
A MATRIX THEORY AND

NORMS

A.1 Basics

Complex Matrix A ∈ C l×m

Real Matrix A ∈ R l×m

elements aij = Re aij + j Im aij

l = number of rows

= “outputs” when viewed as an operator

m = number of columns

= “inputs” when viewed as an operator

• AT = transpose of A (with elements aji),

• Ā = conjugate of A (with elements

Re aij − j Im aij),

• AH ∆
= ĀT = conjugate transpose (or Hermitian

adjoint) (with elements Re aji − jIm aji),
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Matrix inverse:

A−1 =
adjA

detA
(A.1)

where adjA is the adjugate (or “classical adjoint”) of

A which is the transposed matrix of cofactors cij of

A,

cij = [adjA]ji
∆
= (−1)i+j detAij (A.2)

Here Aij is a submatrix formed by deleting row i and

column j of A.

Example:

A =

[
a11 a12

a21 a22

]
; detA = a11a22 − a12a21

A−1 =
1

detA

[
a22 −a12

−a21 a11

]
(A.3)

Some matrix identities:

(AB)T = BTAT , (AB)H = BHAH (A.4)

Assuming the inverses exist,

(AB)−1 = B−1A−1 (A.5)

A is symmetric if AT = A,

A is Hermitian if AH = A,

A Hermitian matrix is positive definite if xHAx > 0

for any non-zero vector x.
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A.1.1 Some determinant identities

The determinant is defined as

detA =
∑n

i=1 aijcij (expansion along column j) or

detA =
∑n

j=1 aijcij (expansion along row i),

where cij is the ij’th cofactor given in (A.2).

1. Let A1 and A2 be square matrices of the same

dimension. Then

det(A1A2) = det(A2A1) = detA1 · detA2 (A.6)

2. Let c be a complex scalar and A an n× n

matrix. Then

det(cA) = cn det(A) (A.7)

3. Let A be a non-singular matrix. Then

detA−1 = 1/ detA (A.8)

4. Let A1 and A2 be matrices of compatible

dimensions such that both matrices A1A2 and

A2A1 are square (but A1 and A2 need not

themselves be square). Then

det(I +A1A2) = det(I +A2A1) (A.9)

(A.9) is useful in the field of control because it

yields det(I +GK) = det(I +KG).
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5.

det

[
A11 A12

0 A22

]
= det

[
A11 0

A21 A22

]
=

det(A11) · det(A22)(A.10)

6. Schur’s formula for the determinant of a

partitioned matrix:

det

[
A11 A12

A21 A22

]
=

det(A11) · det(A22 −A21A
−1
11 A12)

= det(A22) · det(A11 −A12A
−1
22 A21) (A.11)

where it is assumed that A11 and/or A22 are

non-singular.
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A.2 Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors. Let A be a square

n× n matrix. The eigenvalues λi, i = 1, . . . , n, are

the n solutions to the n’th order characteristic

equation

det(A− λI) = 0 (A.12)

The (right) eigenvector ti corresponding to the

eigenvalue λi is the nontrivial solution (ti 6= 0) to

(A− λiI)ti = 0 ⇔ Ati = λiti (A.13)

The corresponding left eigenvectors qi satisfy

qH
i (A− λiI) = 0 ⇔ qH

i A = λiq
H
i (A.14)

When we just say eigenvector we mean the right

eigenvector.
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Remarks

• The left eigenvectors of A are the (right)

eigenvectors of AH .

• ρ(A)
∆
= maxi |λi(A)| is the spectral radius of A.

• Eigenvectors corresponding to distinct

eigenvalues are always linearly independent.

• Define

T = {t1, t2, . . . , tn}; Λ = diag{λ1, λ2, . . . , λn}
(A.15)

where λ1, λ2, . . . , λn are distinct.

Then we may then write (A.13) in the following

form

AT = TΛ (A.16)

From (A.16) we then get that the eigenvector

matrix diagonalizes A in the following manner

Λ = T−1AT (A.17)
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A.2.1 Eigenvalue properties

1. trA =
∑

i λi where trA is the trace of A (sum of

the diagonal elements).

2. detA =
∏

i λi.

3. The eigenvalues of an upper or lower triangular

matrix are equal to the diagonal elements of the

matrix.

4. For a real matrix the eigenvalues are either real,

or occur in complex conjugate pairs.

5. A and AT have the same eigenvalues (but in

general different eigenvectors).

6. The eigenvalues of A−1 are 1/λ1, . . . , 1/λn.

7. The matrix A+ cI has eigenvalues λi + c.

8. The matrix cAk where k is an integer has

eigenvalues cλk
i .

9. Consider the l ×m matrix A and the m× l

matrix B. Then the l × l matrix AB and the

m×m matrix BA have the same non-zero

eigenvalues.
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10. Eigenvalues are invariant under similarity

transformations, that is, A and DAD−1 have the

same eigenvalues.

11. The same eigenvector matrix diagonalizes the

matrix A and the matrix (I +A)−1.

12. Gershgorin’s theorem. The eigenvalues of the

n× n matrix A lie in the union of n circles in the

complex plane, each with centre aii and radius

ri =
∑

j 6=i |aij | (sum of off-diagonal elements in

row i). They also lie in the union of n circles,

each with centre aii and radius r′i =
∑

j 6=i |aji|
(sum of off-diagonal elements in column i).

13. A symmetric matrix is positive definite if and

only if all its eigenvalues are real and positive.

From the above we have, for example, that

λi(S) = λi((I + L)−1) =
1

λi(I + L)
=

1

1 + λi(L)
(A.18)
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A.3 Singular Value Decomposition

Definition: Unitary matrix. A (complex) matrix

U is unitary if

UH = U−1 (A.19)

Note:

‖λ(U)‖ = 1 ∀i
Definition: SVD. Any complex l ×m matrix A

may be factorized into a singular value

decomposition

A = UΣV H (A.20)

where the l × l matrix U and the m × m matrix V are

unitary, and the l × m matrix Σ contains a diagonal

matrix Σ1 of real, non-negative singular values, σi,

arranged in a descending order as in

Σ =

[
Σ1

0

]
; l ≥ m (A.21)

or

Σ = [ Σ1 0 ] ; l ≤ m (A.22)

where

Σ1 = diag{σ1, σ2, . . . , σk}; k = min(l,m) (A.23)

and

σ̄
∆
= σ1 ≥ σ2 ≥ . . . ≥ σk

∆
= σ (A.24)
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• The unitary matrices U and V form orthonormal

bases for the column (output) space and the row

(input) space of A. The column vectors of V ,

denoted vi, are called right or input singular

vectors and the column vectors of U , denoted ui,

are called left or output singular vectors. We

define ū ≡ u1, v̄ ≡ v1, u ≡ uk and v ≡ vk.

• SVD is not unique since A = U ′ΣV ′H , where

U ′ = US, V ′ = V S, S = diag{ejθi} and θi is any

real number, is also an SVD of A. However, the

singular values, σi, are unique.

σi(A) =
√
λi(AHA) =

√
λi(AAH) (A.25)
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The columns of U and V are unit eigenvectors of

AAH and AHA, respectively. To derive (A.25) write

AAH = (UΣV H)(UΣV H)H = (UΣV H)(V ΣHUH)

= UΣΣHUH (A.26)

or equivalently since U is unitary and satisfies

UH = U−1 we get

(AAH)U = UΣΣH (A.27)

⇒ U is the matrix of eigenvectors of AAH and {σ2
i }

are its eigenvalues. Similarly, V is the matrix of

eigenvectors of AHA.

Definition: The rank of a matrix is equal to the

number of non-zero singular values of the matrix.

Let rank(A) = r, then the matrix A is called rank

deficient if r < k = min(l,m), and we have singular

values σi = 0 for i = r + 1, . . . k. A rank deficient

square matrix is a singular matrix (non-square

matrices are always singular).
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A.3.3 SVD of a matrix inverse

Provided the m×m matrix A is non-singular

A−1 = V Σ−1UH (A.28)

Let j = m− i+ 1. Then it follows from (A.28) that

σi(A
−1) = 1/σj(A), (A.29)

ui(A
−1) = vj(A), (A.30)

vi(A
−1) = uj(A) (A.31)

and in particular

σ̄(A−1) = 1/σ(A) (A.32)
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A.3.4 Singular value inequalities

σ(A) ≤ |λi(A)| ≤ σ̄(A) (A.33)

σ̄(AH) = σ̄(A) and σ̄(AT ) = σ̄(A) (A.34)

σ̄(AB) ≤ σ̄(A)σ̄(B) (A.35)

σ(A)σ̄(B) ≤ σ̄(AB) or σ̄(A)σ(B) ≤ σ̄(AB)(A.36)

σ(A)σ(B) ≤ σ(AB) (A.37)

max{σ̄(A), σ̄(B)} ≤ σ̄

[
A

B

]
≤

√
2max{σ̄(A), σ̄(B)}

(A.38)

σ̄

[
A

B

]
≤ σ̄(A) + σ̄(B) (A.39)

σ̄

[
A 0

0 B

]
= max{σ̄(A), σ̄(B)} (A.40)

σi(A) − σ̄(B) ≤ σi(A+B) ≤ σi(A) + σ̄(B) (A.41)

Two special cases of (A.41) are:

|σ̄(A) − σ̄(B)| ≤ σ̄(A+B) ≤ σ̄(A) + σ̄(B) (A.42)

σ(A) − σ̄(B) ≤ σ(A+B) ≤ σ(A) + σ̄(B) (A.43)

(A.43) yields

σ(A) − 1 ≤ σ(I +A) ≤ σ(A) + 1 (A.44)

On combining (A.32) and (A.44) we get

σ(A) − 1 ≤ 1

σ̄(I +A)−1
≤ σ(A) + 1 (A.45)
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A.4 Condition number

The condition number of a matrix is defined as

the ratio

γ(A) = σ1(A)/σk(A) = σ̄(A)/σ(A) (A.46)

where k = min(l,m).
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A.5 Norms

Definition

A norm of e (which may be a vector, matrix, signal

or system) is a real number, denoted ‖e‖, that

satisfies the following properties:

1. Non-negative: ‖e‖ ≥ 0.

2. Positive: ‖e‖ = 0 ⇔ e = 0 (for semi-norms we

have ‖e‖ = 0 ⇐ e = 0).

3. Homogeneous: ‖α · e‖ = |α| · ‖e‖ for all complex

scalars α.

4. Triangle inequality:

‖e1 + e2‖ ≤ ‖e1‖ + ‖e2‖ (A.47)
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We will consider the norms of four different objects

(norms on four different vector spaces):

1. e is a constant vector.

2. e is a constant matrix.

3. e is a time dependent signal, e(t), which at each

fixed t is a constant scalar or vector.

4. e is a “system”, a transfer function G(s) or

impulse response g(t), which at each fixed s or t

is a constant scalar or matrix.
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A.5.1 Vector norms

General:

‖a‖p = (
∑

i

|ai|p)1/p; p ≥ 1 (A.48)

Vector 1-norm (or sum-norm)

‖a‖1
∆
=
∑

i

|ai| (A.49)

Vector 2-norm (Euclidean norm).

‖a‖2
∆
=

√∑

i

|ai|2 (A.50)

aHa = ‖a‖2
2 (A.51)
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Vector ∞ -norm (or max norm)

‖a‖max ≡ ‖a‖∞ ∆
= max

i
|ai| (A.52)

‖a‖max ≤ ‖a‖2 ≤ √
m ‖a‖max (A.53)

‖a‖2 ≤ ‖a‖1 ≤ √
m ‖a‖2 (A.54)

p = ∞

p = 1

p = 2

−1

−1

1

1

a1

a2

Figure 96: Contours for the vector p-norm, ‖a‖p = 1

for p = 1, 2,∞
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A.5.2 Matrix norms

Definition

A norm on a matrix ‖A‖ is a matrix norm if, in

addition to the four norm properties in

Definition A.5, it also satisfies the multiplicative

property (also called the consistency condition):

‖AB‖ ≤ ‖A‖ · ‖B‖ (A.55)

Sum matrix norm.

‖A‖sum =
∑

i,j

|aij | (A.56)

Frobenius matrix norm (or Euclidean norm).

‖A‖F =
√∑

i,j |aij |2 =
√

tr(AHA) (A.57)

Max element norm.

‖A‖max = max
i,j

|aij | (A.58)

Not a matrix norm as it does not satisfy (A.55).

However note that
√
lm ‖A‖max is a matrix norm.
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Induced matrix norms

- -A
w z

Figure 97: Representation of (A.59)

z = Aw (A.59)

The induced norm is defined as

‖A‖ip
∆
= max

w 6=0

‖Aw‖p

‖w‖p
(A.60)

where ‖w‖p = (
∑

i |wi|p)1/p denotes the vector

p-norm.

• We are looking for a direction of the vector w

such that the ratio ‖z‖p/‖w‖p is maximized.

• The induced norm gives the largest possible

“amplifying power” of the matrix. Equivalent

definition is:

‖A‖ip = max
‖w‖p≤1

‖Aw‖p = max
‖w‖p=1

‖Aw‖p (A.61)
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‖A‖i1 = maxj(
∑

i |aij |)
“maximum column sum”

‖A‖i∞ = maxi(
∑

j |aij |)
“maximum row sum”

‖A‖i2 = σ̄(A) =
√
ρ(AHA)

“singular value or spectral norm”

(A.62)

Theorem 14 All induced norms ‖A‖ip are matrix

norms and thus satisfy the multiplicative property

‖AB‖ip ≤ ‖A‖ip · ‖B‖ip (A.63)

- - -AB
w v z

Figure 98:
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Implications of the multiplicative property

1. Choose B to be a vector, i.e B = w.

‖Aw‖ ≤ ‖A‖ · ‖w‖ (A.64)

The “matrix norm ‖A‖ is compatible with its

corresponding vector norm ‖w‖”.

2. From (A.64)

‖A‖ ≥ max
w 6=0

‖Aw‖
‖w‖ (A.65)

For induced norms we have equality in (A.65)

‖A‖F ≥ σ̄(A) follows since ‖w‖F = ‖w‖2.

3. Choose both A = zH and B = w as vectors.

Then we derive the Cauchy-Schwarz inequality

|zHw| ≤ ‖z‖2 · ‖w‖2 (A.66)
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A.5.3 The spectral radius ρ(A)

ρ(A) = max
i

|λi(A)| (A.67)

Not a norm!

Example:

A1 =

[
1 0

10 1

]
, A2 =

[
1 10

0 1

]
(A.68)

ρ(A1) = 1, ρ(A2) = 1 (A.69)

but

ρ(A1 +A2) = 12, ρ(A1A2) = 101.99 (A.70)

Theorem 15 For any matrix norm (and in

particular for any induced norm)

ρ(A) ≤ ‖A‖ (A.71)
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A.5.4 Some matrix norm relationships

σ̄(A) ≤ ‖A‖F ≤
√

min(l,m) σ̄(A) (A.72)

‖A‖max ≤ σ̄(A) ≤
√
lm ‖A‖max (A.73)

σ̄(A) ≤
√
‖A‖i1‖A‖i∞ (A.74)

1√
m
‖A‖i∞ ≤ σ̄(A) ≤

√
l ‖A‖i∞ (A.75)

1√
l
‖A‖i1 ≤ σ̄(A) ≤

√
m ‖A‖i1 (A.76)

max{σ̄(A), ‖A‖F , ‖A‖i1, ‖A‖i∞} ≤ ‖A‖sum (A.77)

• All these norms, except ‖A‖max, are matrix

norms and satisfy (A.55).

• The inequalities are tight.

• ‖A‖max can be used as a simple estimate of σ̄(A).
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The Frobenius norm and the maximum singular

value (induced 2-norm) are invariant with respect to

unitary transformations.

‖U1AU2‖F = ‖A‖F (A.78)

σ̄(U1AU2) = σ̄(A) (A.79)

Relationship between Frobenius norm and singular

values, σi(A)

‖A‖F =

√∑

i

σ2
i (A) (A.80)

Perron-Frobenius theorem

min
D

‖DAD−1‖i1 = min
D

‖DAD−1‖i∞ = ρ(|A|)
(A.81)

where D is a diagonal “scaling” matrix.

Here:

• |A| denotes the matrix A with all its elements

replaced by their magnitudes.

• ρ(|A|) = maxi |λi(|A|)| is the Perron root

(Perron-Frobenius eigenvalue). Note:

ρ(A) ≤ ρ(|A|)
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A.5.5 Matrix and vector norms in MATLAB

σ̄(A) = ‖A‖i2 norm(A,2) or max(svd(A))

‖A‖i1 norm(A,1)

‖A‖i∞ norm(A,’inf’)

‖A‖F norm(A,’fro’)

‖A‖sum sum (sum(abs(A)))

‖A‖max max(max(abs(A)))

(which is not a matrix norm)

ρ(A) max(abs(eig(A)))

ρ(|A|) max(eig(abs(A)))

γ(A) = σ̄(A)/σ(A) cond(A)

For vectors:

‖a‖1 norm(a,1)

‖a‖2 norm(a,2)

‖a‖max norm(a,’inf’)
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A.5.6 Signal norms

Contrary to spatial norms (vector and matrix

norms), choice of temporal norm makes big

difference for signals.

Example:

e

t

e1(t)

e2(t)

1

Figure 99: Signals with entirely different 2-norms and

∞-norms.

‖e1(t)‖∞ = 1, ‖e1(t)‖2 = ∞
‖e2(t)‖∞ = ∞, ‖e2(t)‖2 = 1

(A.82)
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Compute norm in two steps:

1. “Sum up” the channels at a given time or

frequency using a vector norm.

2. “Sum up” in time or frequency using a temporal

norm.

e

t

e(t)

Area = ‖e‖1

‖e‖∞

Figure 100: Signal 1-norm and ∞-norm.

General:

lp norm: ‖e(t)‖p =

(∫ ∞

−∞

∑

i

|ei(τ)|pdτ
)1/p

(A.83)
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1-norm in time (integral absolute error (IAE), see

Figure 100):

‖e(t)‖1 =

∫ ∞

−∞

∑

i

|ei(τ)|dτ (A.84)

2-norm in time (quadratic norm, integral square

error (ISE), “energy” of signal):

‖e(t)‖2 =

√∫ ∞

−∞

∑

i

|ei(τ)|2dτ (A.85)

∞-norm in time (peak value in time, see

Figure 100):

‖e(t)‖∞ = max
τ

(
max

i
|ei(τ)|

)
(A.86)

Power-norm or RMS-norm (semi-norm since it

does not satisfy property 2)

‖e(t)‖pow = lim
T→∞

√√√√ 1

2T

∫ T

−T

∑

i

|ei(τ)|2dτ (A.87)
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