
3 PERFORMANCE

LIMITATIONS IN SISO

SYSTEMS [5]

3.1 Input-Output Controllability [5.1]

“Control” is not only controller design and stability

analysis. Three important questions:

I. How well can the plant be controlled?

II. What control structure should be used?

(What variables should we measure, which variables

should we manipulate, and how are these variables

best paired together?)

III. How might the process be changed to

improve control?

3-1



Definition 1 (Input-output) controllability is

the ability to achieve acceptable control performance;

that is, to keep the outputs (y) within specified

bounds from their references (r), in spite of unknown

but bounded variations, such as disturbances (d) and

plant changes, using available inputs (u) and

available measurements (ym or dm).

Note: controllability is independent of the

controller, and is a property of the plant (or process)

alone.

It can only be affected by:

• changing the apparatus itself, e.g. type, size, etc.

• relocating sensors and actuators

• adding new equipment to dampen disturbances

• adding extra sensors

• adding extra actuators
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3.1.1 Scaling and performance [5.1.2]

We assume that the variables and models have been

scaled so that for acceptable performance:

• Output y(t) between r − 1 and r + 1 for any

disturbance d(t) between −1 and 1 and any

reference r(t) between −R and R, using an input

u(t) within −1 to 1.

or frequency-by-frequency.

• |e(ω)| ≤ 1, for any disturbance |d(ω)| ≤ 1 and

any reference |r(ω)| ≤ R(ω), using an input

|u(ω)| ≤ 1.

Usually for simplicity:

R(ω) = R ω ≤ ωr

R(ω) = 0 ω > ωr

(3.1)

Because:

e = y − r = Gu+Gdd−Rr̃ (3.2)

we can apply results for disturbances also to

references by replacing Gd by −R.
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3.2 Perfect control & plant inversion

[5.2]

y = Gu+Gdd (3.3)

For “perfect control”, i.e. y = r (not realizable) we

have feedforward controller:

u = G−1r −G−1Gdd (3.4)

With feedback control u = K(r − y) we have:

u = KSr −KSGdd

or since T = GKS,

u = G−1Tr −G−1TGdd (3.5)

Where feedback is effective (T ≈ I) feedback input in

(3.5) is the same as perfect control input in (3.4) =⇒
High gain feedback generates an inverse of G even

though K may be very simple.
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As consequence perfect control cannot be achieved if

• G contains RHP-zeros (since then G−1 is

unstable)

• G contains time delay (since then G−1 contains a

prediction)

• G has more poles than zeros (since then G−1 is

unrealizable)

For feedforward control perfect control cannot be

achieved if

• G is uncertain (since then G−1 cannot be

obtained exactly)

Because of input constraints perfect control cannot

be achieved if

• |G−1Gd| is large

• |G−1R| is large
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3.3 Constraints on S and T [5.3]

3.3.1 S plus T is one [5.3.1]

S + T = 1 (3.6)

=⇒ at any frequency |S(jω)| ≥ 0.5 or |T (jω)| ≥ 0.5

3.3.2 The waterbed effects (sensitivity

integrals) [5.3.2]
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Figure 16: Plot of typical sensitivity, |S|, with upper

bound 1/|wP |

Note: |S| has peak greater than 1; we will show that

this is unavoidable in practice.
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Pole excess of two: First waterbed formula

Idea:

When L(s) = has a relative degree of two or more,

then for some ω the distance between L and −1 is

less than one.
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Figure 17: |S| > 1 whenever the Nyquist plot of L is

inside the circle
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Theorem 1 Bode Sensitivity Integral.

Suppose that the open-loop transfer function L(s) is

rational and has at least two more poles than zeros

(relative degree of two or more).

Suppose also that L(s) has Np RHP-poles at

locations pi.

Then for closed-loop stability the sensitivity function

must satisfy

∫ ∞

0

ln |S(jω)|dω = π ·
Np∑

i=1

Re(pi) (3.7)

where Re(pi) denotes the real part of pi.
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RHP-zeros: Second waterbed formula
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Figure 18: Additional phase lag contributed by RHP-zero

causes |S| > 1
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Theorem 2 Weighted sensitivity integral.

Suppose that L(s) has a single real RHP-zero z and

has Np RHP-poles, pi. Then for closed-loop stability

the sensitivity function must satisfy

∫ ∞

0

ln |S(jω)| · w(z, ω)dω = π · ln
Np∏

i=1

∣∣∣∣
pi + z

pi − z

∣∣∣∣ (3.8)

where:

w(z, ω) =
2z

z2 + ω2
=

2

z

1

1 + (ω/z)2
(3.9)
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Figure 20: Plot of weight w(z, ω) for case with real

zero at s = z

Weight w(z, ω) “cuts off” contribution of ln|S| at

frequencies ω > z. Thus, for a stable plant:
∫ z

0

ln |S(jω)|dω ≈ 0 ( for |S| ≈ 1 at ω > z) (3.10)

The waterbed is finite, and a large peak for |S| is

unavoidable when we reduce |S| at low frequencies

(Figure 19).

Note also that when pi → z then pi+z
pi−z → ∞.
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3.3.3 Interpolation constraints from internal

stability [5.3.3]

If p is a RHP-pole of L(s) then

T (p) = 1, S(p) = 0 (3.11)

Similarly, if z is a RHP-zero of L(s) then

T (z) = 0, S(z) = 1 (3.12)

3.3.4 Sensitivity peaks [5.3.4]

Maximum modulus principle. Suppose f(s) is

stable (i.e. f(s) is analytic in the complex RHP).

Then the maximum value of |f(s)| for s in the

right-half plane is attained on the region’s boundary,

i.e. somewhere along the jω-axis. Hence, we have

for a stable f(s)

‖f(jω)‖∞ = max
ω

|f(jω)| ≥ |f(s0)| ∀s0 ∈ RHP

(3.13)
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The results below follow from (3.13) with

f(s) = wP (s)S(s)

f(s) = wT (s)T (s)

for weighted sensitivity and weighted complementary

sensitivity.

Theorem 3 Weighted sensitivity peak.

Suppose that G(s) has a RHP-zero z and let wP (s)

be any stable weight function.

Then for closed-loop stability the weighted sensitivity

function must satisfy

‖wPS‖∞ ≥ |wP (z)| (3.14)

Theorem 4 Weighted complementary

sensitivity peak.

Suppose that G(s) has a RHP-pole p and let wT (s) be

any stable weight function.

Then for closed-loop stability the weighted

complementary sensitivity function must satisfy

‖wTT‖∞ ≥ |wT (p)| (3.15)
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Theorem 5 Combined RHP-poles and

RHP-zeros.

Suppose that G(s) has Nz RHP-zeros zj , and Np

RHP-poles pi.

Then for closed-loop stability the weighted sensitivity

function must satisfy for each RHP-zero zj

‖wPS‖∞ ≥ c1j |wP (zj)|, c1j =

Np∏

i=1

|zj + p̄i|
|zj − pi|

≥ 1

(3.16)

and the weighted complementary sensitivity function

must satisfy for each RHP-pole pi

‖wTT‖∞ ≥ c2i|wT (pi)|, c2i =

Nz∏

j=1

|z̄j + pi|
|zj − pi|

≥ 1

(3.17)

For wP = wT = 1:

‖S‖∞ ≥ max
j
c1j , ‖T‖∞ ≥ max

i
c2i (3.18)

=⇒ Large peaks for S and T are unavoidable if a

RHP-zero and a RHP-pole are close to each other.
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3.3.5 Bandwidth limitation II [5.6.4]

Performance requirement:

|S(jω)| < 1/|wP (jω)| ∀ω ⇔ ‖wPS‖∞ < 1

(3.19)

However, from (3.14) we have that

‖wPS‖∞ ≥ |wP (z)|,
so the weight must satisfy

|wP (z)| < 1 (3.20)

For performance weight

wP (s) =
s/M + ω∗

B

s+ ω∗
BA

(3.21)

and a real zero at z we get:

ω∗
B(1 −A) < z

(
1 − 1

M

)
(3.22)

e.g. A = 0,M = 2:

ω∗
B <

z

2
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3.4 Limitations imposed by

RHP-poles [5.8]

Specification:

|T (jω)| < 1/|wT (jω)| ∀ω ⇔ ‖wTT‖∞ < 1

(3.23)

However, from (3.15) we have that:

‖wTT‖∞ ≥ |wT (p)| (3.24)

so the weight must satisfy

|wT (p)| < 1 (3.25)

For:

wT (s) =
s

ω∗
BT

+
1

MT
(3.26)

we get:

ω∗
BT > p

MT

MT − 1
(3.27)

e.g. MT = 2:

ω∗
BT > 2p
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3.5 Combined RHP-poles and

RHP-zeros [5.9]

RHP-zero:

ωc < z/2

RHP-pole:

ωc > 2p

RHP-pole and RHP-zero:

z > 4p for acceptable performance and robustness.

Sensitivity peaks.

From Theorem 5 for a plant with a single real

RHP-pole p and a single real RHP-zero z, we always

have:

‖S‖∞ ≥ c, ‖T‖∞ ≥ c, c =
|z + p|
|z − p| (3.28)
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Example 1 Balancing a rod. The objective is to keep

the rod upright by movement of the cart, based on

observing the rod either at its far end (output y1) or the

cart position (output y2).
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y1

force

g
m

M

l

l [m] = length of rod

m [kg] = mass of rod

M [kg] = mass of hand

g ≈ 10 m/s2 = acceleration due

to gravity.

The linearized transfer functions for the two cases are

G1(s) =
−g

s2 (Mls2 − (M + m)g)
;

G2(s) =
ls2 − g

s2 (Mls2 − (M + m)g)

Poles: p = 0, 0,±

√
(M+m)g

Ml
. For output y1(G1(s))

stabilization requires minimum bandwidth (3.27). For

output y2(G2(s)) zero at z =
√

g
l

• For light rod m << M , pole ≈ zero → “impossible”

to stabilize

• For heavy rod (m large) difficult to stabilize because

p > z

Example: m/M = 0.1 ⇒ ‖S‖∞ ≥ 42 ; ‖T‖∞ ≥ 42 ⇒

poor control
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3.6 * Ideal Integral Square Error

(ISE) optimal control [5.4]

ISE =

∫ ∞

0

|y(t) − r(t)|2dt (3.29)

the “ideal” response y = Tr when r(t) is a unit step

is:

T (s) =
∏

i

−s+ zj

s+ z̄j
e−θs (3.30)

where z̄j is the complex conjugate of zj .

Optimal ISE for three simple stable plants are:

1. with a delay θ:

ISE = θ

2. with a RHP-zero z:

ISE = 2/z

3. with complex RHP-zeros z = x± jy:

ISE = 4x/(x2 + y2)
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3.6.1 * Limitations imposed by time delays

[5.5]

Ideal for plant with delay:

S = 1 − T = 1 − e−θs (3.31)
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Figure 21: “Ideal” sensitivity function (3.31) for a

plant with delay

|S(jω)| in Figure 21 crosses 1 at π
3

1
θ = 1.05/θ.

Because here |S| = 1/|L|, we have:

ωc < 1/θ (3.32)
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3.6.2 * Limitations imposed by RHP-zeros

[5.6]

RHP-zeros typically appear when we have competing

effects of slow and fast dynamics:

G(s) =
1

s+ 1
− 2

s+ 10
=

−s+ 8

(s+ 1)(s+ 10)

(a) Inverse response [5.6.1]

For a stable plant with nz RHP-zeros, it may be

proven that the output in response to a step change

in the input will cross zero (its original value) nz

times, that is, we have inverse response behaviour.

3-21



(b) Bandwidth limitation I [5.6.3]
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Figure 22: “Ideal” sensitivity functions for plants with

RHP-zeros
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For a single real RHP-zero the “ideal”, i.e. ISE

optimal, sensitivity function is

S = 1 − T =
2s

s+ z
(3.33)

From Figure 22(a):

ωB ≈ ωc <
z

2
(3.34)
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3.7 * Non-causal controllers [5.7]

Perfect control can be achieved for a plant with a

time delay or RHP-zero if we use a non-causal

controller, i.e. a controller which uses information

about the future. (relevant for servo problems, e.g.

in robotics and for batch processing.)

G(s) =
−s+ z

s+ z
; z > 0 (3.35)

r(t) =





0 t < 0

1 t ≥ 0

Stable non-causal controller generates the input

u(t) =





2ezt t < 0

1 t ≥ 0

(See (Figure 23))
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Figure 23: Feedforward control of plant with RHP-

zero
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3.8 Limitations imposed by input

constraints [5.11]

The input required to achieve perfect control (e = 0)

is

u = G−1r −G−1Gdd (3.36)

Disturbance rejection. r = 0, |d(ω)| = 1;

|u(ω)| < 1 implies

|G−1(jω)Gd(jω)| < 1 ∀ω (3.37)

Command tracking. d = 0, |r(ω)| = R∀ω < ωr

|u(ω)| < 1 implies:

|G−1(jω)R| < 1 ∀ω ≤ ωr (3.38)

For acceptable control (namely |e(jω)| < 1)

requirements change to:

|G| > |Gd| − 1 at frequencies where |Gd| > 1

(3.39)

|G| > |R| − 1 < 1 ∀ω ≤ ωr (3.40)
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3.9 Summary: Controllability analysis

with feedback control [5.14]

c c q- - - - ?

?

-

�

6
r K G

Gd

Gm

d

y+
+

+
-

Figure 24: Feedback control system

y = G(s)u+Gd(s)d; ym = Gm(s)y (3.41)

Gm(0) = 1 (perfect steady-state measurement);

d, u, y and r are assumed to be scaled;

ωc = gain crossover frequency (frequency where

|L(jω)| crosses 1 from above);

ωd = frequency where |Gd(jωd)| first crosses 1 from

above.
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The following rules apply:

Rule 1. Speed of response to reject

disturbances. We require ωc > ωd. More

specifically, |S(jω)| ≤ |1/Gd(jω)| ∀ω.

Rule 2. Speed of response to track reference

changes. We require |S(jω)| ≤ 1/R up to the

frequency ωr where tracking is required.

Rule 3. Input constraints arising from

disturbances. For acceptable control (|e| < 1)

we require |G(jω)| > |Gd(jω)| − 1 at frequencies

where |Gd(jω)| > 1.

Rule 4. Input constraints arising from

setpoints. We require |G(jω)| > R− 1 up to

the frequency ωr where tracking is required. (See

(3.40)).
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Rule 5. Time delay θ in G(s)Gm(s). We

approximately require ωc < 1/θ. (See (3.32)).

Rule 6. Tight control at low frequencies with

a RHP-zero z in G(s)Gm(s). For a real

RHP-zero we require ωc < z/2. (See (3.34)).

Rule 7. Phase lag constraint. We require in

most practical cases (e.g. with PID control):

ωc < ωu. Here the ultimate frequency ωu is

where 6 GGm(jωu) = −180◦.

Rule 8. Real open-loop unstable pole in G(s)

at s = p. We need high feedback gains to

stabilize the system and require ωc > 2p.

In addition, for unstable plants we need

|G| > |Gd| up to the frequency p (which may be

larger than ωd where |Gd| = 1|). Otherwise, the

input may saturate when there are disturbances,

and the plant cannot be stabilized.
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3.10 Applications of controllability

analysis [5.16]

3.10.1 First-order delay process [5.16.1]

Problem statement.

G(s) = k
e−θs

1 + τs
; Gd(s) = kd

e−θds

1 + τds
; |kd| > 1

(3.42)

Also: measurement delays θm, θmd

Specification: |e| < 1 for |u| < 1, |d| < 1.

i) feedback control only

ii) feedforward control only

Give quantitative relationships between the

parameters which should be satisfied to achieve

controllability.
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Solution. For |u| < 1 we must from Rule 3 require

|G(jω)| > |Gd(jω)| ∀ω < ωd. For both feedback and

feedforward

k > kd; k/τ > kd/τd (3.43)

(i) Feedback control. From Rule 1 for |e| < 1 with

disturbances

ωd ≈ kd/τd < ωc (3.44)

On the other hand, from Rule 5 we require for

stability and performance

ωc < 1/θtot (3.45)

where θtot = θ + θm is the total delay around the

loop. (3.44) and (3.45) yield the following

requirement for controllability

Feedback: θ + θm < τd/kd (3.46)

(ii) Feedforward control. For |e| < 1 we need

Feedforward: θ + θmd − θd < τd/kd (3.47)
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3.10.2 Application: Room heating [5.16.2]

C  [J/K]
V

W/K]α[

T  [K]o

Q[W]

T[K]

Figure 25: Room heating process

1. Physical model. Heat input Q, room

temperature T (within ±1K), outdoor

temperature To.

Energy balance:

d

dt
(CV T ) = Q+ α(To − T ) (3.48)

2. Operating point. Heat input Q∗ is 2000W ,

difference between indoor and outdoor

temperatures T ∗ − T ∗
o is 20 K. The steady-state

energy balance yields α∗ = 2000/20 = 100W/K.

We assume CV = 100kJ/K.
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3. Linear model in deviation variables.

δT (t) = T (t) − T ∗;

δQ(t) = Q(t) −Q∗;

δTo(t) = To(t) − T ∗
o

yields

CV
d

dt
δT (t) = δQ(t) + α(δTo(t) − δT (t)) (3.49)

On taking Laplace transforms in (3.49), assuming

δT (t) = 0 at t = 0 and rearranging we get

δT (s) =
1

τs+ 1

(
1

α
δQ(s) + δTo(s)

)
; τ =

CV

α
(3.50)

The time constant for this example is

τ = 100 · 103/100 = 1000s ≈ 17min
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4. Linear model in scaled variables.

Introduce the following scaled variables

y(s) =
δT (s)

δTmax
(3.51)

u(s) =
δQ(s)

δQmax
(3.52)

d(s) =
δTo(s)

δTo,max
(3.53)

Acceptable variations in room temperature T are

±1K, i.e. δTmax = δemax = 1K. The heat input can

vary between 0W and 6000W , since its nominal

value is 2000W we have δQmax = 2000W .

Expected variation in temperature are ±10K, i.e.

δTo,max = 10K.

The model becomes

G(s) =
1

τs+ 1

δQmax

δTmax

1

α
=

20

1000s+ 1
(3.54)

Gd(s) =
1

τs+ 1

δTo,max

δTmax
=

10

1000s+ 1
(3.55)

Measurement delay for temperature (y) be

θm = 100s.
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Problem statement.

1. Is the plant controllable with respect to

disturbances?

2. Is the plant controllable with respect to setpoint

changes of magnitude R = 3 (±3 K) when the

desired response time for setpoint changes is

τr = 1000 s (17 min) ?

Solution.
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Figure 26: Frequency responses for room heating ex-

ample
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1. Disturbances. From Rule 1 feedback control is

necessary up to the frequency ωd = 10/1000 = 0.01

rad/s, where |Gd| crosses 1 in magnitude (ωc > ωd).

This is exactly the same frequency as the upper

bound given by the delay, 1/θ = 0.01 rad/s

(ωc < 1/θ). Therefore the system is barely

controllable for this disturbance. From Rule 3 no

problems with input constraints since |G| > |Gd| at

all frequencies. These conclusions are supported by

the closed-loop simulation in Figure 27(a) using a

PID-controller with Kc = 0.4 (scaled variables),

τI = 200 s and τD = 60 s.

2. Setpoints. The plant is controllable with respect

to the desired setpoint changes.

1. The delay (100 s) is much smaller than the

desired response time of 1000 s

2. |G(jω)| ≥ R = 3 up to about ω1 = 0.007 [rad/s]

which is seven times higher than the required

ωr = 1/τr = 0.001 [rad/s]. This means that input

constraints pose no problem. In fact, we achieve

response times of about 1/ω1 = 150 s without

reaching the input constraints. See Figure 27(b)

for a desired setpoint change 3/(150s+ 1) using

the same PID controller as above.
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Figure 27: PID feedback control of room heating ex-

ample
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3.10.3 * Application: Neutralization process

[5.16.3]
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Figure 28: Neutralization process with one mixing

tank

Problem statement. Consider process in

Figure 28, where a strong acid with pH= −1 is

neutralized by a strong base (pH=15) in a mixing

tank with volume V= 10m3.

Feedback control to keep the pH in the product

stream (output y) in the range 7 ± 1 (“salt water”)

by manipulating the amount of base, qB (input u) in

spite of variations in the flow of acid, qA (disturbance

d). The delay in the pH-measurement is θm = 10 s.
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1. Controlled output is the excess of acid, c [mol/l],

defined as c = cH+ − cOH− .

2. Objective is to keep |c| ≤ cmax = 10−6 mol/l,

and the plant is

d

dt
(V c) = qAcA + qBcB − qc (3.56)

q∗A = q∗B = 0.005 [ m3/s] resulting in q∗ = 0.01

[m3/s]= 10 [l/s].

3. Scaled variables:

y =
c

10−6
; u =

qB
q∗B

; d =
qA

0.5q∗A
(3.57)

4. Scaled linear model:

Gd(s) =
kd

1 + τhs
; G(s) =

−2kd

1 + τhs
; kd = 2.5·106

(3.58)

where τh = V/q = 1000 s is the residence time

for the liquid in the tank.
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Figure 29: Frequency responses for the neutralization

process with one mixing tank

Controllability analysis.

Figure 29: From Rule 2, input constraints do not

pose a problem since |G| = 2|Gd| at all frequencies.

From Rule 1 we find the frequency up to which

feedback is needed

ωd ≈ kd/τ = 2500 rad/s (3.59)

This requires a response time of 1/2500 = 0.4

milliseconds which is clearly impossible in a process

control application (also: delay of 10 s).
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Figure 30: Neutralization process with two tanks and

one controller

Design change: Multiple tanks.

To improve controllability modify the process ⇒
Perform the neutralization in several steps as

illustrated in Figure 30 for the case of two tanks.

With n equal mixing tanks in series

Gd(s) = kdhn(s); hn(s) =
1

( τh

n s+ 1)n
(3.60)

hn(s) is transfer function of the mixing tanks, and τh

is total residence time, Vtot/q.
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Figure 31: Frequency responses for n tanks in se-

ries with the same total residence time τh; hn(s) =

1/( τh

n s+ 1)n, n = 1, 2, 3, 4

From Rules 1 and 5, we must require

|Gd(jωθ)| ≤ 1 ωθ
∆
= 1/θ (3.61)

where θ is the delay in the feedback loop. Purpose of

mixing tanks hn(s) is to reduce the effect of the

disturbance by a factor kd(= 2.5 · 106) at the frequency

ωθ(= 0.1 [rad/s]), i.e. |hn(jωθ)| ≤ 1/kd. Minimum value

for the total volume for n equal tanks in series

Vtot = qθn
√

(kd)2/n − 1 (3.62)

where q = 0.01 m3/s.
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With θ = 10 s we then find that the following designs

have the same controllability

No. of Total Volume

tanks volume each tank

n Vtot [m3] [m3]

1 250000 250000

2 316 158

3 40.7 13.6

4 15.9 3.98

5 9.51 1.90

6 6.96 1.16

7 5.70 0.81

n = 1 ⇒ Supertanker.

Minimum total volume is 3.662 m3 with 18 tanks of

about 203 liters each

Practical compromise: 3 or 4 tanks.
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Control system design. We have |S| < 1/|Gd| at

the crossover frequency ωB ≈ ωc ≈ ωθ. However,

from Rule 1 we also require that |S| < 1/|Gd|, or

approximately |L| > |Gd|, at frequencies lower than

ωc, (difficult since Gd(s) = kdh(s) is of high order).

This requires |L| to drop steeply with frequency,

which results in a large negative phase for L

Thus, system in Figure 30 with a single feedback

controller will not work. ⇒ install local feedback

control system on each tank (Figure 32.).
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Figure 32: Neutralization process with two tanks and

two controllers.
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⇒plant design change

With n controllers for n tanks the overall closed-loop

response from a disturbance into the first tank to the

pH in the last tank becomes

y = Gd

n∏

i=1

(
1

1 + Li
)d ≈ Gd

L
d, L

∆
=

n∏

i=1

Li (3.63)

where Gd =
∏n

i=1Gi and Li = GiKi, and the

approximation applies at low frequencies where

feedback is effective.

Design each loop Li(s) with a slope of −1 and

bandwidth ωc ≈ ωθ, such that the overall loop

transfer function L has slope −n and achieves

|L| > |Gd| at all frequencies lower than ωd (the size of

the tanks are selected as before such that ωd ≈ ωθ).
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