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Simple analytic rules for model reduction and PID controller tuning*
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The aim of this paper is to present analytic rules for PID controller tuning that
are simple and still result in good closed-loop behavior. The starting point
has been the IMC-PID tuning rules that have achieved widespread industrial
acceptance. The rule for the integral term has been modified to improve disturb-
ance rejection for integrating processes. Furthermore, rather than deriving separate
rules for each transfer function model, there is a just a single tuning rule for a
first-order or second-order time delay model. Simple analytic rules for model
reduction are presented to obtain a model in this form, including the ‘half rule’
for obtaining the effective time delay.

1. Introduction

Although the proportional-integral-derivative (PID) controller has only three
parameters, it is not easy, without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will usually show that a large
number of the PID controllers are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this material, where there are
several objectives:

1. The tuning rules should be well motivated, and preferably model-based and
analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of processes.

In this paper a simple two-step procedure that satisfies these objectives is
presented:

Step 1. Obtain a first- or second-order plus delay model. The effective delay in
this model may be obtained using the proposed half-rule.

Step 2. Derive model-based controller settings. PI-settings result if we start from
a first-order model, whereas PID-settings result from a second-order
model.

There has been previous work along these lines, including the classical paper by
Ziegler & Nichols (1942), the IMC PID-tuning paper by Rivera et al. (1986), and
the closely related direct synthesis tuning rules in the book by Smith & Corripio
(1985). The Ziegler—Nichols settings result in a very good disturbance response for
integrating processes, but are otherwise known to result in rather aggressive settings
(Tyreus & Luyben, 1992; Astrom & Hagglund, 1995), and also give poor performance
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Figure 1. Block diagram of feedback control system. In this paper we consider an input
(‘load’) disturbance (g, = g).

for processes with a dominant delay. On the other hand, the analytically derived
IMC-settings in Rivera et al. (1986) are known to result in a poor disturbance
response for integrating processes (e.g. Chien & Fruehauf,1990; Horn et al., 1996),
but are robust and generally give very good responses for setpoint changes. The
single tuning rule presented in this paper works well for both integrating and pure
time delay processes, and for both setpoints and load disturbances.

1.1. Notation

The notation is summarized in Figure 1, where u is the manipulated input
(controller output), d the disturbance, y the controlled output, and y, the setpoint
(reference) for the controlled output. g(s)= (Ay/Au) denotes the process transfer
function and c(s) is the feedback part of the controller. The A used to indicate
deviation variables is deleted in the following. The Laplace variable s is often omitted
to simplify notation. The settings given in this paper are for the series (cascade,
‘interacting’) form PID controller:

Series PID: ¢(s) = K, - <TI;HS— !

>'(TDS+ 1)
ey

K,
= (s + (r+1p)s+ 1)
I

where K, is the controller gain, 7, the integral time, and 75 the derivative time. The
reason for using the series form is that the PID rules with derivative action are then
much simpler. The corresponding settings for the ideal (parallel form) PID controller
are easily obtained using equation (36).

1.2. Simulations

The following series form PID controller is used in all simulations and evaluations
of performance:
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u(s) =Kc<ﬂ><ys(s)—“’”1y(s)> @

8 Tps+1

with 77 = a1, and o = 0.01 (the robustness margins have been computed with o = 0).
Note that we, in order to avoid ‘derivative kick’ do not differentiate the setpoint in
equation (2). The value & =0.01 was chosen in order to not bias the results, but in
practice (and especially for noisy processes) a larger value of « in the range 0.1-0.2
is normally used. In most cases we use PI-control, i.e. 7p,=0, and the above
implementation issues and differences between series and ideal form do not apply. In
the time domain the PI-controller becomes

u(t) = uo+ K, <(bys(t) —y(O)+ Tl[ J (ys(0) — y(f))dr> €)

0

where we have used b = 1 for the proportional setpoint weight.

2. Model approximation (Step 1)

The first step in the proposed design procedure is to obtain from the original
model g, (s) an approximate first- or second-order time delay model g(s) in the form

k

— 7-6_93
(tys+D(1,541)

g(s)
)
- __,_Lle—ﬂs

(s+ 1z )84 1)

Thus, we need to estimate the following model information (see Figure 2):

k=Ay(=)/Au

Time

Figure 2. Step response of first-order plus time delay process, g(s) =ke %/(r s+ 1).
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e Plant gain, k&

e Dominant lag time constant, t,

e (Effective) time delay (dead time), 0

e Optional: Second-order lag time constant, 7, (for dominant second-order
process for which 7, > 6, approximately)

If the response is lag-dominant, i.e. if 7; > 86 approximately, then the individual
values of the time constant 7, and the gain k may be difficult to obtain, but at the
same time are not very important for controller design. Lag-dominant processes may
instead be approximated by an integrating process, using

k k_K
T5+1 7 18 s

&)

which is exact when 7, — o0 or 1/t; — 0. In this case we need to obtain the value for the
Slope, k' ¥ ki,

The problem of obtaining the effective delay 6 (as well as the other model
parameters) can be set up as a parameter estimation problem, for example, by making
a least squares approximation of the open-loop step response. However, our goal is
to use the resulting effective delay to obtain controller settings, so a better approach
would be to find the approximation which for a given tuning method results in the
best closed-loop response (here ‘best’ could, for example, be to minimize the inte-
grated absolute error (IAE) with a specified value for the sensitivity peak, M,).
However, our main objective is not ‘optimality’ but ‘simplicity’, so we propose a
much simpler approach as outlined next.

2.1. Approximation of effective delay using the half rule

We first consider the control-relevant approximation of the fast dynamic modes
(high-frequency plant dynamics) by use of an effective delay. To derive these approxi-
mations, consider the following two first-order Taylor approximations of a time delay
transfer function:

e™™ ~1—0s and 6*932% 1

e ~1+0s

©

From equation (6) we see that an ‘inverse response time constant’ T (negative
numerator time constant) may be approximated as a time delay:

(=T +Dme 76" Y

This is reasonable since an inverse response has a deteriorating effect on control
similar to that of a time delay (e.g. Skogestad & Postlethwaite, 1996). Similarly, from
equation (6) a (small) lag time constant 7, may be approximated as a time delay:

1
ToS+1

e fo° (8)

Furthermore, since
—Tivg 41
T8+ 1

e—ﬂos ze*ﬂos.e—T’o"vs, e TS = e—(60+T'0"v+1:0)s — e—ﬂs
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it follows that the effective delay @ can be taken as the sum of the original delay 6,
and the contribution from the various approximated terms. In addition, for digital
implementation with sampling period A, the contribution to the effective delay is
approximately /2 (which is the average time it takes for the controller to respond to
a change).

In terms of control, the lag-approximation equation (8) is conservative, since the
effect of a delay on control performance is worse than that of a lag of equal magnitude
(e.g. Skogestad & Postlethwaite, 1996). In particular, this applies when approximating
the largest of the neglected lags. Thus, to be less conservative it is recommended to
use the simple half rule:

e Half rule: The largest neglected (denominator) time constant (lag) is distributed
evenly to the effective delay and the smallest retained time constant.

In summary, let the original model be in the form
[T (-Tis+D
J
——————¢ % 9
[Jrios+1) ©)

where the lags ;, are ordered according to their magnitude, and T'%' >0 denote the
inverse response (negative numerator) time constants. Then, according to the half-
rule, to obtain a first-order model e ~%/(z s+ 1), we use

T1=1T10 —I—Tzo 0=0,+—= TZO + Z Tio +Z inv (10)

and, to obtain a second-order model equation (4), we use

T T
T1=T10; T2=Tz0+ ;o; 0="06y+ 3O+ZT10+Z o+ (1D

where A is the sampling period (for cases with digital implementation).
The main basis for the empirical half-rule is to maintain the robustness of the
proposed PI- and PID-tuning rules, as is justified by the examples later.

Example E1. The process

1
s+ D025+ 1)

is approximated as a first-order time delay process, g(s) =ke™**!/(z,s+1), with
k=1,0=022=0l1andt;,=1+0.22=1.1.

go(s) =

2.2.  Approximation of positive numerator time constants

We next consider how to get a model in the form of eqaution (9), if we have
positive numerator time constants I, in the original model g,(s). It is proposed to
cancel the numerator term (7,s+ 1) against a ‘neighbouring’ denominator term
(tos+1) (where both T, and 7, are positive and real) using the following
approximations:
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(T, /x, for Ty > 74> 0 (Rule T1)
1,16 for To=20>1, (Rule T1a)
Tos+1 /1 for0=T, =1, (Rule T1b) (12)
o5+ 1 | Tyl for 1, > T, > 50 (Rule T2)
TolT N .
\% for ,% min (1o, 50) > T, (Rule T3)

Here § is the (final) effective delay, which exact value depends on the subsequent
approximation of the time constants (half rule), so one may need to guess 6 and
iterate. If there is more than one positive numerator time constant, then one should
approximate one T, at a time, starting with the largest 75,.

We normally select 7, as the closest larger denominator time constant (t, > Tp)
and use Rules T2 or T3. The exception is if there exists no larger t,, or if there is
smaller denominator time constant ‘close to’ 7, in which case we select 7, as the
closest smaller denominator time constant (1, < T;) and use rules T1, Tla or Tlb.
To define ‘close to’ more precisely, let 7,, (large) and 7, (small) denote the two
neighboring denominator constants to t7,. Then, we select 7y =1,, (small) if
Tyt < Too!/ Ty and Ty /74, < 1.6 (both conditions must be satisfied).

Derivations of the above rules and additional examples are given in the Appendix.

Example E3. For the process (Example 4 in Astrom et al., 1998)

2155 +1)
(205 + 1)(s + 1)(0.1s + 1)?

we first introduce from Rule T2 the approximation

155+1 155
205417205~ 07

(Rule T2 applies since T, =15 is larger than 50, where 6 is computed below.)
Using the half rule, the process may then be approximated as a first-order time delay
model with

go(s) = (13)

k=2-0.75 =1.5; 0=%+0.1=0.15; r1=1+%=1.05

or as a second-order time delay model with

=OT1=0.05; T,=1; 12=0.1+£:O.15

k=1.5 0 >

Derivation of PID tuning rules (Step 2)
Direct synthesis (IMC tuning) for setpoints

Next, we derive for the model in equation (4) PI-settings or PID-settings using
the method of direct synthesis for setpoints (Smith & Corripio, 1985), or equivalently

the Internal Model Control approach for setpoints (Rivera ef al., 1986). For the
system in Figure 1, the closed-loop setpoint response is

Y _ 9)e(s)

Ve )+ 1 (14)
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where we have assumed that the measurement of the output y is perfect. The idea of
direct synthesis is to specify the desired closed-loop response and solve for the
corresponding controller. From equation (14) we get
1 —
(s) Lo
as)= g(S) (y/ys)desired -1
We here consider the second-order time delay model g(s) in equation (4), and

specify that we, following the delay, desire a simple first-order response with time
constant 7, (Rivera et al., 1986; Smith & Corripio, 1985):

Y 1 —0
7 - s 16
<ys>desired TS+ 1 ) ( )

We have kept the delay # in the ‘desired’ response because it is unavoidable.
Substituting equations (16) and (4) into equation (15) gives a ‘Smith Predictor’
controller (Smith, 1957):

c(s)

(15)

(s + D(ts+ 1) 1
N k (1.8 +1—e7%)

a7

7, is the desired closed-loop time constant, and is the sole tuning parameter for the
controller. Qur objective is to derive PID settings, and to this effect we introduce in
equation (17) a first-order Taylor series approximation of the delay, ¢™% =~ 1—0s.
This gives

(s +D(rs+ 1) 1
ols) = k (t. + O)s

which is a series form PID-controller equation (1) with Rivera et al. (1986); Smith &
Corripio (1985)

(18)

R T . .
Kc_kfc+0_k’(TC+9)’ Ty =171, Ip=71, (19)

3.2. Modifying the integral time for improved disturbance rejection

The PID-settings in equation (19) were derived by considering the setpoint
response, and the result was that we should effectively cancel the first order dynamics
of the process by selecting the integral time t;=17,. This is a robust setting which
results in very good responses to setpoints and to disturbances entering directly at
the process output. However, it is well known that for lag dominant processes with
7,> 0 (e.g. an integrating processes), the choice 7; =, results in a long settling time
for input (‘load’) disturbances (Chien & Fruehauf, 1990). To improve the load
disturbance response we need to reduce the integral time, but not by too much,
because otherwise we get slow oscillations caused by having almost have two
integrators in series (one from the controller and almost one from the slow lag
dynamics in the process). This is illustrated in Figure 3, where we for the process

e ®(rs+1) with 1,=30,0=1
consider PI-control with K, =15 and four different values of the integral time:

o 7,=1, = 30 (‘IMC-rule’, see equation (19): excellent setpoint response, but slow
settling for a load disturbance.
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y(®)

0 10 20 30 40 50 60
time

Figure 3. Effect of changing the integral time 7; for PI-control of ‘almost integrating’ process
g(s) = °/(30s + 1) with K, = 15. Unit setpoint change at ¢ = 0; load disturbance of magnitude
10 at £ =20.

e 1, =80 =8 (SIMC-rule, see below): faster settling for a load disturbance.
e 7, =4: even faster settling, but the setpoint response (and robustness) is poorer.
e 1, =2: poor response with ‘slow’ oscillations.

A good trade-off between disturbance response and robustness is obtained by
selecting the integral time such that we just avoid the slow oscillations, which
corresponds to 7; = 86 in the above example. Let us analyze this in more detail. First,
note that these ‘slow’ oscillations are not caused by the delay 6 (and occur at a lower
frequency than the ‘usual fast’ oscillations which occur at about frequency 1/6).
Because of this, we neglect the delay in the model when we analyze the slow
oscillations. The process model then becomes

e 1 kK

=k ~k R =—
9() T8+ 1 T8+ 1 18 s

where the second approximation applies since the resulting frequency of oscillations
W, 1s such that (t;we)? is much larger than 1.* With a PI controller ¢ = K, (1 + (1/1;)s)
the closed-loop characteristic polynomial 1+ ge¢ then becomes

Tt

k’KCSZ +os+1

which is in standard second-order form, 735> + 21,¢s + 1, with

'From equations (20) and (22) we get 1o =1y/2, 80 wot, = (1/70)7; = 2(1,/7;). Here 1, =1,
and it follows that wy7, > 1.
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- 1 ——
TO:\/k'II{r; C':E\/chTI (20)
Oscillations occur for { < 1. Of course, some oscillations may be tolerated, but a
robust choice is to have { =1 (see also Marlin (1995), p. 588), or equivalently
K.t =4Ik (21)

Inserting the recommended value for K, from equation (19) then gives the
following modified integral time for processes where the choice 7, = 7, is too large:

1 =4(t.+0) (22)

3.3. SIMC-PID tuning rules

To summarize, the recommended SIMC PID settings? for the second-order time
delay process in equation (4) are®

1 7 1 1
Tkt +0 Krt.+0 (23)
7y =min{t,,4(7, + 0)} (24)
TD=T2 (25)

Here the desired first-order closed-loop response time 7, is the only tuning
parameter. Note that the same rules are used both for PI- and PID-settings, but the
actual settings will differ. To get a PI-controller we start from a first-order model
(with 7, =0), and to get a PID-controller we start from a second-order model.
PID-control (with derivative action) is primarily recommended for processes with
dominant second order dynamics (with 7, > 6, approximately), and we note that the
derivative time is then selected so as to cancel the second-largest process time
constant.

In Table 1 we summarize the resulting settings for a few special cases, including
the pure time delay process, integrating process, and double integrating process. For
the double integrating process, we let 1, = o0 and introduce k"= k'/t, and find (after
some algebra) that the PID-controller for the integrating process with lag approaches
a PD-controller with

1 |

C:F‘m; Tp = 41+ 0) (26)

This controller gives good setpoint responses for the double integrating process,
but results in steady-state offset for load disturbances occurring at the input. To
remove this offset, we need to reintroduce integral action, and as before propose to use

1 =4(z, + 6) 27

It should be noted that derivative action is required to stabilize a double
integrating process if we have integral action in the controller.

>Here SIMC me;ms ‘Simple control’ or ‘Skogestad IMC’.
3The derivative time in equation (25) is for the series form PID-controller in equation (1).
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Table 1. SIMC PID-settings (equations (23)--(25)) for some special cases of equation (4)
(with 7, as a tuning parameter)

Process g(s) K, (o Tp?

First-order . k—S - L min{z,,4(t,+0)} —
(ty8+1) kt.+0

Second-order, e 0 1 1, .

. > - 2 L4t +6

equation (4) k(Tls+ D(tys+1) k7,40 min{ty, 4(t )} T2

Pure time delay® ke ™% 0 0° —

Integrating® K e ™ 11 4z, +0) _

s kK (t.+0) ¢

Integrating with lag k’i L 4(z.+6) Ty

s(t,54+1) k' (t,+06)
. . o 1 1
Double integrating® "© e 4(z,+0 4(z,+0
ouble integrating k o K iG1 07 (z.+9) (z.+6)

2The pure time delay process is a special case of a first-order process with 7, = 0.

® The integrating process is a special case of a first-order process with t,;— co.

¢ For the double integrating process, integral action has been added according to equation
().
4The derivative time is for the series form PID controller in equation (27).
K, 1
okt +6)

. K .
¢ Pure integral controller c(s) = ?I with K;%f

3.4. Recommended choice for tuning parameter T,

The value of the desired closed-loop time constant 7, can be chosen freely, but
from equation (23) we must have —6<71,<o0 to get a positive and nonzero
controller gain. The optimal value of 7, is determined by a trade-off between:

1. Fast speed of response and good disturbance rejection (favored by a small
value of 7,)
2. Stability, robustness and small input variation (favored by a large value of 7,).

A good trade-off is obtained by choosing 1. equal to the time delay:
SIMC-rule for fast response with good robustness: 7,=0 (28)

This gives a reasonably fast response with moderate input usage and good robustness
margins, and for the second-order time delay process in equation (4) results in the
following SIMC-PID settings which may be easily memorized (z, = 8):

_05%,_051
7, =min{z,, 80} (30)
TD=T2 (31)

The corresponding settings for the ideal PID-controller are given in equations (37)
and (38).
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Table 2. Robustness margins for first-order and integrating time delay process using the
SIMC-settings in equations (29) and (30) (.= 0)

Process g(s) ko K o
e —e
Ts+1 s

: 0.5 1, 0.51
Controller gain, K, 0 "3
Integral time, 7, Ty 80
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4° 46.9°
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M, 1.00 1.30
Phase crossover frequency, w;go - 6 1.57 1.49
Gain crossover frequency, @, - 0 0.50 0.51
Allowed time delay error, AG/0 2.14 1.59

The same margins apply to a second-order process (equation (4)) if we choose t;, = 15, see
equation (31).

4. Evaluation of the proposed tuning rules

In this section we evaluate the proposed SIMC PID tuning rules in equations
(23)—(31) with the choice t, = 0. We first consider processes that already are in the
second-order plus delay form in equation (4). In Section 4.2 we consider more
complicated processes which must first be approximated as second-order plus delay
processes (Step 1), before applying the tuning rules (Step 2).

4.1. First- or second-order time delay processes

4.1.1. Robustness The robustness margins with the SIMC PID-settings in equa-
tions (29)—(31), when applied to first- or second-order time delay processes, are
always between the values given by the two columns in Table 2.

For processes with 7, < 86, for which we use 7;= 1, (left column), the system
always has a gain margin GM = 3.14 and phase margin PM = 61.4°, which is much
better than the typical minimum requirements GM> 1.7 and PM > 30° (Seborg
et al., 1989). The sensitivity and complementary sensitivity peaks are M = 1.59 and
M,=1.00 (here small values are desired with a typical upper bound of 2). The
maximum allowed time delay error is A9/ = PM[rad]/(w, - 6), which in this case gives
A0/0 =2.14 (i.e. the system goes unstable if the time delay is increased from 6 to
(1+2.14)6 =3.140).

As expected, the robustness margins are somewhat poorer for lag-dominant
processes with 7, > 860, where we in order to improve the disturbance response use
7, = 80. Specifically, for the extreme case of an integrating process (right column) the
suggested settings give GM =2.96, PM =46.9°, M,=1.70 and M, =1.30, and the
maximum allowed time delay error is A6 = 1.596.

Of the robustness measures listed above, we will in the following concentrate on
M,, which is the peak value as a function of frequency of the sensitivity function
S =1/(1 + gc). Notice that M, < 1.7 guarantees GM > 2.43 and PM > 34.2° (Rivera
et al., 1986).
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4.1.2. Performance. To evaluate the closed-loop performance, we consider a unit
step setpoint change (y,=1) and a unit step input (load) disturbance (g, =g and
d=1), and for each of the two consider the input and output performance:

4.1.2.1. Output perfomance. To evaluate the output control performance we compute
the integrated absolute error (IAE) of the control error e=y—y;.

IAE = f le(?)] dt
0

which should be as small as possible.

4.1.2.2. Input performance. To evaluate the manipulated input usage we compute the
total variation (TV) of the input u(?), which is sum of all its moves up and down.
TV is a bit difficult to define compactly for a continuous signal, but if we discretize
the input signal as a sequence, [uy, u,, ..., 4;,...], then

™8

TV =

i

[t — ;|

1

which should be as small as possible. The total variation is a good measure of the
‘smoothness’ of a signal.

In Table 3 we summarize the results with the choice t, = 6 for the following five
first-order time delay processes:

Case 1. Pure time delay process

Case 2. Integrating process

Case 3. Integrating process with lag t, =40
Case 4. Double integrating process

Case 5. First-order process with 7, = 46

Note that the robustness margins fall within the limits given in Table 2, except
for the double integrating process in case 4 where we, from equation (27), have added
integral action and robustness is somewhat poorer.

4.1.2.3. Setpoint change. The simulated time responses for the five cases are shown
in Figure 4. The setpoint responses are nice and smooth. For a unit setpoint change,
the minimum achievable IAE-value for these time delay processes is IAE =0 (e.g.
using a Smith Predictor controller equation (17) with 7, = 0). From Table 3 we see
that with the proposed settings the actual IAE-setpoint-value varies between 2.176
(for the first-order process) to 7.920 (for the more difficult double integrating process).

To avoid ‘derivative kick’ on the input, we have chosen to follow industry practice
and not differentiate the setpoint, see equation (2). This is the reason for the difference
in the setpoint responses between cases 2 and 3, and also the reason for the somewhat
sluggish setpoint response for the double integrating process in case 4. Note also that
the setpoint response can always be modified by introducing a ‘feedforward’ filter on
the setpoint or using b # 1 in equation (3).

4.1.2.4. Load disturbance. The load disturbance responses in Figure 4 are also nice
and smooth, although a bit sluggish for the integrating and double integrating
processes. In the last column in Table 3 we compare the achieved TAE-value with
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INPUT u
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o

—— case 1 (pure delay))

3 - caseg ln;e ratling 4
-1 =+~ case 3 (int.+la ——
— case 4 duub!egmt.} == 2,3
P case 5 (first-order) | . : ; .
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time

Figure 4. Responses using SIMC settings for the five time delay processes in Table 3 (z, = 0).
Unit setpoint change at ¢=0; Unit load disturbance at ¢=20. Simulations are without
derivative action on the setpoint. Parameter values: 0 =1, k=1, k'=1,k"=1.

that for the IAE-optimal controller of the same kind (PI or series-PID). The ratio
varies from 1.59 for the pure time delay process to 5.49 for the more difficult double
integrating process.

However, lower IAE-values generally come at the expense of poorer robustness
(larger value of M), more excessive input usage (larger value of TV), or a more
complicated controller. For example, for the integrating process, the IAE-optimal
PI-controller (K, = (0.91/k") - (1/0), t,=4.160) reduces IAE(load) by a factor 3.27, but
the input variation increases from TV =1.55 to TV=3.79, and the sensitivity
peak increases from M,=1.70 to M,=3.71. The [AE-optimal PID-controller
(K, =(0.80/k")- (1/8), 1,=1.260, 1, =0.760) reduces IAE(load) by a factor 8.2 (to
IAE =1.95k'0%), but this controller has M;=4.1 and TV(load) = 5.34. The lowest
achievable IAE-value for the integrating process is for an ideal Smith Predictor
controller equation (17) with ¢, = 0, which reduces IAE(load) by a factor 32 (to IAE
=0.5k'0%). However, this controller is unrealizable with infinite input usage and
requires a perfect model.

4.1.2.5. Input usage. As seen from the simulations in the lower part of Figure 4 the
input usage with the proposed settings is very smooth in all cases. To have no steady-
state offset for a load disturbance, the minimum achievable value is TV(load) =1
(smooth input change with no overshoot), and we find that the achieved value ranges
from 1.08 (first-order process), through 1.55 (integrating process) and up to 2.34
(double integrating process).





