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Current research:
• Restricted-complexity control (self-optimizing control): 

• off-line and analytical solutions to optimal control (incl. explicit MPC & explicit RTO)
• multivariable PID
• batch processes

• Plantwide control. Applications: LNG, GTL

Graduated PhDs since 2000
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Outline

• Implementation of optimal operation

• Paradigm 1: On-line optimizing control

• Paradigm 2: "Self-optimizing"  control schemes
– Precomputed (off-line) solution

• Examples

• Control of optimal measurement combinations
– Nullspace method

– Exact local methom

– Link to optimal control / Explicit MPC

• Conclusion
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Process control: Implementation of optimal operation
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Optimal operation

• A typical dynamic optimization problem

• Implementation: “Open-loop” solutions not robust to disturbances or 
model errors

• Want to introduce feedback
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Implementation of optimal operation

• Paradigm 1: On-line optimizing control where measurements are 
used to update model and states

• Paradigm 2: “Self-optimizing” control scheme found by exploiting 
properties of the solution 
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Implementation: Paradigm 1

• Paradigm 1: Online optimizing 
control 

• Measurements are primarily 
used to update the model

• The optimization problem is 
resolved online to compute new 
inputs.

• Example: Conventional MPC

• This is the “obvious” approach 
(for someone who does not 
know control)
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Example paradigm 1: On-line optimizing 
control of Marathon runner

• Even getting a reasonable model 
requires > 10 PhD’s   … and 
the model has to be fitted to each 
individual….

• Clearly impractical!
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Implementation: Paradigm 2

• Paradigm 2: Precomputed solutions based on off-line optimization

• Find properties of the solution suited for simple and robust on-line 
implementation  

• Proposed method: Turn optimization into feedback problem.
– Find regions of active constraints and in each region:

1. Control active constraints

2. Control “self-optimizing ” variables for the remaining unconstrained 
degrees of freedom

• “inherent optimal operation”

• Examples
– Marathon runner

– Hierarchical decomposition

– Optimal control 

– Explicit MPC
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Solution 2 – Feedback
(Self-optimizing control)

– What should we control?

Optimal operation - Runner
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Self-optimizing control: Sprinter (100m)

• 1. Optimal operation of Sprinter, J=T
– Active constraint control:

• Maximum speed (”no thinking required”)

Optimal operation - Runner
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• Optimal operation of Marathon runner, J=T

• Any self-optimizing variable c (to control at 
constant setpoint)?

• c1 = distance to leader of race

• c2 = speed

• c3 = heart rate

• c4 = level of lactate in muscles

Optimal operation - Runner

Self-optimizing control: Marathon (40 km)
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Implementation paradigm 2: 
Feedback control of Marathon runner

c = heart rate

Simplest case:
select one measurement

• Simple and robust implementation
• Disturbances are indirectly handled by keeping a constant heart rate
• May have infrequent adjustment of setpoint (heart rate)

measurements
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Further examples self-optimizing control

• Marathon runner

• Central bank

• Cake baking

• Business systems (KPIs)

• Investment portifolio

• Biology

• Chemical process plants

Define optimal operation (J) and look for ”magic” variable 
(c) which when kept constant gives acceptable loss (self-
optimizing control)
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More on further examples

• Central bank. J = welfare. u = interest rate. c=inflation rate (2.5%)
• Cake baking. J = nice taste, u = heat input. c = Temperature (200C)
• Business, J = profit. c = ”Key performance indicator (KPI), e.g. 

– Response time to order
– Energy consumption pr. kg or unit
– Number of employees
– Research spending
Optimal values obtained by ”benchmarking”

• Investment (portofolio management). J = profit. c = Fraction of 
investment in shares (50%)

• Biological systems:
– ”Self-optimizing” controlled variables c have been found by natural 

selection
– Need to do ”reverse engineering” :

• Find the controlled variables used in nature
• From this possibly identify what overall objective J the biological system has 

been attempting to optimize
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Example paradigm 2: Optimal operation of 
chemical plant

• Hierarchial decomposition based on 
time scale separation

Self-optimizing control: Acceptable operation 
(=acceptable loss) achieved using constant set points 
(cs) for the controlled variables c

csControlled variables c
1. Active constraints
2. “Self-optimizing” variables c

• for remaining unconstrained 
degrees of freedom  (u)

• No or infrequent online 
optimization.

• Controlled variables c are found 
based on off-line analysis.
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Summary feedback approach: Turn 
optimization into setpoint tracking

Issue: What should we control to achieve indirect optimal operation ?

Primary controlled variables (CVs):

1. Control active constraints!

2. Unconstrained  CVs: Look for “magic” self-
optimizing variables!

Need to identify CVs for each region of active constraints
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“Magic” self-optimizing variables: 
How do we find them?

• Intuition: “Dominant variables” (Shinnar)

• Is there any systematic procedure?

A. Senstive variables: “Max. gain rule” (Gain= Minimum singular value)

B. “Brute force” loss evaluation 

C. Optimal linear combination of measurements, c = Hy



10

20

Optimal operation

Cost J

Controlled variable cccoptopt

JJoptopt

Unconstrained optimum
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Optimal operation

Cost J

Controlled variable cccoptopt

JJoptopt

Two problems:

• 1. Optimum moves because of disturbances d: copt(d)

• 2. Implementation error, c = copt + n

d

n

Unconstrained optimum
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Candidate controlled variables c
for self-optimizing control

Intuitive

1. The optimal value of c should be insensitive to disturbances (avoid 
problem 1)

2. Optimum should be flat (avoid problem 2 – implementation error).

Equivalently: Value of c should be sensitive to degrees of freedom u. 
• “Want large gain”, |G|

• Or more generally: Maximize minimum singular value, 

Unconstrained optimum

BADGoodGood
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Quantitative steady-state: Maximum gain rule 

Maximum gain rule (Skogestad and Postlethwaite, 1996):
Look for variables that maximize the scaled gain (Gs)  
(minimum singular value of  the appropriately scaled  
steady-state gain matrix Gs from u to c)

Unconstrained optimum

Gu c
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Why is Large Gain Good?

u

J, c

Jopt

uopt

copt c-copt

Loss

G

With large gain G: Even large implementation error n in c translates into small deviation of u 
from uopt(d) - leading to lower loss 

Variation of u
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• Operational objective: Minimize cost function J(u,d)
• The ideal “self-optimizing” variable is the gradient (first-order optimality condition (ref: 

Bonvin and coworkers)):

• Optimal setpoint = 0

• BUT: Gradient can not be measured in practice
• Possible approach: Estimate gradient Ju based on measurements y

• Here alternative approach: Find optimal linear measurement combination

which when kept constant ( § n) minimize the effect of d on loss.
Loss = J(u,d) – J(uopt,d);  where input u is used to keep c = constant § n

• Candidate measurements (y): Include also inputs u

“Self-optimizing” variable combinations

Unconstrained degrees of freedom:
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Optimal measurement combination

H

Unconstrained degrees of freedom:
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Amazingly simple!

Sigurd is told by Vidar Alstad how 
easy it is to find H

Optimal measurement combination

1. Nullspace method for n = 0 (Alstad and Skogestad, 2007) 

Basis: Want optimal value of c to be independent of disturbances 

• Find optimal solution as a function of d: uopt(d), yopt(d)

• Linearize this relationship: yopt = F d  

• Want: 

• To achieve this for all values of  d: 

• Always possible to find H that satisfies HF=0 provided

• Optimal when we disregard implementation error (n)

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'',
Ind.Eng.Chem.Res, 46 (3), 846-853 (2007).

Unconstrained degrees of freedom:
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Optimal measurement combination

2. “Exact local method”
(Combined disturbances and implementation errors)

• V. Alstad, S. Skogestad and E.S. Hori, ``Optimal measurement combinations as controlled variables'', Journal of Process Control, 19, 
138-148 (2009).

Optimization problem for optimal combination:

Theorem 1. Worst-case loss for given H (Halvorsen et al, 2003):

Unconstrained degrees of freedom:

Applies to any H (selection/combination)
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Example: CO2 refrigeration cycle

Unconstrained DOF (u)
Control what? 
c=?

pH
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CO2 refrigeration cycle

Step 1. One (remaining) degree of freedom (u=z)

Step 2. Objective function. J = Ws (compressor work)

Step 3. Optimize operation for disturbances (d1=TC, d2=TH, d3=UA)
• Optimum always unconstrained

Step 4. Implementation of optimal operation
• No good single measurements (all give large losses):

– ph, Th, z, …

• Nullspace method: Need to combine nu+nd=1+3=4 measurements to have zero 
disturbance loss

• Simpler: Try combining two measurements. Exact local method:

– c = h1 ph + h2 Th = ph + k Th;   k = -8.53 bar/K

• Nonlinear evaluation of loss: OK! 
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Refrigeration cycle: Proposed control structure

Control c= “temperature-corrected high pressure”
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Summary: 
Procedure selection controlled variables

1. Define economics (cost J) and operational constraints

2. Identify degrees of freedom and important disturbances

3. Optimize for various disturbances

4. Identify active constraints regions (off-line calculations)

For each active constraint region do step 5-6:

5. Identify “self-optimizing” controlled variables for remaining degrees 
of freedom

6. Identify switching policies between regions
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What about optimal control and MPC (model 
predictive control)?

Paradigm 1: On-line optimizing control where 
measurements are used to update model and 
states

Paradigm 2: “Self-optimizing” control 
scheme found by exploiting properties of the 
solution

MPC

Optimal control 
= “Explicit MPC”
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Example paradigm 2: Feedback 
implementation of optimal control (LQ)

• Optimal solution to infinite time dynamic optimization problem

• Originally formulated as a “open-loop” optimization problem (no 
feedback)

• “By chance” the optimal u can be generated by simple state feedback
u = KLQ x

• KLQ is obtained off-line by solving Riccatti equations

• Explicit MPC: Extension using different KLQ in each constraint region
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Example paradigm 2: Explicit MPC

A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, ”The Explicit Linear Quadratic Regulator for Constrained Systems”,  Automatica, vol. 38, no. 1, pp. 3-20  (2002). 

• Summary: Two paradigms MPC
1. Conventional MPC: On-line optimization 
2. Explicit MPC: Off-line calculation of KLQ for each region

(must determine regions online)



18

36

Summary Paradigm 2: 
Precomputed on-line solutions based on off-
line optimization
Issues (expected research results for specific application):

1. Find analytical or precomputed solutions suitable for on-line 
implementation

2. Find structure of optimal solution for specific problems
• Typically, identify regions where different set of constraints are active

3. Find good “self-optimizing” variables c to control in each region:
• Active constraints

• Good variables or variable combinations (for remaining unconstrained)

4. Find optimal values (or trajectories) for unconstrained variables

5. Determine a switching policy between different regions
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Conclusion

• Simple control policies are always preferred in practice (if they exist 
and can be found)

• Paradigm 2: Use off-line optimization and analysis to find simple 
near-optimal control policies suitable for on-line implementation

• Current research: Several interesting extensions
– Optimal region switching

– Dynamic optimization

– Explicit MPC


