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Example regulatory control: Distillation

Assume given feed
5 dynamic DOFs (L,V,D,B,V,)

Overall objective:
Control compositions (X and Xg)

o “Obvious” stabilizing loops:

F z
W
K o 1. Condenser level (M)
4@ .| 2. Reboiler level (M,)
% B 3. Pressure

E.A. Wolff and S. Skogestad, “*Temperature cascade control of distillation columns", Ind.Eng.Chem.Res., 35, 475-484, 1996.




LV-configuration used for levels (most common)

> “LV-configuration™:
L and V remain as degrees of freedom
after level loops are closed

T g ------ Other possibilities:
M2
H DB, L/D V/B, etc....
% B x N




BUT: To avoid strong sensitivity to disturbances:
Temperature profile must also be “‘stabilized”

™D

feedback using e.g. D,L,V or B

B

Even with the level and pressure loops closed the column is practically unstable - either close
to integrating or even truly unstable ( e.g. with mass reflux: Jacobsen and Skogestad, 1991)

e To stabilize the column we must use feedback (feedforward will give drift)
 Simplest: “Profile feedback” using sensitive temperature




Stabilizing the column profile

 Should close one “fast” loop (usually temperature) in order to
“stabilize” the column profile

— Makes column behave more linearly

— Strongly reduces disturbance sensitivity
— Keeps disturbances within column

— Reduces the need for level control

— Makes it possible to have good dual composition control

e P-control usually OK (no integral action)

— Similar to control of liquid level




Stabilizing the column profile

» Which fast loop should be closed (“pairing”)? N

— Which end? Close loop in end with “most important” Btm. loop
product using V

— Which output (temperature)? Choose “sensitive” stage
—  Which input (flow)? Want fast control = “pair close” T
« “Use same end” (reduces interactions for composition e (O

control): ¥ G

— Use V (or indirect by B) for temperature controlin bottom
section

— Use L (orindirect by D) for temperature control in top section
» Dynamics
— L: Some delay for liquid to go down the column
— V:Vapor flow moves quickly up the column, but may take
some time before it starts changing (heat transfer dynamics)
* Ingeneral, for stabilizing loops: Avoid using an input (flow)
that can saturate




Temperature control: Which stage?




Example column

* Example: Ideal 4-component mixture (A,B,C,D) with all relative volatilities =
1.5

—  %yp = e = %ep =15
e 40 stages and feed in middle of column

* Two cases:
— Binary: 50% B and 50% C (“column A”)
—  Multicomponent: Equimolar feed (25% if each)

B and C are key components
e Top product: 1% H (C), Bottom product: 1% L (B)




Which temperature?
Rule: Maximize the scaled gain

e Scalar case. Minimum singular value = gain |Gl

e Maximize scaled gain: |Gl =Gl / span
— |G,l: gain from independent variable (u) to candidate controlled variable (c)

— span (of ¢) = variation (of ¢) = optimal variation in ¢ + control error for ¢




Binary distillation: Unscaled steady-state gain
G,= AT/AL for small change in L
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Procedure scaling

1. Nominal simulation

2. Unscaled gains (“steady-state sensitivity”)
- Make small change in input (L) with the other inputs (V) constant.
Find gain= T/ L
- Do the same for change in V

3. Obtain scalings (“optimal variation for various disturbances”)
Find T, for the following disturbances
1. F (from 1 to 1.2) yoptf
2. zi from 0.5 to 0.6 yoptz

“Optimal” may be defined in two different ways

1. SCALING 1 (normally used). Keep constant X and xg by changing both L and V (disturbance in F has
no effect in this case)
2. SCALING 2 (in some cases). Change only L (or V) and minimize 2-norm of product composition
offset
4. Control (implementation) error. Assume=0.5 K on all stages
5. Find

scaled-gain = gain/span

where span = abs(yoptf)+abs(yoptz)+0.5

“Maximize gain rule”: Prefer stage where scaled-gain is large




Gain (unscaled)Gain

Scaled gain = span —_ noiseJopt.variation

Implementation error used , n = 0.5C
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e Conclusion:
T sagenumoer «Control in middle of section (not
T at column ends or around feed)
«Scalings not so important here

o




Maximum gain rule:

Tray 30 1s most sensitive (middle top section)
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Simulation with temperature loop closed:
Response 1n X to 1% teedrate change
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Simulation: Response with temperature loop
closed using L (can improve with L/F!)
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Disturbances:

Note(as expected!):
*Temp. meas. in top -> Top comp. OK
*Temp. meas. in btm -> Btm. comp. OK

F changes from 1 to 1.1 att=0
z changes from 0.5 to 0.55 at t = 50
g changes from 1 t0 0.9 at t = 100




Bonus 1 of temp. control:
Indirect level control

Disturbance in V, qg:
Detected by TC

and counteracted by L
-> Smaller changes

in D required to keep
M, constant!




Bonus 2 of temp. control:
Less interactive

Setpoint T

New “handle”
instead of L

s S




Bonus 2 of temp. control:
Less interactive




Less interactive:
RGA with temperature loop closed
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Less interactive: Closed-loop response with
decentralized PID-composition control

Interactions much smaller with “stabilizing” temperature loop closed
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Figure 4.9: Time simulations with composition loops closed.




Integral action 1n temperature loop has little
effect

— Proportional gain only
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Figure 4.11: Response to a 50% step change in feed rate F' with and without integral
action in the secondary loop.




No need to close two inner temperature loops

%
0.8F
(.61
— With one secondary loop
0.4k ’ -- With two secondary loops |
0.2r
0 . e
0 20 40 60 80 100

Time (min.)
(a) Response to a setpoint change in dis-
tillate; Arp = 0.01.

”H T T — T T
— With one secondary loop
0.6k -- With two secondary looys
0.4}
0.2} S
0 —
-0.2¢
‘-.‘__,_.--*"H xD
ny : : -
Jf{l 20 40 6l 80 100

Time (min.)

(b) Response to a 50% step change in

feed rate.

Would be even better
with V/F




Would be even better with V/F:




A “winner”: L/F-T-conguration

TS

$ose

Only caution: V should not saturate




J = {xD — Xpe ..]E _|_[.-XE5 — Xgs -.]E

Table 1: Losses of several possiole configurations for binary mixture.

Configuration Exact loss (x10°) Configuration Exact loss (x10°)
Tp-Ty 28 L-B 44300
Tis-LF 83 D-V 45000
Tig-VIF 131 LD-V 53400
Ty-L 149 Ty-BF 62600
Tis-LD 74 Ty-DF 62600
Tp-V 216 Ti-B 89200
Ty-VIB 292 Ty-0 89200
LD-VB 25100 L-V 402200
LF-VB 34600 LUF-VF[=) 810600

5~




Multicomponent:
Composition profiles

Composition

Composition profile
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Multicomponent: Temperature profile

Temperature

Profile steepest in middle and at column ends (1?7?)
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Multicomponent distillation

. unscaled)Gain
Scaled gain = Salnh — ( )Gair
span noise-topt.variation
Gains for L
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Conclusion: Control temperature in middle of sections

*Almost same as for binary

*Very different from slope of temperature profile
(initial response):



Conclusion: Stabilizing control distillation

e Control problem as seen from layer above becomes much simpler if
we control a sensitive temperature inside the column (y, = T)
e Stabilizing control distillation
1. Condenser level
2. Reboiler level
3. Pressure (sometimes left “floating” for optimality)

4. Column temperature

e Most common pairing:
— “LV7”-configuration for levels
— Cooling for pressure
— (a) L for T-control (if V may saturate; or top composition important)

— (b) V for T-control (if delay from L to T; or btm composition important)




Conclusion stabilizing control:
Remaining supervisory control problem

L, |
Would be even better with L/F t Dy
£ F o

With V for T-control :@L‘/ |
% B x -

+ may adjust setpoints for p, M, and M, (MPC)
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