation. How should it be implemented?
- What to control? (primary CV1's)
 - 1. Active constraints
 - 2. Self-optimizing variables (for unconstrained degrees of freedom)

1. Control of Active output constraints

Need back-off

- a) If constraint can be violated dynamically (only average matters)
 - Required Back-off = "measurement bias" (steady-state measurement error for c)
- b) If constraint <u>cannot</u> be violated dynamically ("hard constraint")
 - Required Back-off = "measurement bias" + maximum dynamic control error

Want tight control of hard output constraints to reduce the back-off. "Squeeze and shift"-rule

Motivation for better control of active constraints: Squeeze and shift rule

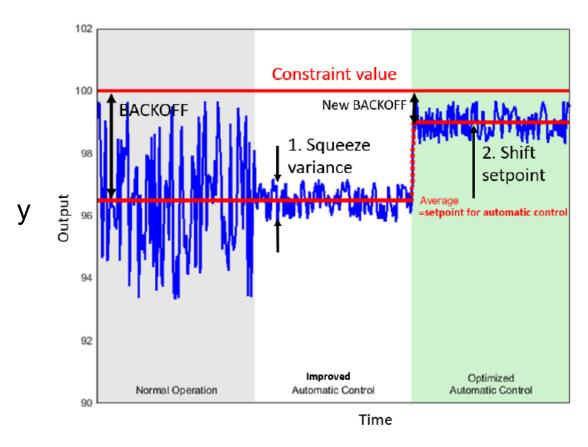
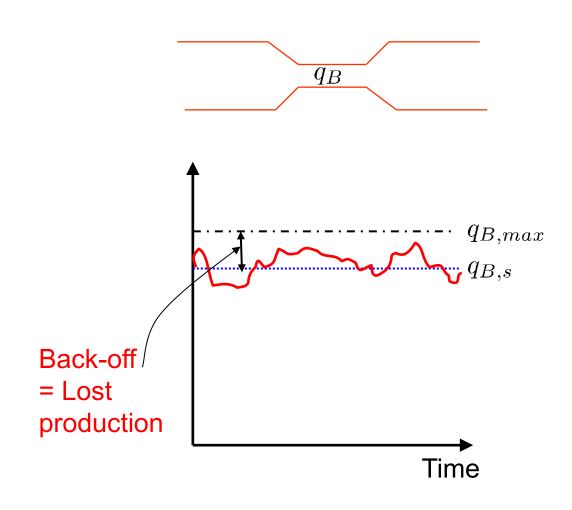



Figure 8: Squeeze and shift rule: Squeeze the variance by improving control and shift the setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet et al., 1978).

Example: max. throughput.

Want tight bottleneck control to reduce backoff!

2. Unconstrained optimum

Control "self-optimizing" variable!

- Which variable is best?
- Often not obvious
 - Example: Control heart rate for marathon runner

What are good self-optimizing variables?

- 1. Optimal value of CV is constant
- 2. CV is "sensitive" to MV (large gain)

Note: Tight control of the self-optimizing variable is usually not important because optimum should be flat.

Conclusion optimal operation

ALWAYS:

- 1. Control active constraints and control them tightly!!
 - Good times: Maximize throughput → tight control of bottleneck
- 2. Identify "self-optimizing" CVs for remaining unconstrained degrees of freedom
- Use offline analysis to find expected operating regions and prepare control system for this!
 - One control policy when prices are low (nominal, unconstrained optimum)
 - Another when prices are high (constrained optimum = bottleneck)

ONLY if necessary: consider RTO on top of this