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Introduction and Challenges

Online Process Optimization



Design vs. Operation

Design Optimization

ey Given certain user needs,
o & | %, what car should | buy
=¥ y horsepower?
T g ~ : .
v @ * Engine size?

* Petrol or diesel engine?
* Miles per gallon?

Operational (Online) Optimization
Given a car, operate the carin an
optimal way, on any given day!

e Speed?
e Acceleration?
e Lane?

e Distance to car?



Online Process Optimization

* Online operation

« Adjust operational DOF:

« Minimize operational cost s.t constraints
J [$/h] = prF + poQ-ppP

Continous Optimization (NLP) performed online

Operation = minimize cost subject to constraints

Biegler, L.T., 2010. Nonlinear programming: concepts, algorithms, and applications to chemical processes (Vol. 10). Siam.



Main objectives during operation

1. Economics: Implementation of acceptable (near-optimal) operation
(0] O O

2. Regulation: Stable operation Focus of this workshop

ARE THESE OBJECTIVES CONFLICTING?

 Usually NOT

— Different time scales
Stabilization fast time scale

— Stabilization doesn’t “use up” any degrees of freedom
Reference value (setpoint) available for layer above

But it “uses up” part of the time window (frequency range)



In theory: Centralized controller is always optimal (e.g., EMPC)

Objectives

Present state

Model of system

Approach:
*Model of overall system

C E N TRAL IZE D *Estimate present state

*Optimize all degrees of freedom

OPTIMIZER

Process control:
» Excellent candidate for centralized control

min J(x, u, d) Problems: _
v * Model not available
s.t. x = f(x, u,d), * Objectives = ?
h(x, u,d) = 0, » Optimization complex

* Not robust (difficult to handle uncertainty)

g(x,u,d) < 0. » Slow response time

A (Physical) Degrees of freedom, u= valve positions



In practice: Hierarchical decision based on timescale separation

Scheduling
(weeks)

Manager

Site-wide optimization
(day)

2 _

P Focus of this workshop

v \ |
: |
min J (economics) Local optimization Operator/lD
(hour)

Process engineer

Setpoint control =1 ) : .
o ok e el e verEes) | Supervisory | | Advanced classical control’/MPC
] control
Control E
lager
Stabilize + avoid drift = PID-control
: control I
{gecondza}
X u = valves
Skogestad (2000) v




Two main operation modes

|. Sales limited by market: Given production (constraint)
e Optimal with high energy efficiency (good for environment)

Il. High price product and high demand: Maximize production
* Lower energy efficiency

e Optimal to overpurify waste products to recover more (good for
environment)



General objective process operation (RTO):
Minimize cost J = maximize profit (=J) [S/s], subject to constraints

] = 2 pr F + z Po Q —Z pp P Note: No capital costs or costs for operators
(assumed fixed for time scale of interest, a few hours)

where
* Y. pp F =price of feed [S/kg] x feed flow rate [kg/s]
* Xpo Q = price of utility (energy) x energy usage

* Y.pp P =price (value) of product x product flow rate

Typical process constraints:
* Product quality (purity)
e Environment (amount and purity of waste products)
e Equipment (max. and min. flows, pressures)

Typical degrees of freedom (decision variables) (u)
* Flowrates: Feeds, splits (recycles), heating/cooling




Formulation of Real time optimization (RTO)

Process

. Model
Economic

MVodel _

4 /
///\1‘\\

" Process
constraints
v I/ ///

Optimal decision variables (u)
/ Optimal setpoints (y)

min J(x, u, d)

S.t.

x =f(x,u,d)

X : Internal variables
u: Decision variables

d: Parameter values / disturbances



Steady-state optimization

Find optimal operating point

min /(x,u,d)
S.t.
f(x,u,d) =0 3
g(x,u,d) <0
—
\"\'4

2
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Dynamic optimization

Optimize also path

T
min ) J(x(6),u(®), d()
t=1

S.t.
f(x(t), u(t), d(t)) = x(t) 5
gx(t),u(®),d(t) <0
x(0) =Xx




Workshop Roadmap — RTO Toolbox

Optimal Process Operation

Online Numerical
Optimization

1. Steady-state
Optimization

(SRTO)

Take home message: The different methods have their pros and cons. Choose the right tool for the problem at hand.



Workshop Roadmap

Optimal Process Operation

Model-free

Online Numerical 4. Optimization using
Optimization feedback control
| | |
‘ : 8. Active constraint Unconstrained

2. D.ynz.amlc.: 1. Stee_adyll—st:fute control optimum

Optl mization Optl mization (including switching |
( D RTO) (S RTO) without models) |
| Model—|Lased
: | I
3. SRTO using 6. Feedback RTO 5. Self-optimizing 7. Extremum
transient data (similar to Hybrid RTO) control

(Hybrid RTO)

seeking control



1. Conventional Steady-state Real time
optimization (SRTO)

Commercial approach



Conventional (commercial) steady-state
RTO

*u

. Process o+




Conventional (commercial) steady-state
RTO

Steady-state a
optimization

Step 1: Steady-state Estimation

sp Parameter d; = arg min | Vimeas — Fss (U, dk)l\i
y estimator d
Setpoint (Sta:ic) Step 2: Steady-state Optimization
= b S .
control Uy = arg min J(y,u)
lu S.t. Y = fss(u, ak)
u) <0
d Steady state g(y,u) <
— . Process - y
y detection




Conventional (commercial) steady-state RTO

» Steady-state models 5
Steady-state d

optimization

» Two-step approach

Parameter

T pr g ” lysp estimator

1. “Data reconciliation™ (Static)
Setpoint L
- Steady-state detection control
« Update estimate of d: model parameters, lu
disturbances (feed), constraints d
.. : : Steady state

2. Re-optimize to find new optimal steady — Process 5™ 4etect

state etection

uollel|12uod34 B1e(

D. E. Seborg, D. A. Mellichamp, T. F. Edgar, F. J. Doyle lll, Process dynamics and control, John Wiley & Sons, 2010.



Conventional steady-state RTO

* Typically uses detailed process models with full thermo package
* Hysys / Unisim (Honeywell)
* Aspen
* Invensys

 But traditional RTO less used in practice than one would expect

« Ethylene plants (furnace)
« Some refinery applications



Why is conventional RTO not commonly used?

Challenges (in expected order of importance):

1.

o o A WD

Cost of developing and updating the model (costly offline model update)
Wrong value of model parameters and disturbances d (steady-state wait time)
Not robust, including computational issues (computational cost)

Frequent grade changes make steady-state optimization less relevant
Dynamic limitations, including infeasibility due to (dynamic) constraint violation

Incorrect model structure

Krishnamoorthy, PhD Thesis (2019)
Krishnamoorthy, Foss, Skogestad, Computers & Chemical Engineering (2018)



Challenge 1 - Costly offline model development and
update

 Lack of domain/expert knowledge
« Change in process configuration

* Model simplification

Possible Fix: Data-driven methods based on measuring Cost (J)
(Extremum seeking control)
Recent interest — Machine learning and Al to develop surrogate models



Challenge 2 - Steady-state walit time

Steady-state

Frequent disturbances (d) fimizati
optimization

d

Parameter
estimator
(Static)

Long settling times lYSp
Data reconciliation step is infrequent Setpoint
Wrong value of model control
parameter/disturbances l u
Process operates sub-optimally for long _d,, Process

periods of time

Fix: Use dynamic model in estimation step (Hybrid RTO)

Steady state
detection

uollel|1uoda4 BIRe(




Challenge 3 - Computational issues

« Convergence issues and numerical failure
 CPU times
« scaling of variables

» Discontinouity and change in equations, e.g. new phase appears

Fix — Methods that do not need to solve numerical optimization problems

online (Feedback RTO)



Challenge 4 - Frequent changes in product grades

« Continuous process with frequent changes
in feed, product specifications, market
disturbances, slow dynamics/long settling
time

« Continuous with frequent grade transitions

« Batch processes

 Cyclic operations

Fix (if relevant) — Dynamic optimization methods (DRTO or EMPC)



Challenge 5 - Dynamic limitations

* Dynamic constraint violations
» Force variables to fixed set points, may not utilize all degrees of freedom

A steady-state optimization layer and a control layer may lead to model
Inconsistency

Partial Fix — Use setpoint tracking control layer below RTO



Challenge 6 — Incorrect model structure

« E.9. missing one chemical reaction

« Cannot be fixed by parameter updates

Fix — Modifier adaptation based on measuring Cost (J)



Human factors

» Corporate culture
« Technology competence

Fix — classical advanced control

Krishnamoorthy et al., (2019), Control Engineering Practice



2. Dynamic RTO = Economic MPC

Academic approach



Workshop Roadmap

Optimal Process Operation

Online Numerical

Optimization
|

2. Dynamic 1. Steady-state
Optimization Optimization

(DRTO) (SRTO)

(includin_g ‘

"NMPC). |

3. SRTO using

trapsigpkdata

Optimization using
feedback control

8. Active constraint

control
(including switching
without models)

4. Unconstrained
optimum

Model—|Lased

|
6. Feedback RTO

(similar to Hybrid RTO)

.
5. Self-optimizing
control

|
Model-free

7. Extremum
seeking control



Dynamic optimization

T
min ) J(x(6),u(®), d()
t=1

S.t.
f(x(t), u(t), d(t)) = x(t) 5
gx(t),u(®),d(t) <0
x(0) =Xx

B R N I N = T Oy S S NS




DRTO / Economic MPC

Optimize not only steady state, but also transients

» Continuous process with frequent changes in
feed, product specifications, market
disturbances, slow dynamics/long settling time

Continuous with frequent grade transitions

Batch processes

Energy storage

Cyclic operations

Directly address challenge 4 (frequent changes, non-negligible transient operation)



Dynamic RTO

Dynamic L d, X
» Uses dynamic models online optimization
lysp Parameter
- Repeatedly solve Dynamic RTO problem . S omator
for a given horizon Setpoint X
control (e
 Closely related to economic MPC l u
Process
y




Dynamic RTO/ Economic NMPC

measurements

T\/states_~

manipulated variable
sent to lower layer

past

future

<

estimation horizon

prediction horizon



Main idea

Step 1: Dynamic Estimation ] a 5
X
) . D.yn_aml_c Pl
d = arg o lymeas.k —h(xk, ug)| optimization
1. = f(xj_ 1, dg_ Parameter
b o 29 o (X1, We-1, di—1) lYSP estimator
Step 2: Dynamic Optimization - (Dynamic)
S ]
¢
u;, = arg min Z J(yg, ug)
=0 l u
S.t. Xg41 = f(Xk,uk,dk)
yr = h(xg, ug) Process -
g(ka uk) < 0

Xp = @& Vk € {0,...,N -1}



DRTO vs. economic NMPC vs. MPC

The main difference is the cost function
* DRTO - finds optimal yq,,

]econ = pFF + pQQ_ppP

« ENMPC - finds optimal u
J = Jocon + W AUu?

« MPC — finds optimal u
2
]sp =(y i YSp) +w Auz

’\/mmm
> <
Ve -~
S @)
-
-

S nts

past

manipulated variable
sent to lower layer

LI e e e e e 7

future
>

estimation horizon

prediction horizon



Economic MPC ~ Dynamic RTO

d, X Dynamic L d, X
- ] ] ]
_ optimization
Economic- > :
arameter
NMEPC IEa;;?arrr}‘eécgrr lVSP estimator
(dynamic) Setpoint (Dynamic)
I 3
control
l u
| u
Process
y Process
y
 Centralized “All-in-one” optimizer * Hierarchical layers with time scale
separation

 Higher sampling rates
 Lower sampling rates

Usually in Economic MPC a lower layer is also included, e.g. perfect level control, etc..



Dynamic RTO S | %

optimization

sp Parameter
y estimator

Main advantages: Setpoint (Dymami
control

* Optimize dynamic path u

* Avoid steady-state wait time Process —

Main Challenge: Complexity, cost of modelling and
Implementation

 Trade-off
Cost to make it WOrk (ums==sy and improved profit.



Complexity: The challenge with Dynamic RTO

omputational issues

Uncertainty

Implementation issues

Obtaining and maintaining an accurate dynamic model

Sulfur

Butanes — Ha$ from
Sour Water Stripper

Naphtha

Heavy Reformate

Naphtha

Jet Fuel Jet Fuel Gas Hy
and/or
Kerosene Kerosene

Hydrocracked Gasoline

Diesel Qil Diesel Oil
Gas

i-Butane
Alkylate

non-condensibles

tmospheric

A

Gas Oil

Heawy

acuum Coker Naphtha

(after hydrotreatng and reforming)

= e Hy$ to Sulfur Plant
Coker Gas Oil

| Vacuum Residuum Sour
Wiaters
——a= Petroleum Coke
\
Stearmn

L Stripped
" iater

- Finished products are shown in blue

- Sour waters are derived from various distilation tower
reflux drums in the refinery

- The "other gases”
includes all the gas
pro. nits

! Natural Gas
tering the gas proce:
reams from the vari

ing unit

Stearn




Obtaining and maintaining an accurate dynamic
model

* Modelling efforts
« Requires plant testing over larger operation range

» Trade-off between learning model parameters and optimal operation

Challenge 1 — worse than before



Computational issues (challenge 3)

« Computational cost for solving the large NLP
« Computational robustness and convergence issues

* Discrete and nonsmooth decisions
» Lead to mixed integer optimization problems
« Cannot be solved in real-time for large systems

Challenge 3 — worse than before



Implementation issues

» Tuning, regularization weights in cost function
 Typical cost in practice

Jenmpc = Jecon T W1 ]sp + w; ]input

 Allowing for manual operations

« What to put into which layer?

 Measurement faults, reliable state and parameter estimation

Require many Ad-hoc problem-dependent solutions



DRTO and EMPC has many potential benefits

* Reduced amount of off-spec product

 Agile operational strategy:

 Demand-side management
» Load-balancing services

* For some processes, optimal operation is not at a steady
state (Angeli 2011)

Objectives

CENTRALIZED
OPTIMIZER

Present state

* Promise: Truly optimal operation s
o Process control excellent candidate e
for centralized control




Research focus in academia

° Stablllty of ENMPC } Proofs mainly of concern for academia

* Numerical issues )
« Computation speed > Handle computational complexity in real-time
» Decentralizing

* Uncertainty X
« Stochastic MPC
* Robust MPC ,
« Chance constraints
* Dual and adaptive MPC

Typically add complexity

But these are not addressing the main limitations of current industrial practice!

Main Challenge: Complexity, cost of modelling and implementation



Economic NMPC — skeleton in the closet

T
min ) J(x(6), u(®), d(2)
t=1

S.t.
f(x(t), u(t),d(t)) = x(t)
g(x(t),u(t),d(t)) <0 o
x(0) =x

* Need to know the current state of the system

» (Often state measurements are not available

 Need to estimate states



NB! Estimator + Controller

A

X State

Optimal
Guaranteed Margins for LQG Regulators Controller
JOHN C. DOYLE
Abstract—There are none. ¥
INTRODUCTION 4

Considerable attention has been given lately to the issue of robustness
of linear-quadratic (LQ) regulators. The recent work by Safonov and Plant
Athans [1] has extended to the multivariable case the now well-known
guarantee of 60° phase and 6 dB gain margin for such controllers.

Estimator

a

However, for even the single-input, single-output case there has re-
mained the question of whether there exist any guaranteed margins for
the full LQG (Kalman filter in the loop) regulator. By counterexample,
this note answers that question; there are none.

John Doyle (1985):
There are two ways a theorem can be wrong

(from an engineering point of view):
e Either it’s simply wrong
e Or the assumptions make no sense

Doyle, J.C., 1978. Guaranteed margins for LQG regulators. IEEE Transactions on automatic Control, 23(4), pp.756-757.

Skeleton in the
closet?



3. Steady-state optimization using Transient
Measurements — Hybrid RTO

No need for steady-state detection (SSD)

Krishnamoorthy, D., Foss, B. and Skogestad, S., 2018. Steady-state real-time optimization using transient measurements. Computers
& Chemical Engineering, 115, pp.34-45.



Workshop Roadmap

Optimal Process Operation

Online Numerical Optimization using
Optimization feedback control
| | |
‘ : 8. Active constraint 4. Unconstrained
2. D.ynz.amlc.: 1. Stee_adyll—stz.ate control optimum
Optl mization Optl mization (including switching |
(D RTO) (S RTO) without models) |
(including | ModeI—Lased Model-free
economic |
NMPC) : ‘ : | | s
: SRTO using 6. Feedback RTO 5. Self-optimizing : E>l<tremum
transient data (similar tolFybrid RTO) control seeking control
(Hybrid RTO)




Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model (costly offline model update)

2. Wrgntg )value of model parameters and disturbances (slow online model
update

3. Not robust, including computational issues
4. Frequent grade changes make steady-state optimization less relevant

5. Dynamic limitations, including infeasibility due to (dynamic) constraint
violation

6. Incorrect model structure



Traditional Steady-state RTO

Steady-state
optimization

d

<

B

Setpoint
control

Ju

Process

Parameter
estimator
(Static)

Steady state
detection

Step 1: Steady-state Estimation

&k — arg Iglll Hyfmeas — fss(uk7 dk)”é
k

Step 2: Steady-state Optimization

uj,; = arg min J(y, u)

s.t. y = fuq(u, dy)
g(y,u) <0



Steady-state detection

 Based on statistical tests,

SHON , 1 e N
S° = (x; — X)?
2

n—1

1 n
Sczi — z(xi — Xi-1 )*
(=2

n—1
2
Sd
R=—2
S

In practice - some heuristics

_ max(s3, su)

g2

Von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 1941, 12, 367-395
Cao, S.; Rhinehart, R.R. An efficient method for on-line identification of steady state. J. Process Control 1995, 5, 363-374



Steady-state wait time

1. Transient measurements cannot be used
2. Large chunks of data discarded

3. Steady state detection issues

* Erraneously accept transient data

* Non-stationary drifts



" Large chunks of data
o
-4
S discarded
May 02 May 03 May 04 May 05 May 06 May 07
Erroneous SSD y
R NETXT h
1k q 127 | =———y=0.01t u“" q
I _ . '
....... y =1.0 sin(t) ! ,\| o 1" |"l"_
0.8+ | .
0.6 : =
- ~ NI TN NS ol L hed sl sl §
0.4+ i S
0.2+ | .
0 I -
0.2 - L 1 1 1 | -4 I I L L |
50 100 150 200 250 300 350 0 20 40 60 80 100 120
t (min) Time (min)

Source: Camara MM, Quelhas AD, Pinto JC. Performance
Evaluation of Real Industrial RTO Systems. Processes.
2016, 4(4).



How to address steady-state wait time?
« OBVIOUS: DYNAMIC RTO

, e Dynamic d, x
Step 1: Dynamic Estimation _ . B
. . optimization
dy = arg min ||ymeas,x — h(xx, ug)||
di sp Parameter
st. xp = f(xp—1,up—1,di_1) y es(g'ma_tg)r
. namic
Step 2: Dynamic Optimization Setpoint i’ .
N-1 control |«
u; = arg min Z J(yr, ug)
R, u
S.t. Xk+1 — f(Xk, Uug, Elk)
yr = h(xg, uy) Process y
g(yr,ur) <0
Xy = &y Vk € {0,...,N — 1}

Dynamic RTO has problems — especially the optimization part



Hybrid RTO

Steady-state d Steady-state d Dynamic d, x
optimization optimization X optimization |
sp Parameter sp Parameter sp Parameter
y estlsmator y estlmafcor y es;c)lmafcor
Setpoint L Oeio Setpoint (Dynamic) Setpoint (Dynamic)
control control control
u u u
Steady state
Process y"  detection Process y Process y

Dynamic Estimation
+

Static Optimization

Krishnamoorthy, D., Foss, B. and Skogestad, S., 2018. Steady-State Real-time Optimization
using Transient Measurements. Computers and Chemical Engineering, Vol 115, p.34-45.



Hybrid RTO

Steady-state a

Step 1: Dynamic Estimation optimization - 4

d; = arg ngin HYmeas,k — h(Xk’v uk)” . Parametér
k ly i estimator

s.t. X = f(Xk_l, ur—1, dk—l) : (Dynamic)
N Setpoint .
Step 2: Steady-state Optimization et e
wi,, = arg min J(y, u) [
s.t. y = fss(u, fik)
g(y,u) <0 Process -

Krishanmoorthy, Foss, Skogestad, Comput & Chem Eng (2018) — Hybrid RTO
Matias & Le Roux, J. Proc. Control (2018) — ROPA
Valluru & Patwardhan, Ind. Eng. Chem. Res (2019) — Frequent RTO



Modelling effort

™

* Mass balance
Often leads to Differential Algebraic Equations

* Energy balance - (in chemical processes, typically Index-1 DAE)
0O — dx
E — f(x, Z, U, d)

z =g(x,zu,d)

Corresponding steady-state model:

f(x,z,u,d) =0
g(x,z,u,d) =z



Augmented Kalman filter for state and parameter estimation

« Uncertain paramteres d are added with a small artificial Gaussian noise term

diir1 = dy + wy «

 The Augmented system is then given by :

Xk—i—1] _ £ (xk, ug, di) ‘|‘Wk]

/
X —
Ko [dk-l—l di + wq «

Ymeas k = :h(xk: uk) O} [dk] + Vg

« Use e.g. EKF to estimate the augmented state and parameters

The maximum dimension of the disturbance d that one can choose, such that the augmented system
remains detectable is equal to the number of measurements (i.e. ny < n,)

Simon, D., 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.



Constraint: Max Gas capacity

CASE STUDY: Gas lift

Main objective: Max oll prod.

Wpo Wpg
ng - 5
I 2 — (2 —
MV MV, ruax J = <$o Z Wpo, — $gl Z ng,-) — $fIHWf/”
gl ieN iEN
s.t. Z S/
ieEN
* Reservoir '

Main disturbance (d): GOR variation
GOR = Gas/Qil ratio in feed (reservoir)



Disturbance: GOR variation

0.14 .
o5 0.12 _\—\_} .
=< well 1|
oD
~
e 0.1}
8 well 2

0.08

0 2 4 6

time |h]



Typical measured data (pressures and flowrates)

ot
N

(@
\)

ot
o
T

W
=

wellhead pressure [bar]
S
0]

well1 7
well 2

S
o~

—
o
D

bottom hole pressure [bar]
S o
[\ =~

well 1
well 2




GOR estimation - using “data reconciliation” (traditional static RTO)

0.14 . .
1 ’ T
o0 0.12 | = _;-—_I—"'—\;_‘ H
< e [ [T =
o T | e————
= — o | I |
m 0lf—LT T | | ,
8 well 2 : : I I
L : J
0.08 I :
0 2 4 6 8 10 12

Problem: Steady-state wait time for data reconciliation



GOR estimation — using extended Kalman filter (DRTO & HRTO)

0.14 T T T T T
Eo.m—‘ _:\__\_[ ]
= | I _— I~
b | | | | |

ey
0.1 f=—— | I I I , I
8 I I | | | |
| ' ' — e
0.08 | — :_ i




Oil and gas rates

SRTO = traditional static RTO
HRTO = hybrid RTO
DRTO = dynamic RTO

For MATLAB code, contact: dineshk@ntnu.no



http://ntnu.no

3,5

2,5

1,5

0,5

Results

Computation Time [s]

3,3631

0,0184 0,0223 0,0199 0,0282

SRTO

HRTO

M avg. time MW maxtime

DRTO

Integrated Profit

2,7019

2,7509

SRTO

HRTO

DRTO



Advantage of steady-state optimization (SRTO & HRTO)

* Computation time & numerical robustness
* Avoids causality issue / index problems

 Allows optimization on decision variables other than the MVs
« Simplifies the optimization

» Slower time scale (choose slow varying variables as decision
variables)



Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model structure (costly offline model update)
2. Wrong value of model parameters and disturbances (slow online model update)

3. Not robust, including computational issues

4. Frequent grade changes make steady-state optimization less relevant

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation

6. Incorrect model structure



Dynamic limitations — not a big issue

MV2: Setpoint provided to tracking controller Actual MV move by setpoint tracking NMPC
0’ 1.5 T T T T 0| T 0 1.5
~ :! |- E
& I i =
™ I L i ™
3 ! i b j = 1f
= i .-
" . O
% 04 r TR |
— . o I L L - :
= A T AN =
% s | 7
[ay] !I I I' <
U O L ] .I U O
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time |h] time [h]

SRTO = traditional static RTO
HRTO = hybrid RTO

DRTO = dynamic RTO



Oil and gas rates

SRTO = traditional static RTO
HRTO = hybrid RTO
DRTO = dynamic RTO



Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model structure (costly offline model update)
2. Wrong value of model parameters and disturbances (slow online model update)

3. Not robust, including computational issues

4. Frequent grade changes make steady-state optimization less relevant

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation

6. Incorrect model structure



4. Optimal operation using Feedback Control

Translate economic objectives into control objectives



Course Roadmap

Online process optimization

Numerical OFtimization Optimization using } (including switching between active
constraint regions using classical
‘ feedbaCk Control advanced control elements)
|
Dynamic Steady-state s _ |
Optimization Optimization Active cons;cralnt Uncon.stralned
contro optimum
(DRTO) (SRTO) (no models needed) |
|
Model—|Lased Model-free
SRTO using | 1
transient data Feedback RTO Self-optimizing Extremum

(Hybrid RTO) (similar to Hybrid RTO) control seeklng control



Feedback optimizing control

» Translate economic objectives = control objectives
« Dates back to the 1980’s (Morari et al., 1980):

“We want to find a function ¢ of the process variables which when held constant, leads
automatically to the optimal adjustments of the manipulated variables, and with it, the
optimal operating conditions.”

« Gained popularity since 2000 (Skogestad, 2000)

Benefit : Avoid solving numerical optimization problems online

M. Morari, Y. Arkun, and G. Stephanopoulos. Studies in the synthesis of control structures for chemical processes: Part |: Formulation of the problem. process
decomposition and the classification of the control tasks. analysis of the optimizing control structures. AIChE Journal, 26(2):220-232, 1980.
S. Skogestad ""Plantwide control: the search for the self-optimizing control structure", J. Proc. Control, 10, 487-507 (2000).



Do we always need to solve an optimization
problem??

» We often know or can guess the optimal solution
« Example: Drive from A - B in shortest time
G |

 CV = speed -2 speed limit 50km/h

« MV = gas pedal

Can translate economic objectives into control objectives



Do we always need to solve an optimization
problem??

» We often know or can guess the optimal solution

« Example: Drive from A - B in fuel economical way

« CV=77

« MV = gas pedal



Do we always need to solve an optimization
problem??

» We often know or can guess the optimal solution

« Example: Drive from A - B in fuel economical way

« CV = self-optimizing variable (less obvious)

« MV = gas pedal



Easy case: Constrained optimum

e u: MV J
* What to control?

* Control the active constraint
at its limit Jopt




The less obvious case: Unconstrained
optimum

e U: unconstrained MV
* What to control? y=CV=?

Jopt

uopt



What to control ?

Control (in this order) :

1. Active constraints

2. Self-optimizing variables (for remaining unconstrained MVs)

O
O

But what are these?



5. Self-optimizing Control

S. Skogestad ""Plantwide control: the search for the self-optimizing control structure", J. Proc. Control, 10, 487-507 (2000).



http://www.nt.ntnu.no/users/skoge/publications/2000/self1/
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Example: Optimal operation of runner

» Cost to be minimized, J=T
* One degree of freedom (u=power)
* What should we control?




1. Optimal operation of Sprinter

* 100m. J=T

 Active constraint control:
« Maximum speed ("no thinking required”)
« CV = power (at max)




2. Optimal operation of Marathon runner

« 40 km. J=T
« What should we control? CV=?
* Unconstrained optimum

| \ J




Marathon runner (40 km)

* Any self-optimizing variable (to control at
constant setpoint)?
» c, = distance to leader of race
* C, = speed
* C;= heart rate
* ¢4 = level of lactate in muscles



Self-optimizing control

Self-optimizing control is when we can achieve an acceptable loss with
constant setpoint values for the controlled variables

(Skogestad, 2000)

C | <= constant

Loss

Reoptimized J Opl(d)

S. Skogestad ""Plantwide control: the search for the self-optimizing control structure", J. Proc. Control, 10, 487-507 (2000).



What is a good self-optimizing variable”?

« High gain
* Insensitive to disturbances

« Easily measurable (Available for
feedback)

* e.g. ratio control
Is there any systematic procedure?

(b) Flat optimum: Imple- (c¢) Sharp optimum: Sensi-
mentation easy tive to implementation erros

1. Sensitive variables: “Max. gain rule” (Gain= Minimum singular value)
2. “Brute force” loss evaluation
3. Gradient, J =0

4. Optimal linear combination of measurements, ¢ = Hy



Unconstrained optimum: NEVER try to control directly the cost

J- \\ //
J>Jmm : :

Jmm

____________________

J<Jmm E E ?
>
u

 Assume we want to minimize J (e.g., d =V = energy) - and we make the
stupid choice os selecting CV =V =J
« Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)

 and setting J > Jmin: Forces us to be nonoptimal (two steady states: may require
strange operation)

« Control gain sign changes !! (cannot control with a single PID controller)



|deal self-optimizing variable : Cost Gradient

1
%(u*, d) =J,(u",d) =0
 The ideal controlled variable is the
gradient 0o

« May use simple feedback controller to
control the gradient to constant setpoint

of zero.

Problem: We do not usually have gradients as measurements



In practise: use available measurements: ¢ = Hy

Task: Select optimal selection matrix H
 Single measurements (e.g. select y, and y,)

101 0 0 O
= [0 0 O I | 0]
* Linear combination of measurements

H = hll h12 h13 h14 hlS]

h21 h22 h23 h24 h25

I cSP = constant

Controller [«

C

Plant

y

[+ ]




Nullspace method

Linear combinations of measurements, ¢ = Hy

Given sufficient measurements n, =n,+ny and no measurement noise,
select the optimal selection matrix H, such that

+ HF = 0

H - Optimal selection matrix

F — Optimal sensitivity matrix F = %”—t

V. Alstad and S. Skogestad, _Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables", Ind.Eng.Chem.Res, 46
(3), 846-853 (2007).



https://folk.ntnu.no/skoge/publications/2007/alstad_iecr_nullspace

Nullspace method

Controlling ¢ = Hy to a constant setpoint, yields locally zero loss from
optimal operation

Proof:

Measurements: y = Gyu + Gydd
Assume c = Hy,
0Yopr = F 0d
dCopr = HF 0d
To make dc,y, =0 for any dd, we must have HF = 0

V. Alstad and S. Skogestad, _Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables", Ind.Eng.Chem.Res, 46
(3), 846-853 (2007).



https://folk.ntnu.no/skoge/publications/2007/alstad_iecr_nullspace

Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, = v [m/s]
c = Hy, H=1[h; hj]

= 2w =025 -0.2]"
HF=0 > h,f,+h,f,=025h,—02h,=0

Choose hy=1 2> h,=0.25/0.2=1.25

Conclusion: c = hr+1.25v
Control ¢ = constant -> hr increases when v decreases (OK uphill!)

V. Alstad and S. Skogestad, _Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables", Ind.Eng.Chem.Res, 46
(3), 846-853 (2007).



https://folk.ntnu.no/skoge/publications/2007/alstad_iecr_nullspace

Exact local method for H

“=0"in nullspace method (no noise)

mmHJuul/Q(HGy) 1H[FWd Wy ]|l2

I N _/
~ ~

“Minimize” in Maximum gain rule “Scaling” S
( maximize S;1 G J,, 2, G=HGY)

Analytical Solution:
H' = (YY" !GY

where, Y = [FWyq W,y]



What variable c=Hy should we control? (self-optimizing
variables)

mmu.}uul/?(HGY) 'HFWyq Wyl
-

1. The optimal value of ¢ should be insensitive to disturbances
Small HF = dc,,/dd

2. The value of ¢ should be sensitive to the inputs (“maximum gain rule”)
Large G = HGY = dc/du
Equivalent: Want flat optimum

Note: Must also choose setpoint for self-optimizing variables ¢
 Many cases: Fix at nominal optimum
 Some cases: Slowly update by optimizing layer



CSTR case study

Ca,:iCB,

Y Y

A= B T;

x=[Ca Cg T]|'
u=— T,'
d=[Ca, Cg

]T

in

J=—p;; Cs + (P, Tin)2 ~_ -

Economou, C. G.; Morari, M.; Palsson, B. O. Internal model control: Extension to nonlinear system. Industrial & Engineering Chemistry Process
Design and Development 1986, 25, 403—411.



Simulation results ¢ = Hy

()

Profit J [$/s]
N

—

=

(%)
T

[\)
T

Acceptable loss

I
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=

1000
time [s]
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2000
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N
o
o

[\
=
(e}

[

500

1000
time [s]

1500

2000




Self-optimizing control (SOC)

Local approximation: ¢ = Hy. Challenges SOC:

Need detailed steady-state model to N

find optimal H
. Nullspace method * Need new SOC variables for each
« Exact local method active constraint region
* Must reoptimize for each expected - Similar to multiparametric optimization
disturbance and lookup tables

But calculations are offline



Necessary condition of optimality

J
%(u*, d) =J,(u",d) =0
* The ideal controlled variable is the .
gradient w u

« May use simple feedback controller to
control the gradient to constant setpoint
of zero.

Problem: We do not usually have gradients as measurements; But we can estimate !



6. Feedback RTO

Model-based gradient estimation

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2019. Steady-state real-time optimization using transient
measurements. Industrial and Engineering Chemistry Research 115, pp.34-45.
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Feedback RTO: Replace steady-state optimization by
feedback control

Feedback RTO Hybrid RTO
X =Ax+ Bu |« a
J=Cx+Du [ d X Ra
A Parameter Parameter
Ju estimator estimator
B 0| Setpoint (Dynimlc) Setpoint (Dynim'c)
control control
E v
Process
y Process y

D. Krishnamoorthy, E. Jahanshahi, and S. Skogestad. A feedback real time optimization strategy using a novel steady-state gradient estimate and
transient measurements. Industrial and Engineering Chemistry Research, 58: 207-216, 2019




Feedback RTO

e Step 1 — Linearize the dynamic model around the current operating

point

=

e Step 2 — At steady-state x = 0

J=(-CA*B+ D)u
Ju

x = Ax + Bu

J=Cx+ Du
A:
C:

Of
Ox

Ox

D. Krishnamoorthy, E. Jahanshahi, and S. Skogestad. A feedback real time optimization strategy using a novel steady-state gradient estimate and

transient measurements. Industrial and Engineering Chemistry Research, 58: 207-216, 2019



Feedback RTO

x = f(x,u,d) x = f(x,u, d)
J =g(x,u,d) y = h(x, u)

A B . .
Gradient [C D] Linearize S
<€— model from<——  parameter -

>
Q)

Estimation Lo ) jvinione

:lu — —CA 1B+ D

Feedback
—>

Controller L» Process y Y meas
—» (e.g. PID) T”y

J,2P=0
ta

D. Krishnamoorthy, E. Jahanshahi, and S. Skogestad. A feedback real time optimization strategy using a novel steady-state gradient estimate and
transient measurements. Industrial and Engineering Chemistry Research, 58: 207-216, 2019



CSTR case study

Ca,:iCB,

Y Y

A= B T;

x=[Ca Cg T]|'
u=— T,'
d=[Ca, Cg

]T

in

J=—p;; Cs + (P, Tin)2 ~_ -

Economou, C. G.; Morari, M.; Palsson, B. O. Internal model control: Extension to nonlinear system. Industrial & Engineering Chemistry Process
Design and Development 1986, 25, 403—411.



Comparison of RTO approaches: MV

460

440

B S

New method
- DRTO |
SRTO
HRTO
] ] ] ]
500, 1000 1500 2000
time |[s]

t =400 s,
t =1400 s,

d1: Increase Cx,
d2: Increase Cg;j,



Comparison of RTO approaches

COMPUTATION TIME INTEGRATED LOSS
248.1 342.3 257.1 247.1
FEEDBACK  SRTO HRTO DRTO FEEDBACK  SRTO HRTO DRTO

RTO RTO



Comparison with self-optimizing control

SOC: Acceptable loss

FRTO: zero loss /
5 . . . \.\ 600

Feedback RTO
4L = SOC
T 0]
~ @2 400
®. 3L 9
~ g
o
g 2} =
bt £ 200
R 2
1r =
i
0 L L 1 1 O If ] ] |
0 500 1000 1500 2000 0 500 1000 1500 2000
time [s] time (s]

For MATLAB code, contact: dineshk@ntnu.no
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Other application examples

in

3-bed Ammonia reactor

=

U

Bed 1

>

Bed 2

K

Up,2

Uo,3

S\

g\

Gas-lift optimization

riser
—

oil export

for ]

N

Steam

Condensai,:3
14_ Product

Feed

Evaporator process

Evaporator

()
Separ

Isothermal reactor

u1=FA

FURURISUSUS

William-Otto reactor

Fa Fa

Bonnowitz et al,. CACE (2018)

Krishnamoorthy et al., IFAC
OOGP (2018)

Krishnamoorthy et al., (2019)
PSE Asia

Krishnamoorthy & Skogestad,
I&ECR (2019)

Krishnamoorthy & Skogestad,
CACE (2020)



4. Generalized framework for optimal CV
selection

Linear Gradient Combination



Consider the Optimization problem

min  J(u,d) - Lagrangian function:
u
s.t. min £(u,d) = |J(u,d) + A" g(u,d)
u
g(u,d) <0
« KKT conditions / Necessary conditions of optimality:
ucR™ geR™ Vol(u,d) =V,J(u,d) +A"V,g(u,d) =0
: : < : e
no .of active constraints : n, < n, g(u, d) <0 (Primal feasibility)
g, g g )\Tg(u, d) —0 (complementary slackness)
A >0 (Dual feasibility)

gA(U,d) =0—>X >0
Complementary slackness = gi(u,d) <0 — A\ =0

Ll d) =J(u d)+ P M) [ggﬁ((:' j))] =g, d) + ATga(u, d)




Linear gradient combination as self-optimizing CV

* Necessary condition of optimality is satisfied when:

VuJ(u,d) + AL Vaga(u,d) =0
=V,J(u,d) = -\ V,ga(u,d)

* Pre-multiply by N, such that N is in the nullspace of the constraint gradient

N'V,J(u,d) = —\NTVugA(u, d)jT)\

Y
=0
» Self-optimizing variable: Linear gradient combination

c=N"V,J(u,d)=0

Krishnamoorthy, D. and Skogestad, S. (2020), Linear Combination of Gradients as Optimal Controlled Variables, Computer Aided Chemical Engineering



What to control ?

Control (in this order) :

1. Active constraints ga(u,d) =0

2. Linear gradient combination ¢=N"V,J(u,d) =0

48] e
- D Linearize
Gr.adler.1t <¢— model from
Estimation

utoJ

J,=-caB+D

> Feedback u
Controller — ! Process
— > (e.g. PID)

J,P =0
4



Different operating scenarios

ng = ny « Case 1: fully constrained - active constraint control

Krishnamoorthy, D., and Skogestad, S., 2019. Online process optimization with changes in active constraint sets using simple feedback control
structures, Ind. Eng. Chem. Res. Vol. 58 (30), pp. 13555-13567



Different operating scenarios

ng = ny « Case 1: fully constrained - active constraint control

n, =0 « Case 2: fully unconstrained - control cost gradient to zero (i.e. N =1)

0 < n; <n, < Case 3: partially constrained — active constraint control + linear
gradient combination ¢=N"V,J(u,d) =0

na > ny « Case 4: over constrained — active constraint control (give up less

important constraints)

Krishnamoorthy, D., and Skogestad, S., 2019. Online process optimization with changes in active constraint sets using simple feedback control
structures, Ind. Eng. Chem. Res. Vol. 58 (30), pp. 13555-13567



Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model structure (costly offline model update)
2. Wrong value of model parameters and disturbances (slow online model update)

3. Not robust, including computational issues

4. Frequent grade changes make steady-state optimization less relevant

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation

6. Incorrect model structure



Recap: What to control ?

Control (in this order) :

1. Active constraints

2. Self-optimizing variables (for remaining unconstrained MVs)

a. Linear measurement combination (model used offline)

b. Linear gradient combination (model used online to estimate gradient)

Can we estimate the gradient model-free?



Model-free approaches for unconstrained optimum

/. Extremum Seeking Control

Data driven optimization approach
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Data-driven gradient estimation

* We do not use a model to estimate the steady-state gradient

« Estimate gradient experimentally
« NB! Need Cost measurement

« Similar approaches
« Extremum seeking
« NCO tracking
« Hill climbing control
» Experimental optimization



Extremum Seeking Control — Main idea

Probe the
system

Decide Observe
which way to how the cost
move changes

Estimate
Gradient

AJ =0

A |

VV:

Assume the plant to behave like a static map



Steady-state gradient: Finite difference approach

« Choose T, such that the system reaches steady-state within T

* Perturb the input

u(t) = 1P 2kT <t < (2k+1)T
Cluk+Au Rk+ DT <t<(2k+2)T

« Estimate the cost gradient

A J((2k+2)T) — J((2k+1)T)

Jy=— =
Au Au

« Update input (gradient descent)
u—=u-+K;-J,

« NCO-tracking uses Finite difference approach



Classical Extremum seeking control

asin wt
integral Ju Low pass i Hich pass
action . filter g_ > -
filter
d; u
asin wt
» Plant y o J(y)

Draper & Li (1951)
Krstic & Wang (2000)



Sinusoidal perturbation

u-+ asinwt

T(—)
c

Low pass
filter

Special case of Fast Fourier Transform (FFT) - single frequency case

asinwt

High pass
filter




Sinusoidal perturbation

P/ 1\ LA
A WV

u-+ asinwt

asinwt

Low pass
filter

-

{0
{{

Special case of Fast Fourier Transform (FFT) - single frequency case

High pass
filter

asinwt

—

Jo X asinwt

[

»
|

|

A

v



Classical Extremum Seeking Control

Needs to approximate
plant as

Typically 100 times slower than the system
dynamics !

Usually not a problem for electro-
mechanical systems

» System dynamics in ms - converges within a
seconds

Prohibitively for chemical
processes with slow dynamics

« System dynamics in min - takes days to

converge!



Williams-Otto Reactor

F A+B —C ki = 1.6599 x 1066—6666.7/TT
Fa q B+(C—P+FE ky = 7.2177 x 108 78333:3/T+
C+P—G ks = 2.6745 x 1012~ 111/ T

m

ax
Tr _ i
X X 0
%, e 4 79.93F, + 118.34F
max vr XA XB’>)<C s.t. xg < 008, rA < 0.12

xC Xp, XE, XG

x; always active




Classical Extremum seeking control

7

76.5 -

76 |

2T,

MV

5.5}

75

74.5

0 20 40 60 80 100
Time [days]

For MATLAB code, contact: dineshk@ntnu.no

0 20 40 60 80 100

Time [days]
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Fast Fourier Transform (FFT)

Multivariable Gradient estimation

oJ
A Du; (FFT
|
_______ ~ _ L - _ _ _ _ _ _ _ _ o
. N,
' | —»
l | | t
: ' U, |
| : ‘ |
|
1 ' Au~(N)1 '
uz(N) ¢ N |
l | >: >
) > t

Krishnamoorthy & Skogestad (2020)



Fast Fourier Transform (FFT)

Amplitude spectrum

Multivariable Gradient estimation

Time t

Single-Sided Amplitude Spectrum of Jo(t)

T = 1T (1) s [65(w) - b, (wi)], Vi= 1, o

Krishnamoorthy & Skogestad (2020)



77.5 \ T T \ 4

0 20 40 60 80 100 0 20 40 60 80 100
Time [days] Time [days]

For MATLAB code, contact: dineshk@ntnu.no
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Least square Extremum seeking control

J 4 - » Over a moving window of past N data
J=du utm samples, fit

J=J,"u+m
» Using linear least squares estimation

0 = arg mein Y — 793

Y = [Jk, Jk_l, ey Jk—N+1]T

U= [uk, ceey uk_N+1]T

0=[ . m", &=[U,1]"

Hunnekens et al. (2011)



Least square Extremum seeking control

Extremum seeking controller

J

J Gradient
I-control ——— estimator fJ—
(LSE) ‘ Buffer
e  —_ _
U= U 5 Process Lb J(y) J

Hunnekens et al. (2011)

£

Fit a linear model

J=J,"u+m

Using least squares
estimation




Williams-Otto reactor example

77 T T T T 4
3.8+
76.5 - . 3.6 -
3.4+
76 | . 3.2+ v
= & J’,I"'N"
75.5 F E 2.8+
2.6
75 [ - 2.4+
2.2+
745 1 1 1 1 2 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
Time [days] Time [days]

For MATLAB code, contact: dineshk@ntnu.no
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Issues with Extremum seeking

Often cost function is a sum of several terms ) = Z pr b+ z Po Q _Z pp P

All terms must be measured

Estimation of cost requires model (dependency on model — no longer model free)

Dynamic plant assumed to be a static map

Three timescale separation: dynamics — perturbation — convergence

« Constant probing of the system may be undesirable

« Unknown and abrupt disturbances affects gradient estimation

ESC more suited for single units, but not for entire chemical plants



Extremum seeking using transient measurements

« Repeatedly Identify local linear “dynamic” black-box model.
* e.g9. ARX, ARMAX,...

x = Ax + Bu

Black-box linear dynamic model
J=Cx+ Du

« Estimate gradient from black-box linear dynamic model

J=(=CA™'B+ D)u
Ju

Bamberger & Isermann, Automatica (1978)
Garcia & Morari, AIChE J. (1981)



Recap: Gradient Estimation methods
Model-free Model-based

 Finite Difference
» Dither demodulation (Draper & Li, 1951)

» Linear least squares (Hunnekens et al., 2014)

Analytical gradient from updated model

« Dynamic system identification (Bamberger & Isermann,
1978)

Nullspace method (Alstad & Skogetad, 2007)

Feedback RTO (Krishnamoorthy et al., 2019)
» Fast Fourier Transform (Krishnamoorthy & Skogestad)

Neighbouring extremals (Gros et al., 2009)
» Multiple units (Srinivasan, 2007)

« Gausian process regression (Ferriera et al.,2018/
Matias & Jaschke, 2019)

 Fitted surfaces (Gao & Engell, 2005)

« Kalman Filter (Gelbert et al., 2012)



Recap: What to control ?

Control (in this order) :

1. Active constraints

2. Self-optimizing variables (for remaining unconstrained MVs)

a. Linear measurement combination (model used offline)

b. Linear gradient combination (model-based or )

— if cost and constraint measured!



Model-free approaches for constrained optimum

8. Optimal operation using classical
advanced control elements

Switching between active constraint regions
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Do we always need a model to optimize?

» We often know or can guess the active constraints
« Example: Drive from A - B in shortest time
G |

 CV = speed -2 speed limit 50km/h

« MV = gas pedal



Do we always need a model to optimize?

» We often know or can guess the active constraints

« Example: Drive from A - B in shortest time

o=

« MV = gas pedal 2> max

Optimal operation requires changing between active constraint regions !



Active constraint regions



How many active constraint regions?

e Maximum: 2"
min  J(u,d)

u

S.t.
« Some constraint combinations are
g(u, d) <0 infeasible, e.g. n, > n,

« Some constraints are always active, e.g.
most valuable product, material balance in
optimal flow split

« But there are usually fewer in practice

uecR™ g c R

« Some constraint combinations are never
active, e.g. max and min constraint on the
same variable



Classical “Advanced control” structures

1. Cascade control (measure and control internal variable)

2. Feedforward control (measure disturbance, d)
* Including ratio control

Change in CV: Selectors (max,min)
Extra MV dynamically: Valve position control (=input resetting =midranging)

Extra MV steady state: Split range control (+2 alternatives)

Multivariable control (MIMO)
» Single-loop control (decentralized)
« Decoupling
 MPC (model predictive control)

o O » W

Extensively used in practice, but almost no academic work

CV = controlled variable (y)
MV = manipulated variable (u)



Changing active contraints

Procedure for maintaining optimal operation when changing between active
constraint regions

« Step 1: Define all the constraints

- Step 2: Identify relevant active constraint combinations and switches
- Step 3: Propose a control structure for the nominal operating point.

- Step 4: Propose switching schemes (see next slide)

- Step 5: Design controllers for all cases (active constraint combinations)



Switching between active constraints

1. Output to Output (CV - CV) switching (SIMO)
«  Selector

2. Input to output (CV — MV) switching
« Do nothing if we follow the pairing rule: «Pair MV that saturates with CV that can be given up»

3. Input to input (MV — MV) switching (MISO)
«  Split range control
«  OR: Controllers with different setpoint value
«  OR: Valve position control (= midranging control)

Krishnamoorthy, D., and Skogestad, S., 2019. Online process optimization with changes in active constraint sets using simple feedback control

structures, Ind. Eng. Chem. Res. Vol. 58 (30), pp. 13555-13567
A. Reyes-Lua, C. Zotica, and S. Skogestad. Optimal operation with changing active constraint regions using classical advanced control. IFAC

ADCHEM, Shenyang, China, 2018.



Split range control: Donald P. Eckman (1945)

1€ temperature of plating tanks is controlled by means of dual con-
trol agents. The temperature of the circulating water is controlied by
admitting steam when the temperature is low, or cold water when it is
high. Figure 10-12 illustrates & system where pneumatic proportional
control and diaphragm valves
with split ranges are used. The Tﬂmt',m
steam valve is closed at 8.5 Ib
per 8q in. pressure from the con-
troller, and fully open at 14.5 1b
per 8q in. pressure. The cold
water valve is closed at 8 1b per
; 8q in. air pressure and fully open
at 2 1b per sq in. air pressure.
If more accurate valve set-
tings are required, pneumatic

valve positioners will accom lish
P P Fra. 10-12. Dual-Agent Control System

the same function. The Zero; . R . :

4 A for Adjusting Heating and Cooling of Bath.
action, and range adjustments e e
of valve positioners are set so that both the steam and cold water

valves are closed at 8 1b per 8q in. controller output pressure. The

advaan :l': 1C . 0 atal- a%a




Split-range control

PID

Hot water m

MV-MV switching
 When MV, saturates

MV, takes over

Example: Temperature
control, using hot and cold
water!



Split-range control (SRC)

One CV (y). Two or more MVs (u1,u2) Example: Room heating with 4 MVs

MVs:
% 1. AC (expensive cooling)
2. CW (cooling water; cheap)
3. HW (hot water, quite cheap)
Fitd 4. Electric heat, EH (expensive)

v—

Avac Avow Avgw Avgpyg
_,vmin:O ,vma.x=1

Internal signal to split range block (v)

Reyes Lua & Skogestad, Processes (2020)



Simulation Pl-control: Setpoint changes temperature
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Example: Room heating with 4 MVs

/\ MVs:

1. AC (expensive cooling)

b?‘ 2. CW (cooling water; cheap)
y=T 3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)
22¢

T 120

Three Alternatives:

1. Split range control (SP=22C)

Controllers with different setpoint values (SP=24C, 23C, 22C, 21()
Valve position control (= midranging control) (Use always HW for SP=22C)



CV-CV switching: Selector block

« Used when one input is used to switch between controlling several outputs.

« Each output has a separate controller and the selectors chooses which output

g
2.@
g

@

to use.




CV-CV switching: Selector block

For each MV

e at most 1 CV yy with setpoint control that may be given up

e n number of CV constraints y; that may be optimally active

u= min,-e[o,n](ui) or u = maXiE[O.n](ui)

li _é > Ki “ul _
yllml G]_ Yi
: 4 :

limit Gn
Yn ~ Kn ‘ - -

g Un Vn

selector




Min or Max selector?

Introduce logic variable for CV constraints . PAL!
limit -
1
] 1 for max-constraint
| =1, for min-constraint
ylimit
n Kn

selector

s

Yi

Yn

CV-CV switching is only if
sgn(Gi)sgn(y;™) = sgn(Gj)sgn(y;"™) Vi,j € {1, .., n}
and,

sgn(Gj)sgn(y;™) =1 =
sgn(G;)sgn(y/™) = -1 =




Isothermal CSTR Exothermic Reactor

* Krishnamoorthy &
Skogestad, I&ECR
(2019)

Gradient
Estimator

« Krishnamoorthy et al.,
Control Engineering
practice (2019)

Gas-lift Optimization William-Otto reactor

* Krishnamoorthy &

sp: 0
Vi1 -7 PID | W, Skogestad, CACE
: ' (2020)
Sp.$gl/$0
vi o PID 5p: 0
Sp : W vi—va | PID —Weh
Ny —> C 0
2 i e | PID % :

<l in
max Ny ngl
Woi  — Zizz Wel;




Case example: Exothermic Reactor

F CaiCp
T;
min  — F —2.009Cp + (1.657 x 107°T;)? £ j{ N

S.1.
g1 F/Fmam —1<0

go : T/T™ —1<0

g3 :Cx/CH*" —1<0 A=B

le :Tz
MVQ =F



Active Constraints

 Potential active constraint regions (23 = 8)

1.

o 9 O B W

Fully unconstrained (never)

. Only g, active (R-I)

. Only g, active (never)

. Only g5 active (never)

. g, and g, active (R-II)

. g, and g5 active (R-III)

. g and g5 active ( )

. g1, g, and g5 active (infeasible)

min
T, F

S.1.

— F —2.009Cp + (1.657 x 107°T5)*

g F/F™ _1<0
gy T/TT —1<0
g3 : CA/CZZ;CLSU —1 S 0



Active Constraints min  — F —2.009Cp + (1.657 x 107°T;)?

T;, F
S.t.
« Potential active constraint regions (23 = 8) g1 : F/F™* —1<0
, go :T/T™" —1<0
. g3ZCACmam—1§O
2. Only g, active (R-I) /Ca
3—Only-g,aetive £ 5 | : | !
: L B 5 R-I1 . R-III
4—Only-g;-active{never) 8 o, active o \ g, &
. @ . active active
5. g, and g, active (R-II) 09 \\
i=
6. g, and g5 active (R-III) Lf 0.8 | \\
. 5 Ca/Cio(gs) N
7.—g}—&ﬁd—g3—aeﬂ¥%€ } O ; T/T™" (g2): \ \
0.7 - — - F/F(g) N
&g, g,-and-g;-active(inteasible) ' ' ' i
wE i 0.7 0.8 0.9 1 1.1

2MV and 4 CV




Proposed control structure design

o5 = Cpe

g3 Uy — F
sgn(G;)zi = sgn(G)z; = £
g1 '< B
Tsp — Tmax
T
Uy = be
sgn(G;)z; = sgn(G;)z; =1
Vo, J
C

Gradient
Estimator

Ca,

2 MV and 4 CV

CB.i
V) Ci Cp
A= B T >

A A




Simulation results

C:Zp — CTME
C'A min Uy = F
selector CA,i CB,i
F*P F T, /\
F v
SO Ca Cp
A=1B ——
min u =T; \/ T
selector
A
Gradient
FEstimator

For MATLAB code, contact: dineshk@ntnu.no
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Williams-Otto Reactor

F A+B —C ki = 1.6599 x 1066—6666.7/TT
Fa q B+(C—P+FE ky = 7.2177 x 108 78333:3/T+
C+P—G ks = 2.6745 x 1012~ 111/ T

m

ax
Tr _ i
X X 0
%, e 4 79.93F, + 118.34F
max vr XA XB’>)<C s.t. xg < 008, rA < 0.12

xC Xp, XE, XG

x; always active




F. = 1.8275 kg/s

0.1

0 60 120
= = Proposed
Ideal
0 60 120
Time [min]

60

120

Fp
(=2}
—

MVQ:
=

60
Time [min]

For MATLAB code, contact: dineshk@ntnu.no
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For MATLAB code, contact: dineshk@ntnu.no
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max

MmaxXx

sy (|0

xqC

S e

XP,XE,XG‘

For MATLAB code, contact: dineshk@ntnu.no

82

_ 80

1 -

= 78

76

1.8

1.6

d: Fy

1.4

1.2

10

12

6 10 12
Time [h]

6 10 12
Time [h]

0.13

DT A

CVy

0.11

0.1

4.5

: Fg

3.5

MV,

2.5

Time [h]

Time [h]


http://ntnu.no

Comparison of model-based approaches
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For MATLAB code, contact: dineshk@ntnu.no
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Comparison of model-free approaches
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Why is traditional static RTO not commonly used?

1. Cost of developing and updating the model structure (costly offline model update)
2. Wrong value of model parameters and disturbances (slow online model update)

3. Not robust, including computational issues

4. Frequent grade changes make steady-state optimization less relevant

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation

6. Incorrect model structure, especially for unconstrained optimum



Can partially handle using Augmented Kalman filter

« Unmodelled effects are added as bias term A
Xk+1 = F(Xk, Uk, di) + Ag

 The Augmented system is then given by :

Xk_|_1] _f(xk,uk,dk) YAV —|—Wk]

4 —
Xp+1 = [Ak+1

Ymeas k = :h(Xk,Uk) O} [Ak] + Vg

« Use e.g. EKF to estimate the augmented state and the bias

Warning ! This is still not fully effective to handle structural mismatch

Simon, D., 2006. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.



9. Handling error in model structure

for cases where cost is directly measured



Estimation does not update model structure

« Updating parameters to match model predictions is not sufficient if the model
structure is wrong

« Good prediction model # good optimization model

« A simple fix to get consistency between model and true optimum cost function
is the method of “modifier adaptation”.

« An even simpler fix is update the bias on the gradient to a non-zero value in a
cascade manner.

P.D. Roberts (1979)



How should we modify the optimization problem

Key idea Add modifiers to make “optimality conditions” of the plant and optimality

conditions of the model match

« Plant Optimization problem

mdn]p
s.t.
Ip (w) <0

.

~

» Modified model optimization problem

minf, = J(u) + € + 4 (u — w)
s.t.
Im = gu) + +/1‘,z(u—uk) <0

Marchetti et al. (2009)

o

v

* |teratively repeat the optimization at
sample times k.



How to compute modifiers

e/ =], —J(w)
€d = gp(u) - g(u)

 First order modifiers (simplest approach to get consistency between the
model and the plant gradients)

Gradients from real plant

Use any model-free gradient estimation method
Marchetti et al. (2009) NB! Cost and Constraint must be measured



Recap: Gradient Estimation methods

Model-free

 Finite Difference
» Dither demodulation (Draper & Li, 1951)
» Linear least squares (Hunnekens et al., 2014)

« Dynamic system identification (Bamberger & Isermann,
1978)

» Fast Fourier Transform (Krishnamoorthy & Skogestad)
» Multiple units (Srinivasan, 2007)

« Gausian process regression (Ferriera et al.,2018/
Matias & Jaschke, 2019)

 Fitted surfaces (Gao & Engell, 2005)

« Kalman Filter (Gelbert et al., 2012)



Recap: Issues with model-free gradient estimation

Often cost function is a sum of several terms ] = ZPF F+ ZPQ Q —pr P

All terms must be measured

Estimation of cost requires model (dependency on model — no longer model free)

Dynamic plant assumed to be a static map

Three timescale separation: dynamics — perturbation — convergence
« Constant probing of the system may be undesirable

« Unknown and abrupt disturbances affects gradient estimation



10. Hierarchical combination of different
approaches

Some methods are complementary, not contradictory !



Why not combine different approaches to give
improved performance?!

Examples:
« Combining model-based and model-free approaches
« Combining online and offline methods

Some benefits
 Faster rejection of known disturbances
« Capability of handling unmodeled disturbances



Self-optimizing control

Always use self-optimizing control in supervisory/regulatory layer
» Fastest disturbance rejection
» Keeps the process in the near-optimal region

 Less effort needed from upper layers

Real-time optimization

}o
Self-optimizing control © y
(in MPC/PID layer)

1 ’
y
Process J

d —'>| Measurements




Standard RTO + MPC + self-optimizing
control

|dea: take the best from all worlds

 Self-optimizing Control
* Fast correction for known and

Data Reconciliation & modelled disturbances
Gross Error Detection
Parameter Estimation ° M PC .

Steady State » Predicting responses, and good
Real-time Optimizer Detection constraint handling

ﬂ « Standard RTO:

MPC H

« Handling nonlinearity and large
, disturbances optimally
Disturbances _

Real Process
measurements, y

Graciano et al. 2015, Journal of Process Control 34, 3548



NCO tracking + self-optimizing control

* |dea: take the best from both worlds

« Self-optimizing Control: Fast correction for known and modelled
disturbances (model-based)

« NCO tracking: use Plant gradient estimates to handle unmodeled
disturbances (model-free)

Jaschke & Skogestad (2011)



Similar approach: ESC/RTO + Self-optimizing control

. . . . Extremum
» Self-optimization control is e e Jy) |
always complementary controller
. . dither U= Cs
« Can combine with soc e
Controller 47(: H <
« Extremum-seeking control A
. Traditional Static RTO It "
—db Process y
tw

Straus, J., Krishnamoorthy, D. and Skogestad, S., 2019. On combining self-optimizing control and extremum-seeking control-Applied
to an ammonia reactor case study. Journal of Process Control, 78, pp.78-87.



Case study: Ammonia Reactor

| _ (D
Objective: Maximize extent of reaction
N a) 78 ——m———————————————————————
B Uo 3 o2 o1 = — - — — —/ -1
— : - | < 76 | 7/—7 -
C3s | . 3 R,
NATaNN BN T ATa W IRV VAT w | 1
AN, </ NNV = T4t :
I | 2 | | < I | — . |
+
(TD) (D) A < _ ]
oo oo o] | = 5 .
\ 4 \ 4 \ 4 : t,SS :
| /B;c-l%\ | /B;@ | /B;c-ll\ 3 70 F T?Z—SOC—FESC -
[ | 7 | 7 b= Z Z
| // | // | // 5 il — — —T+50C
| Z I 4 Z S — T+ESC .
& - T T =T -7 ':
. 64 [ " " " . L . X " . 1 " . . . 3
Response to disturbance in inlet mass flow rate
&/

Straus, J., Krishnamoorthy, D. and Skogestad, S., 2019. On combining self-optimizing control and extremum-seeking control-Applied to an ammonia reactor case study. Journal
of Process Control, 78, pp.78-87.



CONCLUSION:
Why is traditional static RTO not commonly used?
Some alternatives

1. Cost of developing and updating the model (costly offline model update)

-> Fix: classical advanced control with constraint switching, for unconstrained
DOF use extremum-seeking,

2. Wrong value of model parameters and disturbances (slow online model update)
- Fix: DRTO, HRTO, self-optimizing control (fastest)

3. Not robust, including computational issues
- Fix: Feedback RTO, self-optimizing control

4. Frequent grade changes make steady-state optimization less relevant
-> Fix: Dynamic RTO (DRTO) or EMPC

5. Dynamic limitations, including infeasibility due to (dynamic) constraint violation
- Fix: DRTO, EMPC (also HRTO ok!)

6. Incorrect model Structure
- Fix: Gradient bias correction / Modifier adaptation



Proposal : Combine RTO with other approaches

* Model-free layer. make RTO approach the real optimum .

« SOC layer: make optimization faster, reduce wait time for model
update and online optimization



Conclusion

. Databasedapproach - o
Extremely slow (days) i Plant gradient based method<§ viodetfree
P Jus :
Y Gra.\dient
Real-time optimization |, e RTO:
Slow (hour) (SRTO/DRTO/HRTO) y Detailed model
' (online)
Fast (minute) Self-optimizing control = na SOC:
(in MPC/PID layer) Detailed model
l (offline)
u
y H
Process —
d ’ Measurements




Workshop Roadmap — RTO Toolbox

Optimal Process Operation

Online Numerical
Optimization

1. Steady-state
Optimization

(SRTO)

Take home message: The different methods have their pros and cons. Choose the right tool for the problem at hand.



Optimal Process Operation

Online Numerical Optimization using
Optimization feedback control
Summary ' e
‘ : ‘ Active constraint Unconstrained
Dynamic Steady-state control optimum
Optimization Optimization |
(DRTO) (SRTO) L |
Model—| ased Model-free
| |
SRTO using Feedback RTO Self-optimizing Extremum
transient data control seeking control
R I
: Data based approach u Model free

Extremely slow (days) Plant gradient based method <

poJus ]

A4 Gre.ldient RTO:
Slow (hour) Real-time optimization estimator :

(SRTO/DRTOHRTO) [ N ('?)itlfr;'g)d sels:
I Thank you !
. . - SOC:
Fast (minute) Self-optimizing control c y : ;
(in MPC/PID layer) <1H < ('?)‘;ftl?r']':)d model
|

y :
Process 4 J :
d Measurements - For MATLAB codes contact: dineshk@ntnu.no
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