A MATRIX THEORY AND
NORMS

A.1 Basics

Complex Matrix A € C*™
Real Matrix Ac RIxm

elements a;; = Re a;; + j Im a;;

[ = number of rows
_ 44 29 e
= “outputs” when viewed as an operator
m = number of columns

= “inputs” when viewed as an operator

e A’ = transpose of A (with elements a;;),

e A = conjugate of A (with elements

Re az-j —j Im aij),

o AH 2 AT — conjugate transpose (or Hermitian

adjoint) (with elements Re a;; — jIm aj;),



Matrix inverse:

_ adjA
Al =
det A
where adj A is the adjugate (or “classical adjoint”) of

(A.1)

A which is the transposed matrix of cofactors c;; of
A,

Cij — [adJA]ﬂ é (—1)i+j det Aij (A2)
Here A% is a submatrix formed by deleting row 7 and

column j of A.

Example:

ailp a2
A= [ ;  det A = aj1a22 — a12a2;
az1 a2

At ! [a” _a”] (A.3)

B det A —a2 ail

Some matrix identities:
(AB)' = BT AT, (AB)" = BH A" (A.4)
Assuming the inverses exist,
(AB)"'=B"tA"! (A.5)

A is symmetric if AT = A,
A is Hermitian if A” = A,

A Hermitian matrix is positive definite if 2 Az > 0

for any non-zero vector x.



A.1.1 Some determinant identities

The determinant is defined as

det A =>"" | a;jc;; (expansion along column j) or
det A = Z?:1 a;;ci; (expansion along row i),
where c;; is the i5’th cofactor given in (A.2).

1. Let A; and As be square matrices of the same

dimension. Then
det(AlAg) = det(AgAl) — det Al - det AQ (A6)

2. Let ¢ be a complex scalar and A an n x n

matrix. Then
det(cA) = " det(A) (A.7)
3. Let A be a non-singular matrix. Then

det A=' =1/det A (A.8)

4. Let A1 and A be matrices of compatible
dimensions such that both matrices 4; A4, and
As Ay are square (but A; and As need not
themselves be square). Then

det([ + A1A2) = det([ + A2A1) (Ag)

(A.9) is useful in the field of control because it
yields det(I + GK) = det(I + KG).



A1 A A 0
det[ 11 12] _ det[ 11 ]

0 AQQ A21 A22
det(All) . det(Ag(gA 10)

6. Schur’s formula for the determinant of a

partitioned matrix:

Ay A
dot [ 11 12]

A21 A22
det(All) . det(AQQ — A21A1_11A12)
= det(Agg) . det(A11 — A12A2_21A21) (All)

where it is assumed that A;; and/or Aoy are

non-singular.



A.2 Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors. Let A be a square
n X n matrix. The eigenvalues \;, 2 = 1,...,n, are
the n solutions to the n’th order characteristic
equation

det(A — \I) =0 (A.12)

The (right) eigenvector ¢; corresponding to the
eigenvalue )\; is the nontrivial solution (¢; # 0) to

(A= XNDt; =0 < At; = Mt (A.13)
The corresponding left eigenvectors g; satisty

When we just say eigenvector we mean the right

eigenvector.
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Remarks

e The left eigenvectors of A are the (right)

eigenvectors of A%

o p(A) 2 max; A (A)] is the spectral radius of A.

e Ligenvectors corresponding to distinct

eigenvalues are always linearly independent.

e Define

T:{tl,tg,...,tn}; A:diag{)\l,)\g,...,)\n}
(A.15)

where A1, Ao, ..., A\, are distinct.

Then we may then write (A.13) in the following

form

AT = TA (A.16)
From (A.16) we then get that the eigenvector

matrix diagonalizes A in the following manner

A=TtAT (A.17)



A.2.1 Eigenvalue properties

L.

trA = > . \; where trA is the trace of A (sum of

the diagonal elements).

. The eigenvalues of an upper or lower triangular

matrix are equal to the diagonal elements of the

matrix.

For a real matrix the eigenvalues are either real,

or occur in complex conjugate pairs.

. A and AT have the same eigenvalues (but in

general different eigenvectors).

. The eigenvalues of A=! are 1/Aq,...,1/\,.

The matrix A + ¢l has eigenvalues \; + c.

. The matrix cA* where k is an integer has

eigenvalues cA¥.

. Consider the [ x m matrix A and the m x [

matrix B. Then the [ x [ matrix AB and the
m X m matrix BA have the same non-zero

eigenvalues.



10. Eigenvalues are invariant under similarity
transformations, that is, A and DAD~! have the

same eigenvalues.

11. The same eigenvector matrix diagonalizes the
matrix A and the matrix (I + A4)~ 1.

12. Gershgorin’s theorem. The eigenvalues of the
n X n matrix A lie in the union of n circles in the
complex plane, each with centre a;; and radius
i = )iz |@ij| (sum of off-diagonal elements in
row ). They also lie in the union of n circles,
each with centre a;; and radius r; =} ., |a;|

(sum of off-diagonal elements in column 7).

13. A symmetric matrix is positive definite if and

only if all its eigenvalues are real and positive.

From the above we have, for example, that

1 1
NI+ L) 1+ (D)
(A.18)

ANi(S)=X((I+ L)) =



A.3 Singular Value Decomposition

Definition: Unitary matrix. A (complex) matrix
U is unitary if

vt =yu-t (A.19)

Note:
IAO)| =1 Vi

Definition: SVD. Any complex [ x m matrix A
may be factorized into a singular value

decomposition

A=UxvH (A.20)

where the [ X [ matrix U and the m x m matrix V are
unitary, and the [ X m matrix > contains a diagonal
matrix >; of real, non-negative singular values, o;,

arranged in a descending order as in

2:[201]; [>m (A.21)

or

S=[3 0]; [<m (A.22)

where
Y, =diag{o1,092,...,0r}; k=min(l,m) (A.23)

and
A A

oO=01>09>...20L=20 (A24)
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e The unitary matrices U and V form orthonormal
bases for the column (output) space and the row
(input) space of A. The column vectors of V,
denoted v;, are called right or input singular
vectors and the column vectors of U, denoted u;,
are called left or output singular vectors. We

define 4 = uq, v = vy, u = ur, and v = vy.

e SVD is not unique since A = U'XV’ H, where
U =US,V'=V8S, S =diag{e’’} and 0; is any
real number, is also an SVD of A. However, the

singular values, o;, are unique.

oi(A) = (AT A) = [\ (AAH)  (A.25)



The columns of U and V' are unit eigenvectors of
AAT and AH A, respectively. To derive (A.25) write

AAT = (UxvHwozvhHE = (uxv?)veHiut)
= yUxxfu# (A.26)

or equivalently since U is unitary and satisfies
UH =U~! we get

(AAU = Uz (A.27)

= U is the matrix of eigenvectors of AA* and {o?}
are its eigenvalues. Similarly, V' is the matrix of

eigenvectors of A7 A.

Definition: The rank of a matrix is equal to the
number of non-zero singular values of the matrix.
Let rank(A) = r, then the matrix A is called rank
deficient if r < k = min(l, m), and we have singular
values o, =0 for e =r+1,...k. A rank deficient
square matrix is a singular matrix (non-square

matrices are always singular).



A.3.3 SVD of a matrix inverse

Provided the m X m matrix A is non-singular
At =vyty# (A.28)

Let j =m — i+ 1. Then it follows from (A.28) that

oi(A™Y = 1/0;(A), (A.29)
u;(A7Y = v(A), (A.30)
vi(A7Y) = w,(A) (A.31)

and in particular

0(A™1) =1/a(A) (A.32)



A.3.4 Singular value inequalities

a(4) < |A(A)] <a(4) (A.33)
g(A") =5(A) and &(AT) =5(A) (A.34)
d(AB) < a(A)a(B) (A.35)
o(A)5(B) < 5(AB) or &(A)a(B) < 5(AB)A.36)
a(A)a(B) < a(AB) (A.37)

max{5(A),5(B)} < & [g] < V2max{5(A),5(B)}

(A.38)
o _g] <o(A)+a(B) (A.39)
_[4 0 e -
o 0 B] = max{d(A),5(B)} (A.40)
0;(A) —a(B)<o;(A+ B) <o;(A)+a(B) (A.41)

Two special cases of (A.41) are:
g(A) —a(B)|<a(A+B)<d(A)+a(B) (A.42)
o(A) —o(B) <g(A+B) <g(A)+a(B) (A43)
(A.43) yields
c(A)—1<gl+A)<cg(A)+1 (A.44)

On combining (A.32) and (A.44) we get

1
51+ A)-1

o(A) —1< <g(A)+1  (A45)
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A.4 Condition number

The condition number of a matrix is defined as

the ratio

V(A) = 01(A)/or(A) = 5(A)/a(A) (A.46)

where k = min(l, m).
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A.5 Norms

Definition
A norm of e (which may be a vector, matrix, signal
or system) is a real number, denoted ||e||, that

satisfies the following properties:

1. Non-negative: |le|| > 0.

2. Positive: ||e|| = 0« e = 0 (for semi-norms we
have |le|| =0 < e =0).

3. Homogeneous: ||a-e|| = |af - ||e|| for all complex

scalars «.

4. Triangle inequality:

lex + eaf| < lex ]| + [lez]] (A.47)



We will consider the norms of four different objects

(norms on four different vector spaces):

1. e 1s a constant vector.

2. e 18 a constant matrix.

3. e is a time dependent signal, e(t), which at each
fixed t is a constant scalar or vector.

4. eis a “system”, a transfer function G(s) or
impulse response ¢(t), which at each fixed s or ¢

is a constant scalar or matrix.
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A.5.1 Vector norms

General:

lall, = (3 JasP) /7 p>1

)

Vector 1-norm (or sum-norm)

A
lalls 2 ) lail

1

Vector 2-norm (Euclidean norm).

A
lalls 2 \/Z 0.2
7

a'a=al;

(A.48)

(A.49)

(A.50)

(A.51)



Vector co -norm (or max norm)

[allmax = llalloo £ max|ai]  (A52)
[allmax < llall2 < v/ [la]mas (A.53)
lall2 < flall < v/m llall> (A.54)

A a2

g
I
8

A

7N

Figure 96: Contours for the vector p-norm, |jafl, =1

for p=1,2,00



A.5.2 Matrix norms

Definition

A norm on a matrix ||A| is a matrix norm if, in
addition to the four norm properties in

Definition A.5, it also satisfies the multiplicative
property (also called the consistency condition):

IAB[[ < [|A[[- || B] (A.55)

Sum matrix norm.

| Allsum = lasj (A.56)

@]
Frobenius matrix norm (or Euclidean norm).

|Alr = /3 o = Vu(ATA) - (A5T)

Max element norm.

| Allmax = maxai;| (A.58)

)

Not a matrix norm as it does not satisfy (A.55).
However note that vim ||A||max S & matrix norm.



Induced matrix norms

Y

» A

Figure 97: Representation of (A.59)

z = Aw (A.59)
The induced norm is defined as
A
4[], 2 max 1Al (A.60)
£0 ||w||,

where ||w|, = (32, |w;|P)!/P denotes the vector

p-norm.

e We are looking for a direction of the vector w

such that the ratio ||z||,/||w||, is maximized.

e The induced norm gives the largest possible
“amplitying power” of the matrix. Equivalent
definition is:

1Allip = max [|Aw]|, = max [lAw|, (A.61)

[wllp<1 Jwllp=1
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| Alli1 = max; (>, |aijl)

“maximum column sum”

1Al ico = maxi(3_; |as;])

“maximum row sum’”

(A.62)

|Alli2 = 5(A) = /p(A" A)

“singular value or spectral norm”

Theorem 14 All induced norms ||A||;p, are matriz

norms and thus satisfy the multiplicative property

IABllip < [|Allip - [| Bl (A.63)

Figure 98:
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Implications of the multiplicative property

1. Choose B to be a vector, i.e B = w.
[Aw]| < [[A[ - [Jw]] (A.64)

The “matrix norm ||A|| is compatible with its

corresponding vector norm ||w||”.

2. From (A.64)

A
4] 2 max 12 (A.65)

w0 |w]]

For induced norms we have equality in (A.65)

|Al|r > & (A) follows since ||w||r = ||w]|2.

3. Choose both A = z¥ and B = w as vectors.

Then we derive the Cauchy-Schwarz inequality

27 w| < |22 - Jwll2 (A.66)
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A.5.3 The spectral radius p(A)

p(4) = max |\, (A)
Not a norm!

Example:

1 0 1 10
Ay = . Ay =
10 1 0 1

p(A1) =1, p(Az) =1
but

Theorem 15 For any matriz norm (and in

particular for any induced norm)

p(A) < [|A]

(A.67)

(A.68)

(A.69)

(A.70)

(A.71)
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A.5.4 Some matrix norm relationships

5(4) < | Allr < Vmm(m) 5(4) (AT
|Allmax < 5(A) < VIm || Allmax (A.73)
5(4) < /AT [ Al (A.74)

— Al < 5(A) VI Al (ATH)

Jm

1 _
W”AHH <a(A) < vm ||Alla (A.76)

max{d (A), | Al r, [[Alli, [[Allicc} < |Allsum  (A.77)

e All these norms, except ||A||max, are matrix
norms and satisfy (A.55).

e The inequalities are tight.

e ||Allmax can be used as a simple estimate of (A).
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The Frobenius norm and the maximum singular
value (induced 2-norm) are invariant with respect to

unitary transformations.

U1 AUz || = [| Al (A.78)
ag(U1AUs) = a(A) (A.79)

Relationship between Frobenius norm and singular
values, 0;(A)

4l = \/Z 72 (4) (A.80)

Perron-Frobenius theorem

min | DAD ™l = min [ DAD1ac = p(|Al)
(A.81)

where D is a diagonal “scaling” matrix.

Here:

e |A| denotes the matrix A with all its elements
replaced by their magnitudes.

e o(|A|) = max; |A;(|A|)] is the Perron root
(Perron-Frobenius eigenvalue). Note:

p(A) < p(|A])
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A.5.5 Matrix and vector norms in MATLAB

c(A) = [[All:2
A1

[ A0

| Al F

| Al sum

| Al max

p(A)
p(|Al)
v(A) =a(A4)/a(A)

For vectors:

norm(A,2) or max(svd(A))
norm(A,1)

norm(A,’inf’)
norm(A,’fro’)

sum (sum(abs(A)))

max (max (abs(A)))

(which is not a matrix norm)

max (abs (eig(A)))
max (eig(abs(A)))
cond (A)

norm(a,1)
norm(a,?2)

norm(a,’inf’)

1-
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A.5.6 Signal norms

Contrary to spatial norms (vector and matrix
norms), choice of temporal norm makes big

difference for signals.

Example:

A e

Figure 99: Signals with entirely different 2-norms and

O-110T11S.

ler(®)lloe =1, [lex(t)]l2 = o0
le2(t)lloc = 00, [le2(t)]l2 = 1
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Compute norm in two steps:

1. “Sum up” the channels at a given time or

frequency using a vector norm.

2. “Sum up” in time or frequency using a temporal

NOorm.

A &

Figure 100: Signal 1-norm and oco-norm.

General:

0o 1/p
l, norm: |le(t)|, = </ Z ei(7)|l’d’r>

— 0



1-norm in time (integral absolute error (IAE), see
Figure 100):

el = [ Sleldr (a8

2-norm in time (quadratic norm, integral square

error (ISE), “energy” of signal):

Je(®)l = \/ [ Slewpa (ass)

oo-norm in time (peak value in time, see
Figure 100):

Je(8)lloc = max (macx e;(7))) (A.86)

Power-norm or RMS-norm (semi-norm since it

does not satisfy property 2)

le(®)[[pow = 1im %/_T;@Z-(T)Pdf (A.87)

T—>oo\
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