Simple rules for PID tuning
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Summary

Main message: Can usually do much better by taking a
systematic approach

Key: Look at initial part of step response
Initial slope: K> = k/ ,

SIMC tuning rules (“Skogestad IMC”)(")

One tuning rule! Easily memorized

1.1
Ke =3 @50

71 = min(7y, 4(7. + 0))
. > 0: desired closed-loop response time (tuning parameter)
For robustness select: | >

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control,
Vol. 13, 291-309, 2003
(*) “Probably the best simple PID tuning rules in the world”



Need a model for tuning

Model: Dynamic effect of change in input u (MV) on
output y (CV)

First-order + delay model for PI-control
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Second-order model for PID-control
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Step response experiment

Make step change in one u (MV) at a time
Record the output (s) y (CV)



First-order plus delay process
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Step response experiment
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1. Time constant - Additional time to reach 63% of final change

k : steady-state gain = y(c0)/ U
k' : slope after response “takes off” = k/ ;



Model reduction of more
complicated model

Start with complicated stable model on the form

— 1. (Th0s+1)(Tops+1)-- -0
Go(s) = ko et D) (raost - ©

Want to get a simplified model on the form

Os

— k —
G(8) = s D)D) ©

Most important parameter is usually the “effective” delay



OBTAINING THE EFFECTIVE DELAY ¢

Basis (Taylor approximation):

e 1—0s and e 95 =

Effective delay =
“true’ delay
+ inverse reponse time constant(s)

+ half of the largest neglected time constant (the “half rule”)
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7y
(or to 7 if use second-order model).



Example E1. The process
1

%(8) = Iz 1)

is approzimated as a first-order time delay process, g(s) = ke ! [(1ysd+1), withk = 1,0 = 0.2/2 =
0.1 and m =1+0.2/2=1.1.




Example

(—0.35s +1)(0.085 + 1)

N — [ ‘
90 = K o 1) (Ls + 1)(0,45 + 1)(0.25 + 1)(0.055 + 1)°

half rule
a first-order/delay process with

Is approximated
T =2+
0 = 1/2—|—D4+02

or as a second-ord
71 = 2
=14+04/2=1.2
0=04/24+02+3-0.00+0.3—-0.08=0.77

-0.05+ 0.3 — 0.08 = 1.47

elay process with



Deriv ation of rules:
Direct synthesis (IMC)
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Closed-loop response to setpoint change

y="T ys; T(s) = 1f;

ldea: Specify desired response (y/y,)=T and from this get the controller. Algebra:
1 1
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IMC Tuning = Direct Synthesis

e Controller:  ¢(s) = [15}- —

h'v'rf‘?"'-"'](I:':-.'irtncl

—1

e—fs

T15+1)(T0s+1)

e Consider second-order with delay plant:  g(s) = k(

. o . ) 1 _ 1 —fs
e Desired first-order setpoint response: ('ys)deaireci 1€
: " . . " , _ (mys+1)(ms+1) 1
e Gives a “Smith Predictor” controller:  ¢(s) = 3 T
e To get a PID-controller use ¢7% ~ 1 — s and derive
(s + 1)(mes+1) 1
c(s) =
k (1. +8)s
which is a cascade form PID-controller with
1 T1
o= . TI=T, Tp=T

e 7. is the sole tuning parameter



Integral time

Found:
Integral time = dominant time constant ( = ,)
Works well for setpoint changes

Needs to be modify (reduce) , for “integrating
disturbances”



Example: Integral time for “slow”/integrating process

IMC rule;
= .=30

ylt)

*Reduce | to improve performance
*To just avoid slow oscillations:

| = 4 ( c+ ) =38

0.6
0.4k (see derivation next page)
0.2f
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Figure 2: Effect of changing the integral time 7; for Pl-control of “slow” process gi{s) = ¢ * /(305 + 1} with K. = 15.

Load disturbance of magnitude 10 occurs at ¢ = 20.

Too large integral time: Poor disturbance rejection
Too small integral time: Slow oscillations



Derivation integral time:
Avoiding slow oscillations for integrating process

Integrating process: , large

Assume , large and neglect delay
G(s)=ke s/( ;s+1)~=K/( ;5)=Kls
Pl-control: C(s) = K, (1 + 1/ ;)
Poles (and oscillations) are given by roots of closed-loop polynomial
1+GC=1+K/s- K (1+1/ ;s)= 0
or S2+K K, s+k K., =0
Can be written on standard form ( ;2s2+2 s+ 1) with

O = \/TI/(I-C’KC);C = %\/Kc-k’ CTT

To avoid oscillations must require | |> 1:
K -K- >4 or [ >4/(K.K)
With choice K, = (1/k”) (1/( .+ )) thisgives >4 ( .+ )

Conclusion integrating process: Want | small to improve performance, but must
be larger than 4 ( .+ ) to avoid slow oscillations



Summary: SIMC-PID Tuning Rules

For cascade form PID controller:
1 7 1 1

K.=— — . 1
¢ kt.+60 k' 17.+0 2
4
7 = min{Ty, K } = min{r, 4(r. + 0)} (2)
C

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis”)

2. Reduce integral time to get better disturbance rejection for slow or

integrating process (but avoid slow cycling = 77 > K J}Q)

One tuning parameter:



Some special cases

Process g(s) K. T o )
First-order % e min{7y,4(r. +6)} | -
Second-order, eq.(4) | kr; 5_,_31_};:? PrEy e min{7y,4(m. +0)} |

Pure time delay'") ke 0 0 0 () -
Integrating!? k’% & E:rc1+ti'}| 4(7. + 6) -
Integrating with lag ;m::;THin = - (:rc1+ti'}| 41, +6) Ty
Double integrating'® | &" E;:S I - 4{%19]2 4 (1. +0) 4 (1o + 6)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7, as a tuning parameter).
1) The pure time delay process is a special case of a first-order process with = = 0.
2) The integrating process is a special case of a first-order process with 7, — oo.

4) The derivative time is for the series form PID controller in eq.(1).

def K, 1

(

(

(3) For the double integrating process, integral action has been added according to eq.(27).
(

(*) Pure integral controller ¢(s) = %i with Ky =

r  Rk(ret8)"

One tuning parameter: .



DERIVATIVE ACTION ?

First order with delay plant (7o = 0) with 7. = 6
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Figure 5: Setpoint change at £ = 0. Load disturbance of magnitude 0.5 occurs at t = 20,

e Observe: Derivative action (solid line) has only a minor effect.
e Conclusion: Use second-order model (and derivative action) only when

T > 6 (approximately)

Note: Derivative action is commonly used for temperature control loops.
Select [ equal to time constant of temperature sensor



Selection of tuning parameter

C

Two cases

Tight control: Want “fastest possible control”
subject to having good robustness

sSmooth control: Want “slowest possible control”
subject to having acceptable disturbance rejection



TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC: 7.=286

Gives:

.2 05T _05 1
ke K 4
77 = min{7(, 860}

D = T2

Try to memorize!

Gain margin about 3
Process g(s) :"|:.+| o s %(,—p:.
Controller gain, K, %—;‘- '1—'{',.-
Integral time, T; T it
Gain margin (GM) 314 2.96
Phase margin (PM) 61.4° 46.9°
Allowed time delay error, Af/8 2.14 1.59
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M, | 1.00 1.30
Phase crossover frequency, wigy - # 1.57 1.49
(Gain crossover frequency, w, - # 0.50 0.51

— p— —
-~ O O
e e U

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (7. = #). The same margins apply to

second-order processes if we choose 7 = 7.



Example. Integrating process with delay=1. G(s) = eS/s.

Model: k'=1

SIMC-tunings with _ with = =1:
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K To40
77 = min(71,4(7. + #)) = min(oco,8) = 8§
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Ziegler-Nichols is usually a
bit aggressive

IMC has
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SMOOTH CONTROL

Minimum controller gain:

> [uolw)]

|ymax|

e(jw)l

Industrial practice: Variables (instrument ranges) often scaled such that

[uo| ~ |ymax| = max range (span)

Minimum controller gain is then

lc(jw)| > 1= |K. > 1 for PID-control

/

Minimum gain for smooth control =
Common default factory setting K =1 is reasonable !




LEVEL CONTROL

Level control is often difficult...

Typical story:

o Level loop starts oscillating

0 Operator detunes by decreasing controller gain
o Level loop oscillates even more

Explanation: Level is by itself unstable and
requires control.



LEVEL CONTROL

How avoid oscillating levels?

o Simplest: Use P-control only (no integral action)

 |f you Insist on integral action, then make sure
the controller gain is sufficiently large

* |f you have a level loop that is oscillating then
use Sigurds rule (can be derived):

To avoid oscillations, increase K - T, by factor
f=0.1- (Py/1,)?

where
P, = period of oscillations [s]
Tio = original integral time [s]




APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f ~ 0.1(Py/770).

Real Plant data:

Period of oscillations Py = 0.85h = 51min = f = 0.1 (51/1)* = 260

: QEI'FGKE'- {(Ke=- 05, toui = 1 min)
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Conclusion PID tuning

SIMC tuning rules

_ 1.1
Ke =% @30

71 = min(7y, 4(7. + 0))

1._ Select T,=0 corresponding to

__ 051
Kc,ma,x — Lk’ 0

2. Smooth control. Select K, > K i = o

|ymax |

Note: Having selected K, (or t,), the integral time t, should be
selected as given above



CONCLUSION

o It is simple (one single rule for all processes)
o |t is excellent for teaching (analytical)

e It works very well for all of “our” processes
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