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Chapter 1

Introduction

1.1 Scope of note

This note originates from course notes for the course ’Design og vedlikehold av regu-
leringsfunksjoner’,given in cooperation between Cyberlab.Org AS and the Engineer-
ing Cybernetics Department of the Norwegian University of Science and Technology
(NTNU). Parts of this note has later been used in the course Advanced Process
Control, which has been offered by the Engineering Cybernetics Department in co-
operation with the Chemical Engineering Department at NTNU. The most recent
version is further adapted for the course Advanced Control of Industrial Processes,
offered by the Engineering Cybernetics Department.

The target audience is students in the fourth year of the 5-year MSc programme in
Engineering Cybernetics. Thus, the note is written for people with a relatively broad
background in control engineering, who are familiar with both frequency response and
time domain analysis. Whereas frequency response (or Laplace domain) analysis is
used predominantly for single-loop control, time domain description (in discrete time)
is used extensively in the description of multivariable Model Predictive Control.

Concepts from systems theory such as (state) controllability and (state) observ-
ability are also used without introduction1.

It is this authors intent to keep the focus on issues of importance for industrial
applications. Frequently, results are presented and discussed, without presenting
formal proofs. Readers interested in mathematical proofs will have to consult the
references.

Readers are also assumed to be familiar with finite dimensional linear algebra,
i.e., have a working knowledge of matrices and vectors. Although the subject matter
is by necessity of a mathematical nature, mathematical elegance is often sacrificed
for clarity. In addition to students of control engineering, students with a Process
Systems Engineering specialization within Chemical Engineering should also be able
to read and benefit from this note.

1Although the importance of these concepts are not exaggerated in this work.

9
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1.2 Why is process control needed?

Many texts on process control implicitly assume that it is obvious when and why
control is needed. It seems obvious that even a moderately complex process plant
will be very difficult to operate without the aid of process control. Nevertheless, it
can be worthwhile to spend a few minutes thought on why process control is needed.
In the following, a short and probably incomplete list of reasons for the need of process
control is provided, but the list should illustrate the importance of process control in
a process plant.

1. Stabilizing the process. Many processes have integrating or unstable modes.
These have to be stabilized by feedback control, otherwise the plant will (sooner
or later) drift into unacceptable operating conditions. In the vast majority of
cases, this stabilization is provided by automatic feedback control2. Note that
in practice, ”feedback stabilization” of some process variable may be necessary
even though the variable in question is asymptotically stable according to the
control engineering definition of stability. This happens whenever disturbances
have sufficiently large effect on a process variable to cause unacceptably large
variations in the process variable value. Plant operators therefore often use
the term ”stability” in a much less exact way than how the term is defined in
control engineering. A control engineer may very well be told that e.g., ”this
temperature is not sufficiently stable”, even though the temperature in question
is asymptotically stable.

2. Regularity. Even if a process is stable, control is needed to avoid shutdowns due
to unacceptable operating conditions. Such shutdowns may be initiated auto-
matically by a shutdown system, but may also be caused by outright equipment
failure.

3. Minimizing effects on the environment. In addition to maintaining safe and
stable production, the control system should also ensure that any harmful effects
on the environment are minimized. This is done by optimizing the conversion of
raw materials3, and by maintaining conditions which minimize the production
of any harmful by-products.

4. Obtaining the right product quality. Control is often needed both for achieving
the right product quality, and for reducing quality variations.

5. Achieving the right production rate. Control is used for achieving the right pro-
duction rate in a plant. Ideally, it should be possible to adjust the production
rate at one point in the process, and the control system should automatically
adjust the throughput of up- or downstream units accordingly.

2However, some industries still use very large buffer tanks between different sections in the
process. For such tanks it may be sufficient with infrequent operator intervention to stop the buffer
tank from overfilling or emptying.

3Optimizing the conversion of raw materials usually means maximizing the conversion, unless
this causes unacceptably high production of undesired by-products, or requires large energy inputs.
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6. Optimize process operation. When a process achieves safe and stable operation,
with little down-time, and produces the right quality of product at the desired
production rate, the next task is to optimize the production. The objective
of the optimization is normally to achieve the most cost-effective production.
This involves identifying, tracking and maintaining the optimal operating con-
ditions in the face of disturbances in production rate, raw material composition
and ambient conditions(e.g., atmospheric temperature). Process optimization
often involves close coordination of several process units, and operation close to
process constraints.

The list above should illustrate that process control is vital for the operation
of process plants. Even plants of quite moderate complexity would be virtually
impossible to operate without process control. Even where totally manual operation
is physically feasible, it is unlikely to be economically feasible due to product quality
variations and high personnel costs, since a high number of operators will be required
to perform the many (often tedious) tasks that the process control system normally
handles.

Usually many more variables are controlled than what is directly implied by the
list above, there are often control loops for variables which have no specification
associated with them. There are often good reasons for such control loops - two
possible reasons are

1. To stop disturbances from propagating downstream. Even when there are no
direct specification on a process variable, variations in the process variable may
cause variations in more important variables downstream. In such cases, it
makes sense to remove the disturbance at its source.

2. Local removal of uncertainty. By measuring and controlling a process variable,
it may be possible to reduce the effect of uncertainty with respect to equip-
ment behaviour or disturbances. Examples of such control loops are valve
positioners used to minimize the effect of valve stiction, or local flow control
loops which may be used to counteract the effects of pressure disturbances up-
or downstream of a valve, changes in fluid properties, or inaccuracies in the
valve characteristics.
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1.2.1 What knowledge does a process control engineer need?

The list on page 10 also indicates what kind of knowledge is required for a process
control engineer. The process control engineer needs to have a thorough understand-
ing of the process. Most stabilizing control loops involve only one process unit (e.g.,
a tank or a reactor), and most equipment limitations are also determined by the indi-
vidual units. Process understanding on the scale of the individual units is therefore
required. Understanding what phenomena affect product quality also require an un-
derstanding of the individual process units. On the other hand, ensuring that the
specified production rate propagates throughout the plant, how the effect of distur-
bances propagate, and optimizing the process operation, require an understanding of
how the different process units interact, i.e., an understanding of the process on a
larger scale.

Most basic control functions are performed by single loops, i.e., control loops with
one controlled variable and one manipulated variable. Thus, when it is understood
why a particular process variable needs to be controlled, and what manipulated vari-
able should be used to control it4, the controller design itself can be performed using
traditional single-loop control theory (if any theoretical considerations are made at
all). Often a standard type of controller, such as a PID controller, is tuned on-line,
and there is little need for a process model. Other control tasks are multivariable
in nature, either because it is necessary to resolve interactions between different con-
trol loops, or because the control task requires coordination between different process
units. Process models are often very useful for these types of control problem.
The models may either be linear models obtained from experiments on the plant,
or possibly non-linear models derived from physical and chemical principles. Some
understanding of mathematical modelling and system identification techniques are
then required. Non-linear system identification from plant experiments are not in
standard use in the process industries.

Optimizing process operation requires some understanding of plant economics,
involving the costs of raw materials and utilities, the effect of product quality on
product price, the cost of reprocessing off-spec product, etc. Although it is rare that
economics is optimized by feedback controllers5, an understanding of plant economics
will help understanding where efforts to improve control should be focused, and will
help when discussing the need for improved control with plant management.

A process control engineer must thus have knowledge both of process and control
engineering. However, it is not reasonable to expect the same level of expertise in
either of these disciplines from the process control engineer as for ”specialist” process

4Determining what variables are to be controlled, what manipulated variables should be used
for control, and the structure of interconnections between manipulated and controlled variables, are
quite critical tasks in the design of a process control system. This part of the controller design is
often not described in textbooks on ”pure” control engineering, but will be covered in some detail
in later sections.

5It is more common that economic criteria are used in the problem formulation for socalled Real
Time Optimization (RTO) problems, or for plant production planning and scheduling.
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or control engineers. There appears to be a ”cultural gap” between process and
control engineers, and the process control engineer should attempt to bridge this
gap. This means that the process control engineer should be able to communicate
meaningfully with both process and control engineers, and thereby also be able to
obtain any missing knowledge by discussing with the ”specialists”. However, at a
production plant there will seldom be specialists in control theory, but there will
always be process engineers. At best, large companies may have control theory
specialists at some central research or engineering division. This indicates that a
process control engineer should have a fairly comprehensive background in control
engineering, while the process engineering background should at least be sufficient to
communicate effectively with the process engineers.

In the same way as for other branches of engineering, success at work will not come
from technological competence alone. A successful engineer will need the ability to
work effectively in multi-disciplinary project teams, as well skills in communicating
with management and operators. Such non-technical issues will not be discussed
further here.
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1.3 The structure of control systems in the process

industries.

1.3.1 Overall structure

When studying control systems in the process industries, one may observe that they
often share a common structure. This structure is illustrated in Fig. 1.1.

Supervisory control

Regulatory control

Real time optimization

Production planning/
scheduling

To manipulated variables From measurements

Process

Figure 1.1: Typical structure of the control system for a large plant in the process
industries.

The lower level in the control system is the Regulatory control layer. The structure
of the individual controllers in the regulatory control layer is normally very simple.
Standard single-loop controllers, typically of PI/PID type are the most common, but
other simple control functions like feed forward control, ratio control, or cascaded
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control loops may also be found. Truly multivariable controllers are rate at this
level. The regulatory control system typically controls basic process variables such
as temperatures, pressures, flowrates, speeds or concentrations, but in some cases
the controlled variable may be calculated based on several measurements, e.g., a
component flowrate based on measurements of both concentration and overall flowrate
or a ratio of two flowrates. Usually a controller in the regulatory control layer
manipulates a process variable directly (e.g., a valve opening), but in some cases the
manipulated variable may be a setpoint of a cascaded control loop. Most control
functions that are essential to the stability and integrity of the process are executed
in this layer, such as stabilizing the process and maintaining acceptable equipment
operating conditions.

The Supervisory control layer coordinates the control of a process unit or a few
closely connected process units. It coordinates the action of several control loops,
and tries to maintain the process conditions close to the optimal while ensuring that
operating constraints are not violated. The variables that are controlled by super-
visory controllers may be process measurements, variables calculated or estimated
from process measurements, or the output from a regulatory controller. The ma-
nipulated variables are often setpoints to regulatory controllers, but process variables
may also be manipulated directly. Whereas regulatory controllers are often designed
and implemented without ever formulating any process model explicitly, supervisory
controllers usually contain an explicitly formulated process model. The model is
dynamic and often linear, and obtained from experiments on the plant. Typically,
supervisory controllers use some variant of Model Predictive Control (MPC).

The optimal conditions that the supervisory controllers try to maintain, may
be calculated by a Real Time Optimization (RTO) control layer. The RTO layer
identifies the optimal conditions by solving an optimization problem involving models
of the production cost, value of product (possibly dependent on quality), and the
process itself. The process model is often non-linear and derived from fundamental
physical and chemical relationships, but they are usually static.

The higher control level shown in Fig. 1.1 is the Production planning and schedul-
ing layer. This layer determines what products should be produced and when they
should be produced. This layer requires information from the sales department about
the quantities of the different products that should be produced, the deadlines for
delivery, and possibly product prices. From the purchasing department information
about the availability and price of raw materials are obtained. Information from
the plant describes what products can be made in the different operating modes, and
what production rates can be achieved.

In addition to the layers in Fig. 1.1, there should also be a separate safety system
that will shut the process down in a safe and controlled manner when potentially
dangerous conditions occur. There are also higher levels of decision making which
are not shown, such as sales and purchasing, construction of new plants, etc. These
levels are considered to be of little relevance to process control, and will not be
discussed further.

Note that there is a difference in time scale of execution for the different lay-
ers. The regulatory control system typically have sampling intervals on the scale of
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one second (or faster for some types of equipment), supervisory controllers usually
operate on the time scale of minutes, the RTO layer on a scale of hours, and the plan-
ning/scheduling layer on a scale of days (or weeks). The control bandwidths achieved
by the different layers differ in the same way as sampling intervals differ. This differ-
ence in control bandwidths can simplify the required modelling in the higher levels;
if a variable is controlled by the regulatory control layer, and the bandwidth for the
control loop is well beyond what is achieved in the supervisory control layer, a static
model for this variable (usually the model would simply be variable value = setpoint)
will often suffice for the supervisory control.

It is not meaningful to say that one layer is more important than another, since
they are interdependent. The objective of the lower layers are not well defined
without information from the higher layers (e.g., the regulatory control layer needs
to know the setpoints that are determined by the supervisory control layer), whereas
the higher layers need the lower layers to implement the control actions. However,
in many plants human operators perform the tasks of some the layers shown in Fig.
1.1, it is only the regulatory control layer that is present (and highly automated) in
virtually all industrial plants.

Why has this multi-layered structure for industrial control systems evolved? It
is clear that this structure imposes limitations in achievable control performance
compared to a hypothetical optimal centralized controller which perfectly coordinates
all available manipulated variables in order to achieve the control objectives. In the
past, the lack of computing power would have made such a centralized controller
virtually impossible to implement, but the continued increase in available computing
power could make such a controller feasible in the not too distant future. Is this the
direction industrial control systems are heading? This appears not to be the case.
In the last two of decades development has instead moved in the opposite direction,
as increased availability of computing power has made the Supervisory control and
Real Time Optimization layers much more common. Some reasons for using such a
multi-layered structure are:

∙ Economics. Optimal control performance - defined in normal control engi-
neering terms (using e.g., the H2− or H∞norm) - does not necessarily imply
optimal economic performance. To be more specific, an optimal controller
synthesis problem does not take into account the cost of developing and main-
taining the required process (or possibly plant economic) models. An optimal
centralized controller would require a dynamic model of most aspects of the
process behaviour. The required model would therefore be quite complex, and
difficult to develop and maintain. In contrast, the higher layers in a structured
control system can take advantage of the model simplifications made possible
by the presence of the lower layers. The regulatory control level needs little
model information to operate, since it derives most process information from
feedback from process measurements6.

6A good process model may be of good use when designing control structures for regulatory
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∙ Redesign and retuning. The behaviour of a process plant changes with time,
for a number of reasons such as equipment wear, changes in raw materials,
changes in operating conditions in order to change product qualities or what
products are produced, and plant modifications. Due to the sheer complexity of
a centralized controller, it would be difficult and time-consuming to update the
controller to account for all such changes. With a structured control system,
it is easier to see what modifications need to be made, and the modifications
themselves will normally be less involved.

∙ Start-up and shutdown. Common operating practice during start-up is that
many of the controls are put in manual. Parts of the regulatory control layer
may be in automatic, but rarely will any higher layer controls be in operation.
The loops of the regulatory control layer that are initially in manual are put
in automatic when the equipment that they control are approaching normal
operating conditions. When the regulatory control layer for a process section
is in service, the supervisory control system may be put in operation, and so on.
Shutdown is performed in the reverse sequence. Thus, there may be scope for
significant improvement of the start-up and shutdown procedures of a plant, as
quicker start-up and shutdown can reduce plant downtime. However, a model
which in addition to normal operating conditions also is able to describe start-
up and shutdown, is necessarily much more complex than a model which covers
only the range of conditions that are encountered in normal operation. Building
such a model would be difficult and costly. Start-up and shutdown of a plant
with an optimal centralized control system which does not cover start-up and
shutdown, may well be more difficult than with a traditional control system,
because it may not be difficult to put an optimal control system gradually into
or out of service.

∙ Operator acceptance and understanding. Control systems that are not accepted
by the operators are likely to be taken out of service. An optimal centralized
control system will often be complex and difficult to understand. Operator
understanding obviously makes acceptance easier, and a traditional control sys-
tem, being easier to understand, often has an advantage in this respect. Plant
shutdowns may be caused by operators with insufficient understanding of the
control system. Such shutdowns should actually be blamed on the control
system (or the people who designed and installed the control system), since
operators are an integral part of the plant operation, and their understanding
of the control system must therefore be ensured.

∙ Failure of computer hardware and software. In traditional control systems
the operators retain the help of the regulatory control system in keeping the
process in operation if a hardware or software failure occurs in higher levels of
the control system. A hardware backup for the regulatory control system is

control. However, after the regulatory controllers are implemented, they normally do not make any
explicit use of a process model.
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much cheaper than for the higher levels in the control system, as the regulatory
control system can be decomposed into simple control tasks (mainly single
loops). In contrast, an optimal centralized controller would require a powerful
computer and it is therefore more costly to provide a backup system. However,
with the continued decrease in computer cost this argument may weaken.

∙ Robustness. The complexity of an optimal centralized control system will
make it difficult to analyze whether the system is robust with respect to model
uncertainty and numerical inaccuracies. Analyzing robustness need not be
trivial even for traditional control systems. The ultimate test of robustness
will be in the operation of the plant. A traditional control system may be
applied gradually, first the regulatory control system, then section by section
of the supervisory control system, etc. When problem arise, it will therefore
be easier to analyze the cause of the problem with a traditional control system
than with a centralized control system.

∙ Local removal of uncertainty. It has been noted earlier that one effect of the
lower layer control functions is to remove model uncertainty as seen from the
higher layers. Thus, the existence of the lower layers allow for simpler models
in the higher layers, and make the models more accurate. The more complex
computations in the higher layers are therefore performed by simpler, yet more
accurate models. A centralized control system will not have this advantage.

∙ Existing traditional control systems. Where existing control systems perform
reasonably well, it makes sense to put effort into improving the existing system
rather than to take the risky decision to design a new control system. This
argument applies also to many new plants, as many chemical processes are not
well understood. For such processes it will therefore be necessary to carry out
model identification and validation on the actual process. During this period
some minimum amount of control will be needed. The regulatory control layer
of a traditional control system requires little information about the process, and
can therefore be in operation in this period.

It should be clear from the above that this author believes that control systems in
the future will continue to have a number of distinct layers. Two prerequisites appear
to be necessary for a traditional control system to be replaced with a centralized one:

1. The traditional control system must give unacceptable performance.

2. The process must be sufficiently well understood to be able to develop a process
model which describes all relevant process behaviour.

Since it is quite rare that a traditional control system is unable to control a process
for which detailed process understanding is available (provided sufficient effort and
expertise have been put into the design of the control system), it should follow that
majority of control systems will continue to be of the traditional structured type.



Chapter 2

Mathematical and control theory
basics

2.1 Introduction

This section will review some mathematical and control theory basics, that in actual
fact is assumed covered by previous control courses. Both the coverage of topics and
their presentation will therefore be sketchy and incomplete, aimed at

∙ correcting what is this author’s impression of what are the most common mis-
conceptions among students who follow this course, as well as

∙ to establish some basic concepts and introduce some notation.

2.2 Models for dynamical systems

Many different model representations are used for dynamical systems, and a few of
the more common ones will be introduced here.

2.2.1 Dynamical systems in continuous time

A rather general way of representing a dynamical system in continuous time is via a
set of ordinary differential equations:

ẋ = f(x, u, d) (2.1)

where the variables x are termed the system states and ẋ = dx
dt

is the time derivative of
the state. The variables u and d are both external variables that affect the system. In
the context of control, it is common to distinguish between the manipulated variables
or (control) inputs u that can be manipulated by a controller, and the disturbances
d that are external variables that affect the system but which cannot be set by the
controller.

19
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The system states x are generally only a set of variables that are used to describe
the system’s behaviour over time. Whether the individual components of the state
vector can be assigned any particular physical interpretation will depend on how
the model is derived. For models derived from fundamental physical and chemical
relationships (often termed ’rigorous models’), the states will often be quantities like
temperatures, concentrations, velocities, etc. If, on the other hand, the model is an
empirical model identified from observed data, it will often not be possible to assign
any particular interpretation to the states.

Along with the state equation (2.1), one typically also needs a measurement equa-
tion such as

y = g(x, u, d) (2.2)

where the vector y is a vector of system outputs, which often correspond to available
physical measurements from the systems. Control design is usually at its most simple
when all states can be measured, i.e., when y = x.

Disturbances need not be included in all control problems. If no disturbances are
included in the problem formulation, equations (2.1) and (2.2) trivially simplify to
ẋ = f(x, u) and y = g(x, u), respectively.

Since we are dealing with dynamical systems, it is hopefully obvious that the
variables x, y, u, d may all vary with time t. In this section time is considered as a
continuous variable - in accordance with our usual notion of time.

Together, equations (2.1) and (2.2) define a system model in continuous time.
This type of model is rather general, and can deal with any system where it suffices
to consider system properties at specific points in space, or where it is acceptable
to average/lump system properties over space. Such models where properties are
averaged over space are often called lumped models.

For some applications, it may be necessary to consider also spatial distribution of
properties. Rigorous modelling of such systems typically result with a set of partial
differential equations (instead of the ordinary differential equations of (2.1)). In
addition to derivatives with respect to time, such models also contain derivatives with
respect to one or more spatial dimensions. Models described by partial differential
equations will not be considered any further in these notes. Although control design
based on partial differential equations is an active research area (in the area of flow
control, in particular), the more common industrial practice is to convert the set of
partial differential equations to a (larger) set of ordinary differential equations through
some sort of spatial discretization.

2.2.2 Dynamical systems in discrete time

Although time in the ’real world’ as we know it is a continuous variable, control
systems are typically implemented in computer systems, which cyclically execute
a set of instructions. Measurements and control actions are therefore executed at
discrete points in time, and to describe system progression from one time instant
to subsequent instants we will need a discrete time model. Such models may be
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represented as

xk+1 = f(xk, uk, dk) (2.3)

yk = g(xk, uk, dk) (2.4)

where xk, yk, uk and dk are the discrete-time counterparts to the system states, out-
puts, inputs and disturbances introduced above for continuous-time systems. Note
that although the same letter f is used to represent the system dynamics for both
continuous- and discrete-time systems, these functions will be different for the two
different model types. The measurement equation, on the other hand, will often be
identical for the two model types.

2.2.3 Linear models and linearization

Many control design methods are based on linear models. It is therefore necessary
to be able to convert from a nonlinear model to a linear model which is (hopefully)
a close approximation to the nonlinear model. This is called linearization of the
nonlinear model.

A systems is linear if to functions f and g (in (2.1) and (2.2) for the case of
continuous time models, or in (2.3) and (2.4) for the case of discrete time models)
are linear in all the variables x, u and d. Thus, a linear continuous-time model may
be expressed as

ẋ = Ax+Bu+ Ed (2.5)

y = Cx+Du+ Fd (2.6)

where A,B,C,D,E, F are matrices of appropriate dimensions, and the matrix ele-
ments are independent of the values of x, u, d. Linear models for discrete-time systems
follow similarly.

Most systems are to some extent non-linear. However, controller design and veri-
fication is usually much simpler for linear than for non-linear system. It is therefore
important to be able to convert from a non-linear model to a ’approximately equal’
linear model. This process is called linearization.

Linearization is based on the Taylor series expansion of a function. Consider a
function ℎ(a). We want to approximate the value of ℎ(a) in the vicinity of a = a∗.
The Taylor series expansion then provides the approximation

ℎ(a) = ℎ(a∗ + ±a) ≈ ℎ(a∗) +
∂ℎ

∂a
∣a∗±a+ 1

2
±aT

∂2ℎ

∂a2
∣a=a∗±a+ ... (2.7)

where the notation ∣a=a∗ indicates that the value a = a∗ is used when evaluating the
derivatives.

Linearization at a given point

When linearizing a dynamical system model we terminate the Taylor series expansion
after the first order term. The underlying non-linear system is therefore naturally
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assumed to be continuous and have continuous first order derivatives. Assume that
the linearization is performed at the point

a =

⎡
⎣

x
u
d

⎤
⎦ =

⎡
⎣

x∗

u∗

d∗

⎤
⎦ = a∗ (2.8)

The terminated Taylor series expansion of (2.1) then becomes

dx

dt
=

d±x

dt
≈ f(a∗) +

∂f

∂x

∣∣∣∣
a=a∗

±x+
∂f

∂u

∣∣∣∣
a=a∗

±u+
∂f

∂d

∣∣∣∣
a=a∗

±d (2.9)

Similarly, we get for (2.2)

y = y∗ + ±y ≈ g(a∗) +
∂g

∂x

∣∣∣∣
a=a∗

±x+
∂g

∂u

∣∣∣∣
a=a∗

±u
∂g

∂d

∣∣∣∣
a=a∗

±d (2.10)

where it is understood that y∗ = g(a∗).
Next, define A = ∂f

∂x
∣a=a∗ , B = ∂f

∂u
∣a=a∗ , E = ∂f

∂d
∣a=a∗ , C = ∂g

∂x
∣a=a∗ , D = ∂g

∂u
∣a=a∗ ,

F = ∂d
∂x
∣a=a∗

Linearizing at an equilibrium point The point a∗ used in the linearization is
usually an equilibrium point. This means that

f(a∗) = 0 (2.11)

g(a∗) = y∗ (2.12)

Thus, we get

dx

dt
= A±x+B±u+ E±d (2.13)

±y = C±x+D±u+ F±d (2.14)

Linearizing a discrete-time model is done in the same way as for continuous-time
models. The only slight difference to keep in mind is that for a discrete-time model at
steady state xk+1 = xk, and therefore f(a∗) = xk when linearizing at a steady state.

Deviation variables It is common to express the system variables (x, u, d and y)
in terms of their deviation from the linearization point a∗. When doing so the ±’s
are typically suppressed for ease of notation - as will be done in the remainder of
this note. It is, however, important to beware that when converting from deviation
variables to ’real’ variables, the linearization point has to be accounted for.

To illustrate: A model for a chemical reactor is linearized at steady state con-
ditions corresponding to a reactor temperature of 435K. If the linearized model,
expressed in deviation variables, indicates a temperature of −1, the corresponding
’real’ temperature would be 434K.
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It appears that many students, even after introductory control courses, do not
appreciate that our socalled ’linear’ controllers are only linear when expressed in
deviation variables. This can lead to many frustrations, until the misunderstanding
has been clarified - which might actually take some time, because the importance of
this issue will depend on both controller structure and controller type. Consider a
simple feedback loop, with a (linear) controllerK controlling a systemG, as illustrated
in Fig. 2.1.

K G
r u

u*

ye +

-

Figure 2.1: A simple feedback loop with a one degree of freedom controller and
possible ’output bias’.

This type of controller is called a ’one degree of freedom controller’, since it has
only one input, the control offset e = r− y. We can make the following observations:

∙ Clearly, it does not matter whether the reference r and measurement y are
expressed in ’physical’ variables or deviation variables, as long as the same
scale is used for both. This is because the controller input is the difference
between these to variables.

∙ Consider the case when the controller K is a pure proportional controller, i.e.,
u = K(r − y) with K constant. It is then necessary to add u∗ as an ’output
bias’1 to the controller output, as indicated by the dashed arrow in the figure.

∙ Consider next the case when the controller K contains integral action. In this
case the ’output bias’ is not strictly necessary, since the value of the integrat-
ing state will adjust for this when the system reaches steady state. However,
an output bias may improve transient response significantly when putting the
controller into operation.2

Consider next a loop where the controller has separate entry port for the reference
and the measurement, as shown in Fig. 2.2. This type of controller is used when one
wants to treat the measurement and reference signals differently in the controller. We
note that

1Some system vendors may use different terminology.
2See also the chapter on Bumpless Transfer.
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Figure 2.2: A simple feedback loop with a two degree of freedom controller and
possible ’bias’ on both controller inputs and controller output.

∙ In this case we need to subtract the value of the measurement at the linearization
point, y∗, from both the reference and the measurement.

∙ Whether to add u∗ to the controller output is determined by the same consid-
erations as for the one degree of freedom controller.

Linearizing around a trajectory. It was noted above that it is most common to
linearize around a steady state. However, in some cases, one may want to linearize
around a trajectory, i.e., around a series of consistent future values of x, u and d.
This most commonly occurs in non-linear model predictive control (MPC). Each
time an MPC controller executes, it solves an optimization problem that optimizes
system behaviour over a ’prediction horizon’. However, for some strongly non-linear
problems, using the same linearized model for the entire prediction horizon may not
give sufficient accuracy. In such cases, one may choose to linearize around a trajectory
instead.

Given the present state, a prediction of the future manipulated variables (typically
obtained from the previous execution of the MPC), and predicted values for future
disturbances, the nonlinear model can be used to simulate the system in the future.
This gives predicted future states that are consistent with the present state and the
predicted future manipulated variables and disturbances.

For each timestep in the future, the linearization is performed around the predicted
state, manipulated variable and disturbance values. This will give different matrices
A,B,CD,E, F for each timestep. In this way, a non-linear system is approximated
by a linear, time-varying model.

Linearizing around a trajectory clearly complicates the model. In addition to the
added complexity of having to ensure that the right model matrices are used at the
right timestep in the future, one also has to remember that the linearization point
varies from timestep to timestep. This adds additional complexity when converting
between physical variables and deviation variables.
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2.2.4 Converting between continuous- and discrete-time mod-
els

It will often be necessary to convert from continuous- to discrete-time models (and
less frequently necessary to convert the other way). Process models based on first
principles modelling will typically result in continuous-time models. Often, control
design is performed with a continuous-time model. The continuous-time controller is
thereafter converted to a discrete-time controller for implementation in a computer.
There are also controller types that are more conveniently designed using discrete-
time models. The most notable example of such controllers are the socalled Model
Predictive Control (MPC) controllers, which will be described in some detail later in
these notes.

To convert from continuous to discrete time, we need to

∙ choose a numerical integration method for the system dynamics, and

∙ determine (assume) how the external variables (u and d) change between the
time instants for the discrete-time model.

It is common to assume socalled ’zero order hold’3, i.e., that the external variables
are constant at the value of the previous time instant until the next time instant is
reached. This agrees with what is common practice for control inputs in control
systems.

Most control design software will have functions for converting between continuous-
and discrete-time linear models. It is also included in most basic control textbooks.
We will nevertheless give a short introduction here, primarily in order to discuss the
handling of time delay when converting from a continuous to a discrete time model.
The presentation is inspired by that of Åström and Wittenmark [7].

Consider a continuous-time linear model

ẋ = Acx(t) +Bcu(t) (2.15)

Assuming zero order hold and a timestep of length ℎ, integration over one timestep
(from t = kℎ to t = kℎ+ ℎ) gives

x(kℎ+ ℎ) = eAcℎx(kℎ) +

∫ kℎ+ℎ

kℎ

eAc(kℎ+ℎ−r)Bcu(r)dr (2.16)

This is commonly expressed as the discrete-time model

xk+1 = Adxk +Bduk (2.17)

where the sampling interval ℎ is assumed known and therefore not explicitly stated4.

3An ntℎ order hold means that the ntℎ time derivative is held constant between the sample
instants of the discrete time model

4Note also that the subscript d refers to discrete time rather than ’disturbance’. Elsewhere in
this note Bd is sometimes used as ’the B-matrix for the disturbance’.
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The matrices Ad and Bd are given by

Ad = eAcℎ

Bd =

∫ kℎ+ℎ

kℎ

eAc(kℎ+ℎ−r)Bcu(r)dr = A−1
c

(
eAcℎ − I

)
Bc

Time delay in the manipulated variables

Consider next the case when the manipulated variables u do not affect the state
derivative ẋ directly, but only after a time delay ¿ . The model (2.15) thus becomes

ẋ = Acx(t) +Bcu(t− ¿) (2.18)

Note that there is no exact representation of a pure time delay using ordinary dif-
ferential equations - this would require an infinite number of states. Therefore, the
time delay is instead introduced explicitly in the argument when representing the
manipulated variable u as a function of time.

Multiple timestep time delays If the time delay is an integer number of sampling
intervals, this is easily captured in a discrete-time model. Let uΔ(k) = u(k − nℎ).
This can be expressed as

xΔ(k + 1) = AΔxΔ(k) +BΔuΔ(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 ⋅ ⋅ ⋅ 0

0 0 I
... 0

0
...

...
... 0

0
...

... 0 I
0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
xΔ(k) +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
I

⎤
⎥⎥⎥⎥⎥⎦
u(k) (2.19)

uΔ(k) = CΔxΔ(k) =

⎡
⎣ I 0 0 ⋅ ⋅ ⋅ 0︸ ︷︷ ︸

n

⎤
⎦xΔ(k)

Fractional timestep time delays If the time delay ¿ is only a fraction of the
sampling interval ℎ, we must account for the fact that the value of the manipulated
variable which affects ẋ in (2.15) from time kℎ to time kℎ+ ¿ is actually u(kℎ− ℎ).
Thus, the integral in (2.16) must be split in two, and we get

x(kℎ+ ℎ) = eAcℎx(kℎ) +

∫ kℎ+¿

kℎ

eAc(kℎ+ℎ−r)Bcdru(kℎ− ℎ) +

∫ kℎ+ℎ

kℎ+¿

eAc(kℎ+ℎ−r)Bcdru(kℎ)

= Adx(kℎ) +Bd0u(kℎ) +Bd1u(kℎ− ℎ) (2.20)

Bd1 = eAc(ℎ−¿)A−1
c

[
eAc¿ − I

]
Bc = eAc(ℎ−¿)

∫ ¿

0

eAcrdrBc

Bd0 = A−1
c

[
eAc(ℎ−¿) − I

]
Bc =

∫ ℎ−¿

0

eAcrdrBc
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This can be expressed in state space form as[
x(kℎ+ ℎ)
u(kℎ)

]
=

[
Ad Bd1

0 0

]
+

[
Bd0

I

]
u(kℎ) (2.21)

For time delays lasting more than one timestep, but a non-integer number of timesteps,
the overall model is found by the series interconnection of the multiple timestep delay
model in (2.19) and the system dynamics + fractional timestep delay model in (2.21).

Some modern control techniques like MPC are computationally intensive, and may
induce a computational time delay. If the computational time is significant compared
to the sampling interval, it may be necessary to include a fractional time delay in the
model even for plants that by itself have no time delay.

Time delay in the measurement. Time delays in measurements may occur both
due to the characteristics of the sensor equipment (e.g., delays in analyzers such as
on-line gas cromatographs) or due to transportation delays (long pipes or conveyor
belts from the plant to the sensor).

For linear, time invariant systems, it does not matter whether the time delay is
modelled at the input or the output of the plant. However, for multivariable systems,
the time delay may be different for different measurements. In such cases, the time
delay must be modelled at the output, since it cannot be moved to the input.

Also, a measurement is often dependent on multiple states. The number of
discrete-time states used to model the time delay can then be reduced by delay-
ing the measurement in the model instead of delaying the states and calculating the
measurement from the delayed states [11].

Time delays in the measurements can be handled in much the same way as that
explained above for time delay in the manipulated variables. The details are therefore
left to the reader.

2.2.5 Laplace transform

The Laplace transform should be familiar to all readers from introductory control
courses, and no attempt is made here at providing a complete or self-contained in-
troduction to the topic. It is merely introduced here as a minimal introduction to its
use later in this note.

Restating first the linear(ized) ordinary differential equation model, we have

ẋ = Ax+Bu+ Ed (2.22)

y = Cx+Du+ Fd (2.23)

where the ±’s are suppressed for notational simplicity. We should nevertheless keep in
mind that the linear model is expressed in deviation variables. The model described
by (2.22) and (2.23) is called a (linear) state space model of a system.

Using standard rules for the Laplace transformation (available in standard under-
graduate mathematics textbooks), we have

sx(s) + x(t = 0) = Ax(s) +Bu(s) + Ed(s) (2.24)

y(s) = Cx(s) +Du(s) + Fd(s) (2.25)
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where s is a complex-valued scalar. The effect of the initial conditions (the term x(t =
0) above) is usually ignored, since stability and common measures of performance do
not depend on initial conditions. Nevertheless, one should be aware that the initial
response will depend on initial conditions. If the closed loop system contain modes
that are poorly damped, the effects of the initial conditions may be felt for a significant
time.

Ignoring the term involving the initial conditions (or assuming the initial condi-
tions equal to zero in deviation variables) we obtain by simple manipulations

y(s) =
[
C(sI − A)−1B +D

]
u(s)+

[
C(sI − A)−1E + F

]
d(s) = G(s)u(s)+Gd(s)d(s)

(2.26)
where G(s) and Gd(s) are the (monovariable or multivariable) transfer functions from
the manipulated variable and the disturbance, respectively, to the system output.

2.2.6 Similarity transformations

Whereas the transfer function is unique for a given input-output behaviour, there is
an infinite number of different state space models that describe the same dynamics.

Given a state space model such as (2.22) - (2.23), and consider the case where we
instead of the original states x want to use the alternative states x̃. The state vectors
x and x̃ must be related through

x = T x̃ (2.27)

where T is an invertible matrix. This ensures that when specifying the state in one
set of state variables, we also uniquely specify the states in the other set of state
variables. Trivial manipulations then yield

˙̃x = T−1ATx̃+ T−1Bu+ T−1Ed (2.28)

y = CT x̃+Du+ Fd (2.29)

from which the state space matrices for the transformed state space model are easily
identifiable. This reveals the fact that the state space representation of a dynamical
system is not unique - via similarity transforms the exact same dynamics can be
represented by ’different’ state space models. In addition, a state space model may
contain ’redundant’ states, as discussed next. In contrast, the frequency response of
a model in the Laplace domain (such as (2.26)) is unique. Furthermore, the transfer
function modelG(s) itself is unique provided any redundant states have been removed,
i.e., provided the it is obtained from the Laplace transformation of a minimal model.

2.2.7 Minimal representation

A state space model may contain states that either cannot be affected by the inputs
(an uncontrollable state) or cannot affect any of the outputs of the system (an unob-
servable state). Such states do not contribute to the input-output behaviour of the
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system. The model then contains more states than the minimal number of states re-
quired to represent the input-output behaviour of the system. Therefore, such models
are called non-minimal.

Many control calculations assume that the model supplied is minimal, and nu-
merical problems may occur if this is not the case. It is therefore common practice
to remove uncontrollable or unobservable states, and standard control software have
functions for doing this (such as minreal in Matlab).

However, one should bear in mind that the uncontrollable or unobservable sys-
tem states may represent important quantities for the overall system. Whether it
is advisable to remove uncontrollable or unobservable states can depend on several
factors:

∙ How was the model obtained? If the model is the result of rigorous modelling
based on physical and chemical principles, the states will typically represent
physical/chemical quantities in the system.

∙ Empirical models identified from experiments will typically result in models
containing only observable and controllable states - although not all states need
to represent real phenomena in the system.

∙ When assembling a system model from models of parts of the system, states
representing the same physical quantity may be represented in several of the
smaller models. This can easily lead to a non-minimal model when assembling
the overall system model. Such ’duplicate states’ can safely be removed.

∙ It is usually considered safe to delete stable uncontrollable and unobservable
modes.

1. If a stable mode is uncontrollable, its effect on the output will die out over
time - unless it is excited by some disturbance. A state may be ’control-
lable’ from a disturbance even if it is uncontrollable from the manipulated
variables. This is the situation in many disturbance attenuation problems.
Although such states may be removed from the plant model (from manip-
ulated to controlled variables), it cannot be removed from the disturbance
model (from disturbances to controlled variables).

2. A controllable but unobservable mode will be excited by the manipulated
variables, and even if it is stable will not necessarily decay to zero if the
state is continuously excited by the manipulated variables or disturbances.
If the state represents some quantity of little importance, this situation
would appear acceptable. It may, however, be the case that the state
represents some important quantity, and the fact that it is unobservable
merely reflects an inappropriate set of measurements.

When discovering unobservable or uncontrollable states, the engineer should therefore
reflect on how and why these states are introduced in the model. It may be that such
states can safely be removed from the model. It may also be the case that one
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should install new measurements or new actuators to make the states observable and
controllable.

For diagonalizable systems, i.e., systems with a full rank eigenvector matrix, it is
straight forward to perform a similarity transform to identify the uncontrollable or
unobservable states. Let M be the eigenvector matrix of the matrix A in (2.22), and
Λ the corresponding (diagonal) eigenvalue matrix. Choosing T = M−1 in (2.27) then
yields

˙̃x = Λx̃+MBu+MEd (2.30)

y = CM−1x̃+Du+ Fd (2.31)

Uncontrollable states (in terms of the states x̃) can then be identified from rows that
are equal to zero in MB, whereas unobservable states are identified from columns in
CM−1 equal to zero.

2.3 Analyzing linear dynamical systems

2.3.1 Poles and zeros of transfer functions

Consider a scalar transfer function, that can be factored as

G(s) = k
(s+ z1)(s+ z2) ⋅ ⋅ ⋅ (s+ zn)e

−Ts

(s+ p1)(s+ p2) ⋅ ⋅ ⋅ (s+ pm)
(2.32)

where m ≥ n, as otherwise there would be no state space model that represent the
transfer function dynamics. The parameters zi are known as the zeros of the transfer
function, whereas the pi are termed poles. The term e−Ts represents a pure time
delay (transportation delay) of T time units. Zeros and poles can be either strictly
real or complex valued. However, complex-valued zeros or poles always appear in
complex conjugate pairs, since both the numerator and denominator of the transfer
function has only real-valued coefficients (for transfer functions corresponding to a
model described by ordinary differential equations). Note that the time delay cannot
term e−Ts does not correspond to a model that can be described (exactly) by ordinary
differential equations.

Zeros and poles are often classified according to whether their real parts are pos-
itive or negative. Poles and zeros whose real part are strictly negative are called left
half plane (LHP) poles and zeros, respectively. Similarly, poles and zeros whose real
parts are positive are called right half plane (RHP) poles and zeros.

Poles and zeros of multivariable systems can be similarly defined, but need to be
defined with a little more care. In particular, one should be aware that there need to
be no relationship between the zeros of individual transfer function (matrix) elements
and the zeros of the overall system. We will refer to Skogestad and Postlethwaite [93]
for more precise definitions of multivariable poles and zeros.

For a minimal representation of a system, the poles may also be defined as the
roots of the characteristic polynomial

Á(s) = det(sI − A) (2.33)
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2.3.2 Stability

Assuming that we have a minimal representation of a linear system. The system is
then stable if

Re(¸i(A)) < 0∀i (2.34)

where ¸i(A) denotes an eigenvalue of the matrix A in the state space model. It follows
from (2.26) that the eigenvalues of the A matrix also appear as poles of the transfer
function. Stable systems thus have their poles strictly in the left half plane.

Control textbooks may differ somewhat on whether systems with poles on the
imaginary axis are considered stable. In some cases (as a result of a strict mathe-
matical definition of stability), systems with single poles on the imaginary axis are
classified as stable or ’marginally stable’, whereas systems with two or more poles in
the same place on the imaginary axis are called unstable.

In most practical situations systems with poles on the imaginary axis will need to
be ’stabilized’ by feedback, irrespective of whether these poles are ’single’ or ’multiple’
poles. We will therefore classify all systems with poles on the imaginary axis as
unstable.

2.3.3 Frequency analysis

In recent years, frequency analysis has been given less room in process control ed-
ucation. This seems to be a particularly prominent trend in Chemical Engineering
departments in the USA, where control seems to be squeezed by the wish to include
’newer’ topics such as materials/nano-/bio. Although many esteemed colleagues ar-
gue that control can be taught just as well entirely with time domain concepts, it is
this authors opinion that the same colleagues are making the mistake of elevating a
necessity to a virtue.

Despite this worrisome trend, the presentation of frequency analysis in this note
will be sketchy, assuming that the reader has had a basic introduction to the topic in
other courses.

This author agrees with the arguments expressed by Skogestad and Postlethwaite
[93] on the advantages of frequency analysis. While those arguments will not be
repeated here, but we will note that many control-relevant insights are easily available
with a working understanding of frequency analysis.

In this note, the frequency response will be used to describe a systems response
to sinusoidal inputs of varying frequency. Although other interpretations of the fre-
quency response are possible (see, again, [93]), the chosen interpretation has the
advantage of providing a clear physical interpretation and a clear link between the
frequency and time domain.

The frequency response of a system with transfer function G(s) at the frequency !
is obtained by evaluating G(s) at s = j!. The result is a complex-valued number (or
a complex-valued matrix, for multivariable systems). It should be noted that the fre-
quency ! is measured in radians/time5, and thus the oscillation period corresponding
to the frequency ! is tp = 2¼/!.

5Usually time is measured in seconds, but minutes are also sometimes used for slow process units
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The complex-valued frequency response is commonly presented in polar coordi-
nates in the complex plane, with the length being termed the gain and the angle
being termed the phase. Anti-clockwise rotation denotes positive phase.

That is, consider G(j!) = a + jb. The gain is then ∣G(jw)∣ = √
a2 + b2, whereas

the phase is given by ∕ G(j!) = tan−1(b/a). Thus, assume that a sinusoidal input is
applied:

u(t) = u0 sin(!t+ ®) (2.35)

Once the effect of any initial conditions have died out (or, we might make the ’techni-
cal’ assumption that the input has been applied ’forever’, since t = −∞), the output
will also oscillate sinusoidally at the same frequency:

y(t) = y0 sin(!t+ ¯) (2.36)

We will then observe that ∣G(j!)∣ = y0/u0 and ∕ G(j!) = ¯ − ®. For multivariable
systems, the response of each individual output can be calculated as the sum of the
responses to each of the individual inputs. This property holds for all linear systems
- both in the time domain and in the frequency domain.

For G(s) in (2.32) we have

∣G(j!)∣ = ∣k∣ ⋅
∏n

i=1 ∣(j! + zi)∣∏m
i=1 ∣(j! + pi)∣ (2.37)

∕ G(j!) = ∕ k +
n∑

i=1

∕ (j! + zi)−
m∑
i=1

∕ (j! + pi) (2.38)

The phase and gain of a single terms (s+ a) is illustrated in Fig. 2.3.
The phase and gain of the time delay term can be found from Euler’s formula

eja = cos a+ j sin a (2.39)

from which we find that ∣e−j!T ∣ = 1∀! and ∕ e−j!T = −!T (rad) = −!T
¼
⋅180∘. Clearly,

the real constant k will have a phase of zero if k > 0 and a phase of −¼ = −180∘ if
k < 0.

Steady-state phase adjustment

The steady state value of the transfer function is obtained by evaluating the transfer
function at s = 0. Clearly, at s = 0 the transfer function takes a real value, and thus
must have a phase of n× 180∘, where n is some integer.

It is customary to adjust or ’correct’ the phase such that the phase contribution
for the constant k is zero. Similarly, the phase contribution of any RHP zero in (2.32)
is adjusted such that its phase at steady state is zero.

This phase adjustment is necessary to be able to assess closed loop stability from
the open loop frequency response. For open loop stable systems this corresponds to
setting the steady state phase to zero, or assuming a positive steady state gain. If the

such as large distillation towers.
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Figure 2.3: The phase and gain of a simple term (s+ a) for a > 0.

real steady state gain is negative (if the output decreases when the input increases),
this in corrected for by simply reversing the sign of the gain of the controller - often
this is done by specifying that the controller should be ’reverse acting’.

The phase adjustment described above is done irrespective of whether the system
is stable in open loop. Note, however, that the phase of any unstable (RHP) poles
are not adjusted in this way. This may appear inconsistent, but is possibly most
easily understood by noting that one cannot ’normalize the steady state phase’ for
a RHP pole. An RHP pole represents an instability in the system, the output will
grow exponentially without bounds as a response to a change in the input, and thus
there is no steady state for an RHP pole.
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2.3.4 Bode diagrams

The frequency response of a scalar system is often presented in a Bode diagram (some-
times also called Amplitude-Phase-Frequency diagram). The Bode diagram consists
of two plots, the magnitude plot and the phase plot.

In the magnitude plot, the transfer function magnitude (or gain) is plotted versus
frequency. Both the magnitude and the frequency axes are logarithmic (to the base
10).

Remark. Note that the magnitude scale used for the Bode magnitude plot in this
note is the conventional logarithmic scale (to the base 10). In some books, one can
still see the decibel (dB) scale used in the Bode magnitude plot, where

∣G(jw)∣(dB) = 20 log10 ∣G(j!)∣ (2.40)

We repeat that the decibel scale is not used in this note (or in this course).

In the Bode phase plot, the phase is plotted against frequency. The phase is usually
plotted in degrees using a linear scale (radians are seldom used), whereas a logarithmic
scale is used for the frequency axis. A Bode diagram of the simple system g(s) =

s+0.1
(s+0.01)(s+1)

is shown in solid lines in Fig. 2.3.4.
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Figure 2.4: The Bode diagram for the simple system g(s) = 10 (10s+1)
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Control software that plots Bode diagrams are now easily available, and manual
procedures for drawing Bode diagrams are therefore obsolete. One should, however,
take a little care to ensure that the steady state phase is correctly adjusted, as outlined
above. Otherwise, the steady state phase can easily be off by some multiple of 180∘.

Bode diagram asymptotes. Although procedures for manually drawing Bode di-
agrams are now obsolete, it is useful to be able to quickly visualize the phase-gain
relationships of the Bode diagram - possibly without drawing any diagram at all.
For this purpose, knowledge about the Bode diagram asymptotes are useful. This is
particularly useful when considering changes to controller parameters for PI/PID con-
trollers, since it can give an intuitive understanding of the effects of such changes and
thereby simplify the search for appropriate controller parameters. These asymptotes
are rather inaccurate approximations to the exact diagram in the frequency range
near a pole or zero, but good approximations at frequencies removed from poles and
zeros.

To obtain the asymptotes for the Bode magnitude plot,

∙ Start from the steady state gain of the system, ∣G(0)∣. If the system has ’pure
integrators’ (poles at s = 0), evaluate the transfer function instead at some very
low frequency, several decades below any other pole or zero.

∙ The gradient of the magnitude asymptote (in the loglog scale used in the magni-
tude plot) at low frequencies is −n, where n is the number of pure integrators.
In the less common case that G(s) contains m pure differentiators (m zeros
at s = 0), the steady state gain is zero, and the initial gradient is m in the
magnitude plot.

∙ Increase frequency !. Whenever ! = zi, increase the gradient of the asymptote
by 1. Whenever ! = pi, decrease the gradient of the asymptote by 1.

The asymptotes for the Bode phase plot are obtained as follows:

∙ If the transfer function contains n pure integrators, they contribute a total of
−90∘ ⋅ n of phase at (very) low frequencies. Similarly, if the transfer function
contains m pure differentiators, these contribute a total of 90∘ ⋅m of phase at
(very) low frequencies.

∙ Poles in the left half plane (the closed left half plane except the origin) do not
contribute to the phase at steady state. The zeros (anywhere except at s = 0)
also do not contribute the phase at steady state.

∙ Poles in the open right half plane each contribute −180∘ to phase at steady
state.

∙ Add the phase contributions at steady state. This gives the value of the low
frequency phase asymptote.
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∙ Gradually increase frequency !. If ! = zi (a zero in the left half plane), increase
the asymptote phase by 90∘. If ! = −zi (a zero in the right half plane), decrease
the asymptote phase by 90∘. If ! = pi (a pole in the left half plane), decrease
the asymptote phase by 90∘. If ! = −pi (a pole in the right half plane), increase
the asymptote phase by 90∘.

The phase asymptote thus changes in steps of (multiples of) 90∘. Note that this
way of finding the phase asymptote does not include the time delay. The phase
contribution of any time delay therefore has to be added separately afterwards, as
described above. With the logarithmic frequency axis used in the Bode diagram, the
time delay contributes little to the phase at ! << 1/T , but adds a lot of negative
phase at higher frequencies.

To use the above description to account for the phase and magnitude contributions
of complex-valued poles or zeros (which have to appear in complex conjugate pairs),
use the absolute value of the poles or zeros instead of the complex-valued pi or zi.
Note that if the system has complex conjugate poles close to the imaginary axis, the
magnitude plot may have a large ’spike’ that is not captured by the asymptote.

Note from the above description that the phase contribution at low frequencies
of a zero in the right half plane is essentially the same as that of the zero’s ’mirror
image’ in the left half plane, whereas at high frequencies the phase contribution of
the two differ by 180∘.

In contrast, the phase contribution at low frequencies of a pole in the right half
plane is 180∘ different from that of its ’mirror image’ in the left half plane, but at
high frequencies the phase contribution of the two are essentially the same.

The asymptotes are shown with dashed lines in Fig. 2.3.4). The system g(s) =
s+0.1

(s+0.01)(s+1)
has a steady state gain of 10, no pure integrators or differentiators. The

magnitude asymptote therefore starts with a gradient of 0, while the phase asymptote
starts with a phase of 0∘. The first pole is at pi = 0.01. At ! = 0.01, the gradient
of the magnitude asymptote therefore changes to −1, whereas the phase asymptote
goes to −90∘. At ! = 0.1 we encounter the (LHP) zero, and thus the gradient of
the magnitude asymptote increases to 0, and the phase asymptote goes to 0∘ again.
Finally at ! = 1 we encounter the second pole, changing the gradient of the magnitude
asymptote to −1 and the phase asymptote to −90∘.

Minimum phase systems. It should be clear from the above that whether a
pole or a zero is in the right or left half plane does not affect the Bode magnitude
plot, whereas it does affect the phase plot. It turns out that for any system with a
given magnitude plot6, there is a minimum possible phase that the system can have.
This minimum possible phase can be quantified in terms of the Bode phase-gain
relationship, which from which the minimum possible phase can be calculated from
an integral over all frequencies of an expression involving the magnitude. The precise
form of this expression is of little importance in our context, the interested reader
may consult [93] or other textbooks on linear systems theory. One can, however, find

6assuming that this magnitude plot makes physical sense, i.e., that it can correspond to a state-
space model
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from the expression that the local phase depends strongly on the local gradient of
the magnitude in the loglog plot (the Bode magnitude plot). Thus, the minimum
possible phase is approximately given by

∕ G(j!)min ≈ −90∘ ⋅ d log(∣G(j!)∣)
d log(!)

(2.41)

Whereas this approximation is exact at all frequencies only for a series of integrators
(G(s) = s−n), it can be a reasonable approximation for most minimum phase systems
except at frequencies where complex poles or zeros are close to the imaginary axis.

From the brief introduction to frequency analysis presented above, it should be
clear that a minimum-phase system has

∙ no poles or zeros in the right half plane, and

∙ has no time delay.

Minimum phase systems are generally easy to control, as the system dynamics pose
no special limitations or requirements for feedback control. In contrast, as we will see
later in this course, RHP poles implies a minimum bandwidth requirement, whereas
RHP zeros or time delays implies a bandwidth limitation.

2.3.5 Assessing closed loop stability using the open loop fre-
quency response

Let L(s) be the loop transfer function matrix of a feedback system, as illustrated in
Fig.2.3.5. The loop transfer function L(s) may be monovariable and multivariable,

L(s)
_

r y

Figure 2.5: A simple feedback loop.

and a feedback control setting typically results from connecting a controller K(s)
and a plant G(s) in series, i.e., L(s) = G(s)K(s). We will assume that there are no
hidden (unobservable or uncontrollable) unstable modes in L(s), and are interested in
determining closed loop stability based on open loop properties of L(s). The Nyquist
stability theorem provides such a method for determining closed loop stability, using
the socalled Principle of the Argument.
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The Principle of the Argument and the Nyquist D-contour

The Principle of the Argument is a result from mathematical complex analysis. Let
t(s) be a transfer function and C be a closed contour in the complex plane. Assume
that the transfer function t(s) has nZ zeros and nP poles inside the closed contour C,
and that there are no poles on C.

The Principle of the Argument. Let s follow C once in the clockwise direction.
Then, t(s) will make nZ − nP clockwise encirclements of the origin.

In this context the term ’Argument’ refers to the phase of the transfer function.

We are interested in stability of the closed loop, which clearly means that we want
to investigate whether the closed loop has any poles in the right half plane. Thus,
the contour C will in our case be the ’border’ of the entire right half plane, i.e., the
entire imaginary axis - turned into a closed loop by connecting the two ends with an
’infinitely large’ semi-circle around the right half plane7. To fulfill the requirement
that there should be no poles on the closed contour, we must make infinitesimal
’detours’ into the right half plane to go around any poles on the imaginary axis (most
commonly due to pure integrators in the plant G(s) or controller K(s)). The closed
contour described above is commonly known as the Nyquist D-contour.

The Multivariable Nyquist Theorem

It can be shown (e.g., [69]) that the open and closed loop characteristic polynomials
are related through

det(I + L(s)) =
Ácl(s)

Áol(s)
⋅ c (2.42)

where c is a constant. The number of open loop poles in the RHP cannot be changed
by feedback. However, for closed loop stability we must ensure that there are no
closed loop poles in the RHP. Using the principle of the argument, we thus arrive at
the General or Multivariable Nyquist Theorem:

Let the number of open loop unstable poles in L(s) be nol. The closed loop
system with negative feedback will then be stable if the plot of det(I + L(s)) does
not pass through the origin, but makes −nol (clockwise) encirclements of the origin
as s traverses the Nyquist D-contour.

Note that in practice we only need to plot det(I +L(s)) for positive frequencies only,
since the plot for negative frequencies can be obtained by mirroring about the real
axis.

7A brief look at the expression for G(s) in (2.26) - while remembering that the transfer function
t(s) above can be expressed similarly - should suffice to convince the reader that the value of t(s)
will remain constant as s traveses the ’infinitely large semicircle’ around the RHP. For very large s,
C(sI −A)−1B ≈ 0 regardless of the direction from the origin to s.
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The monovariable Nyquist Theorem

Most readers are probably more familiar with the monovariable Nyquist theorem,
which follows from the multivariable version by noting that for a scalar L(s) it is
equivalent to count encirclements of det(I+L(s)) around the origin and encirclements
of L(s) around −1.

The Bode stability criterion

The Bode stability criterion follows from the monovariable Nyquist Theorem and thus
applies only to monovariable systems. Let !c denote the ’crossover frequency’, i.e.,
∣L(j!c)∣ = 1, and assume that ∣L(j!)∣ < 1 for ! > !c. Then the closed loop system
is stable provided ∕ L(j!c) > −180∘.

The Bode stability criterion ensures that the Nyquist plot of L(s) passes between
the origin and the critical point −1 in the complex plane. For open loop stable
systems it is then straight forward to see that there can be no encirclements of the
critical point. However, the criterion may also be used for open loop unstable systems
provided the Bode phase plot starts from the correct phase of −180∘ ⋅ nol, and the
crossover frequency !c is unique (i.e., that there is only one frequency !c for which
∣L(j!c)∣ = 1).

If either of the assumptions i) ∣L(j!)∣ < 1 for ! > !c or ii) uniqueness of !c

are violated, the Bode stability criterion is easily misinterpreted, and the use of the
Nyquist criterion is recommended instead.

For open loop stable systems the Bode stability criterion may equivalently be
stated in terms of !180, defined such that ∕ L(j!180) = −180∘. The closed loop system
is then stable if ∣L(j!)∣ < 1 for ! ≥ !180. For most systems, the magnitude ∣L(j!)∣
will decrease with increasing frequency, and it will thus suffice to check the criterion
only at !180. However, this version of the criterion cannot be used for open loop
unstable systems, since !180 need not be uniquely defined - and the criterion must
indeed be violated for one or more of the !180’s.

Example. Consider the unstable system g(s) = 1
10s−1

, that we want to stabilize
with the proportional feedback controller k. The closed loop pole can be found from
the closed loop characteristic polynomial, by solving the equation 1 + g(s)k = 0. We
thereby find that the closed loop pole is located at s = 1−k

10
, and the closed loop will

be stable for k > 1. We note that !180 = 0, and that ∕ L(j!) > −180∘∀! > 0. We

can easily calculate !c =
√
k2−1
10

. That is, for k < 1, ∣L(j!)∣ = ∣g(j!)k∣ < 1∀!, and
there is thus no crossover frequency !c. Thus, we find also from the Bode stability
criterion (in terms of !c) that we need k > 1 for stability. The Bode stability criterion
in terms of !180 would fail - but as noted above this is only valid for stable systems.

In Fig. 2.3.5 the Bode diagram for the system in this example is shown for k = 2.
We find that !c =

√
3

10
and ∕ L(j!c) = −120∘, i.e., the system is stable and we have a

phase margin of 60∘.
Stability of the closed loop system can also be verified from the monovariable

Nyquist theorem. We find that the image of L(s) under the Nyquist D-contour
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encircles the critical point (−1, 0) once in the anti-clockwise direction, as shown in
Fig. 2.3.5.
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Figure 2.6: Bode diagram for the system L(s) = 2
10s−1

.

Some remarks on stability analysis using the frequency response

Frequency analysis can indeed be very useful. However, some remarks seem to be
needed to warn against misuse of frequency analysis for analyzing stability:

∙ The Nyquist stability theorems and the Bode stability criterion are tools to
assess closed loop stability based on open loop frequency response data.

∙ Knowledge of the number of open loop unstable poles is crucial when using
Nyquist or Bode.

∙ Nyquist or Bode should never be used to assess open loop stability!

∙ It is utterly absurd to apply the Bode stability criterion to the individual ele-
ments of a multivariable system, the Bode stability criterion applies to mono-
variable systems only. Use the multivariable Nyquist theorem to assess closed
loop stability of multivariable systems based on the open loop frequency re-
sponse.
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Figure 2.7: The monovariable Nyquist theorem applied to the system L(s) = 2
10s−1

.
The curve encircles the critical point (−1, 0) once in the anti-clockwise direction, and
the system is hence stable.
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Chapter 3

Limitations on achievable control
performance

3.1 Introduction

This section will discuss the factors that limit the achievable performance of a control
system under feedback control. In order to simplify the discussion, we will first in-
troduce some notation, and discuss how different properties of the closed loop system
is related to the different closed loop transfer functions. Thereafter, limitations on
achievable performance will be discussed.

3.2 Notation

There is no universally accepted notation in control engineering. However, the nota-
tion that is introduced in this section is similar to what is used in much of the more
recent control literature. The reader is referred to Fig.3.1.

GK
-

y

n+

Gd

ur

d

Figure 3.1: An illustration of some of the notation used for describing a feedback
control system.

The signals r,u,y,d, and n are the reference signal (setpoint), the manipulated
variable, the controlled variable, the disturbance, and the measurement noise, respec-
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tively. For multivariable systems, these signals are vectors. The measured value of
the controlled variable differs from the true value due to the noise, thus ym = y + n.
The transfer functions G, Gd, and K represent the effect of manipulated variables
on controlled variables, the effect of the disturbances on the controlled variables, and
the controller (how the control offset determines the manipulated variables). For
multivariable systems, G, Gd, and K are matrices. Thus, the overall plant is given
by

y =
[
G Gd

] [ u
d

]

and has a state space representation given by

ẋ = Ax+Bu+ Ed

y = Cx+Du+ Fd

The transfer functions and the state space representation are related through[
G(s) Gd(s)

]
= C(sI − A)−1

[
B E

]
+
[
D F

]
The dependency on the complex variable s will frequently be omitted for nota-

tional brevity. Unless explicitly stated, we will assume whenever necessary that the
state space realisation is minimal, i.e., that all states are observable in y and control-

lable from
[
u d

]T
. Note that all states need not be controllable from u or d alone,

thus for numerical computations involving G or Gd alone, one should ensure that a
minimal realisation is used.

3.3 Closed loop transfer functions and closed loop

system responses

This section will introduce some important closed loop system transfer functions, and
discuss their relationship to different closed loop responses relevant to control.

The response of the controlled variable is given by

y = (I +GK)−1Gdd+ (I +GK)−1GK(r − n) = SGdd+ T (r − n) (3.1)

where S = (I + GK)−1is known as the (output) sensitivity function, and T =
(I + GK)−1GK = GK(I + GK)−1 (the latter equality holds also for multivariable
systems) is known as the (output) complementary sensitivity function. The transfer
function matrices S and T are complementary in the sense that S + T = I by
definition.

The response of the manipulated variable is given by
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u = K(I +GK)−1(r − n)−K(I +GK)−1Gdd

= (I +KG)−1K(r − n)− (I +KG)−1KGdd (3.2)

= SIK(r − n)− SIKGdd (3.3)

where SI is known as the input sensitivity function. Note that for multivariable
systems, SI is in general different from S.

From Eq.3.1 we see that in order to reject disturbances, we want the sensitivity
function S to be small. A small S corresponds to a complementary sensitivity
function T ≈ I.1 This means that the closed loop system will track setpoint changes
very accurately, but unfortunately also means that measurement noise (n) will directly
affect the controlled variable. In addition, model uncertaincy will in general imply
a need for controller loop gain (exactly what closed loop transfer function needs to
be small will depend on the assumed location and structure of the uncertainty, see
[92, 69] for details). We thus have four seemingly contradictory requirements to fulfill,
disturbance rejection and setpoint following implies high controller gain, whereas the
sensitivity to measurement noise and model uncertainty implies low controller gain.
Fortunately, these relative importance of these requirements normally depend on
frequency. In process control, setpoint tracking and disturbance rejection is often
considered more important at low frequencies than at high frequencies, since fast
variations in the controlled variables often have little impact on plant profitability.
On the other hand, measurement noise is often more severe at high frequencies (steady
state bias and slow drift should be counteracted with proper calibration). It is
normally simpler to obtain a plant model which is accurate at low frequencies, than
to obtain good model accuracy at high frequencies.

3.4 Limitations on achievable performance

3.4.1 Control performance in different frequency ranges

Bode [12] showed for open loop stable, monovariable systems that improved control at
some frequencies will necessarily imply poorer control at other frequencies (under mild
conditions on the plant transfer function), which can be expressed by the following
integral:

∫ ∞

0

log ∣S(j!)∣ d! = 0 (3.4)

1For a multivariable system, S must be small in all directions for T ≈ I to hold. One may
state that the equality S + T = I implies that the gain of T ≈ 1 in the directions where S is small.
However, this statement may be criticized for lack of precision, since we have not defined what we
mean by directions in a multivariable system.
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This implies that a sensitivity reduction in one frequency range must be balanced
by a sensitivity increase at other frequency ranges. Typically, the sensitivity function
is small at low frequencies and ∣S∣ ≈ 1 (i.e., log ∣S∣ = 0) at high frequencies. There-
fore, we must have ∣S∣ > 1 in the bandwidth region, and thus get increased sensitivity
to disturbances in that region. It may appear from Eq. (3.4) that one can stretch out
the area with increased sensitivity ad infinitum, and therefore only get an infinitesi-
mal peak in the sensitivity function. However, this will only be approximately true
if a low control bandwidth is used. In most practical cases, the loop gain will have
to be reduced with increasing frequency also at frequencies immediately above the
loop bandwidth (i.e., the loop gain has to ”roll off”). This implies that there will be
a definite peak in the magnitude of the sensitivity function, and that also the peak
value has to increase if the sensitivity function is reduced in another frequency range.
These issues are discussed further by Freudenber and Looze, see [25], who also show
that the result in Eq. (3.4) can be generalized to multivariable systems:

∫ ∞

0

log ∣det(S(j!))∣ d! = 0 (3.5)

For constant (frequency-independent) directions, one may transform the inputs
and outputs such that the relationship between given input-output directions are
described by a scalar sensitivity function S̃, and the relationship in Eq. (3.4) will apply
for the transformed sensitivity function S̃. However, if one allow the directions in
multivariable space to vary with frequency (like the input and output singular vectors
of S will normally do), it is not fully understood whether it is possible to trade off
increases in sensitivity in different directions.

3.4.2 Zeros in the right half plane

If the open loop plant has zeros in the right half plane, this will impose a restriction
on achievable performance. The implications of RHP zeros are somewhat more com-
plicated for multivariable systems than for monovariable systems. We will therefore
discuss monovariable systems first.

Monovariable systems. In order to obtain an internally stable closed loop
system, a RHP zero cannot be cancelled by the controller, nor can a zero be moved
by feedback. Thus, a RHP zero that occurs in the open loop transfer function G
must also appear in the closed loop complementary sensitivity function. That is,
consider an open loop transfer function G with a zero at location z in the right half
plane. We then have

G(z) = 0

T (z) = G(z)K(z)(I +G(z)K(z))−1 = 0

S(z) = 1
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Freudenberg and Looze [25] have also extended Bode’s sensitivity integral to ac-
count for RHP zeros, and obtain for an open loop stable plant with a RHP zero at z
that:

∫ ∞

0

log ∣S(j!)∣W (z, !)d! = 0 (3.6)

where the wheighting function W (z, !) is given by

W (z, !) =
2z

z2 + !2
(3.7)

For a complex RHP zero at z = x+ jy, the weight W (z, !) becomes

W (z, !) =
x

x2 + (y − !)2
+

x

x2 + (y + !)2
(3.8)

This means that most of the sensitivity increase that is needed to fulfill Eq. (3.6)
must come at frequencies below the frequency corresponding to the right half plane
zero, and that the bandwidth of the closed loop system is effectively constrained to
be somewhat below the frequency of the RHP zero. As the bandwidth approaches
the frequency of the RHP zero, the peak value of the magnitude of the sensitivity
function will increase.

Multivariable systems. Consider the simple 2× 2 plant

y(s) = G(s)u(s) =
1

s+ 1

[
1 s+ 1
2 s+ 4

]
u(s) (3.9)

Assume that a > 0, i.e., the system is open loop stable. None of the elements
of G(s) have zeros in the right half plane. Controlling output y1 with the controller
u1(s) = k1(r1(s)− y1(s)), we get

y1 =
g11k1

1 + g11k1
r1 +

g12
1 + g11k1

u2

y2 =
g21k1

1 + g11k1
r1 +

(
g22 +

g21g12k1
1 + g11k1

)
u2

where the term inside the brackets is the transfer function from u2 to y2 when
y1 is controlled by u1, in the following this is denoted g̃2. Assume that a simple
proportional controller is used, i.e., k1(s) = k (constant). Some tedious but straight
forward algebra then results in

g̃2(s) =
1

(s+ 1)(s+ 1 + k)
[(s+ 4)(s+ 1 + k)− 2k(s+ 1)]

We can then easily see that the system is stable provided k > −1 (clearly, a positive
value for k would be used). For small values of k, g̃2 has two real zeros in the left
half plane. For k = 9 − 3

√
8, the zeros become a complex conjugate pair, and the



48CHAPTER 3. LIMITATIONS ON ACHIEVABLE CONTROL PERFORMANCE

zeros move into the right half plane for k > 5. For k = 9 + 3
√
8, both zeros again

become real (but positive), and if k is increased further, one zero approaches +∞
whereas the other zero approaces +2. Now, a zero of g̃2(s) far into the right half
plane will not significantly affect the achievable bandwidth for loop 2, but the zero
which at high values of k approaches +2 certainly will.

Note that it will not be possible to avoid the zero in g̃2(s) by using a more complex
controller in loop 1. The transfer function g̃2(s) will have a zero in the vicinity of
s = 2 whenever high bandwidth control is used in loop 1.

If we instead were to close loop 2 first, we would get similar problems with loop 1
as we have just seen with loop 2. That is, if loop 2 were controlled fast, the transfer
function from u1 to y1 would have a zero in the vicinity of s = 2.

We therefore conclude that it is a property of the plant that all directions cannot
be controlled fast. Looking at the term inside the square bracket in Eq.3.9, we
see that the determinant of G(s) looses rank at s = 2 (its normal rank is 2, but at
s = 2 it has rank 1). In terms of systems theory, the plant G(s) has a multivariable
(transmission) zero at s = 2.

There is no direct relationship between monovariable and multivariable zeros,
a zero in an individual transfer function element may be at the same location as
a multivariable zero, but often that will not be the case. However, as we have
seen above, if a multivariable system with n outputs has a RHPT zero, and n − 1
outputs are perfectly controlled using feedback, the RHPT zero will appear in any
transfer function from the remaining manipulated variable to the remaining controlled
variable (if the transfer function takes account of the fact that the other outputs are
controlled).

Right half plane zeros in individual elements of a transfer function matrix need
not imply a control performance limitation (they may become serious limitations,
however, if parts of the control system is taken out of service, leaving only the loop
with the monovariable RHP zero in service). There are several definitions of mul-
tivariable zeros, but the multivariable zeros which have serious control implications
are the so-called transmission zeros in the right half plane (RHPTZ, for short).

A transmission zero is a point in the complex plane where the transfer function
matrix looses its normal rank. A multivariable transmission zero is a zero which
has the property that it can (if the system initially is at a specific state) fully block
the effect on the outputs of an expotentially growing input signal. It is normally
computed numerically by starting from a minimal state space realization, and solve
a generalized eigenvalue problem

(zIg −M)

[
xz

uz

]
= 0

M =

[
A B
C D

]
(3.10)

Ig =

[
I 0
0 0

]
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Multivariable transmission zeros can be computed using a standard Matlab func-
tion. The state vector xz obtained from Eq.(3.10) is the initial condition required
for the ”transmission blocking” phenomenon, and uz is known as the zero input vec-
tor. Likewise, a zero output vector can be calculated from solving Eq.(3.10) using
MT instead of M .2 When the magnitudes of the input and output zero vectors are
normalized to unity, they are called input and output zero directions, respectively. A
transmission zero is invariant to feedback, just as monovariable zeros. The location
of the zero is invariant to scaling of the inputs and outputs, but the zero directions
are not.

The zero directions give information about which inputs and outputs are affected
by the RHPT zero, the zero is said to be pinned to the inputs/outputs corresponding
to non-zero elements in the zero directions. Thus, achievable control performance
will be impaired for at least one of the controlled variables corresponding to non-zero
elements in the zero output direction. In theory, the RHPT zero can be made to
affect only one (and any one) of the controlled variables corresponding to the non-
zero elements in the zero output direction. However, large moves in the manipulated
variables will normally be required if one wants to steer the effect of an RHPT zero to
a controlled variable corresponding to a small element of the zero output direction, see
Morari and Zafiriou [69, 38] for details. In addition, since yHz G(z) = 0 the following
relationships must hold for the closed loop system to be internally stable:

yHz T (z) = 0

yHz S(z) = yHz

Thus, T must have a zero in the same output direction as G, and S must have a
eigenvalue of 1 with corresponding left eigenvector yz.

Multivariable RHPT zeros affect the sensitivity function in a way similar to the
effect of RHP zeros of monovariable systems. However, the available mathematical
results are not as tight. Freudenberg and Looze [25] state the following result:

∫ ∞

0

log ¾(S(j!))W (z, !)d! ≥ 0 (3.11)

where W (z, !) is the same as in equation Eq. (3.7) or Eq. (3.8), as appropriate.
The implications of multivariable RHP zeros are discussed further in [92].

3.4.3 Unstable systems

It is well known that poles in the right half plane means that the system is unstable
in open loop, and needs to be stabilized by feedback. Cancelling the unstable pole
with a RHP zero in the controller will result in an internally unstable system. The
poles of the system corresponds to the eigenvalues of the autotransition matrix A. In

2A numerically less robust way of calculating uz and yz is by using the SVD of the transfer
function matrix calculated at the zero.
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contrast to RHP zeros, RHP poles imposes a bandwidth requirement rather than a
bandwidth limitation, the control needs to be fast enough to ”capture” the instability
before the plant runs away.

Let a plant G have np poles in the open right half plane (including multiplicities),
at locations {pi; i = 1, ⋅ ⋅ ⋅ , np}. Then, if the closed loop system is stable, it must
satisfy (see [25] for details)

∫ ∞

0

log ∣S(j!)∣ d! = ¼

np∑
i=1

Re(pi) (3.12)

For multivariable systems, Eq. (3.12) applies to ∣det(S(j!))∣ instead of ∣S(j!)∣.
This means that poles in the right half plane will make the control worse, and the
peak value of the sensitivity function will generally increase as the system bandwidth
decreases.

For multivariable systems, one can define pole input and output directions, much
in the same way as for multivariable zeros. The pole directions can be calculated
from the state space realisation. If p is an eigenvalue of A, and t and q are the
corresponding right and right eigenvectors, then

At = pt, qHA = qHp

yp = Ct, up = BHq (3.13)

Here yp and up are the output and input pole directions, respectively (to be strict,
they should be normalized to magnitude one). See Havre [36] for full details on the
computation of pole and zero directions.

For a monovariable system G with a RHP pole at p (i.e., G(p) = ∞), then for
internal stability the following relationships must apply:

T (p) = 1

S(p) = 0 (3.14)

The multivariable counterparts to Eq. (3.14) are

T (p)yp = yp

S(p)yp = 0 (3.15)

Combined effects of RHP poles and zeros

For monovariable systems with a RHP zero at z and RHP poles at {pi; i = 1, ⋅ ⋅ ⋅ , np}
(including multiplicities), Freudenberg and Looze [25] find that

∫ ∞

0

log ∣S(j!)∣ d! = ¼

np∏
i=1

∣∣∣∣
pi + z

pi − z

∣∣∣∣ (3.16)
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How the sensitivity function for a multivariable system is affected in different
directions by the presence of poles and zeros is not fully understood, but it is clear
that this must depend on pole and zero directions, as illustrated by the following
simple example:

G1(s) =

[
f(s) 0
0 s−z

s−p

]
; G2(s) =

[ s−z
¿s+1

0

0 ¿1s+1
s−p

]

Here f(s) can be an arbitrary minimum phase scalar transfer function. Clearly,
for G1(s) the combined effects of the RHP pole and zero will only affect output 2,
whereas for G2(s) the pole only affects output 2 and the zero only affects output 1.

Another difference between monovariable and multivariable systems is that for
multivariable systems there may be a pole and zero at the same location in the
complex plane (same value of s), even for a minimal state space realization. This is
possible if the pole and zero directions are not parallel.

3.4.4 Time delays

For a monovariable plant with a time delay of µ, a time µ must obviously pass between
a step change in the reference value and the response in the controlled variable - not
even an ideal controller can do better. The socalled Smith predictor is a controller
structure which may allow a closed loop response close to that of the ideal controller.
However, achieving anything like such an ideal response will require a very accurate
plant model, and the Smith predictor is indeed found to be sensitive to model un-
certainty (especially uncertainty in the time delay) unless it is conservatively tuned.
Skogestad and Postlethwaite [92] argue that due to robustness considerations the
gain crossover frequency (the frequency at which the gain crosses 1) is approximately
limited to !c ≤ 1/µ.

For multivariable systems, the minimum time that must pass between a step
change in the reference value for output i and a response in the output is obviously
the same as the smallest time delay in any of the elements in row i of the transfer
function matrix. Holt and Morari [37] derive additional bounds, but their usefulness
is not clear as they assume decoupled responses in the controlled outputs - which is
often not desirable if one wants to optimize control performance.

3.4.5 Limitations due to uncertainty in the plant model

For monovariable systems, model uncertainty will generally have little effect on the
control performance at frequencies where the loop gain is high. In the bandwidth
region, model uncertainty can cause both poor performance and instability. This can
be investigated easily by evaluating the gain and phase margins, or somewhat more
rigorously by analyzing the Nichols chart.

The effect of model uncertainty for monovariable feedforward control is discussed
by Balchen in [11].

For multivariable systems the situation is much more complex, and small errors
in the individual model elements can have disastrous effect on the overall system.
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Problems are most likely in the crossover region also for multivariable systems. This
can be analyzed rigorously by evaluating the socalled structured singular value, see
e.g., [92, 69] for details. However, this is a quite complicated concept and advanced
mathematics is required in this type of analysis, and this issue will not be explored
here. We will only note that problems due to model uncertainty in multivariable
systems is particularly likely if the plant is inherently ill-conditioned, i.e., the plant
is ill-conditioned regardless of what scaling is used for the inputs and outputs. The
conventional condition number (ratio of largest to smallest singular value)is thus not a
good measure of inherent ill-conditioning, since it is scaling dependent - and obtaining
the optimal scaling is non-trivial. A simple alternative measure is the Relative Gain
Array (RGA), given by

Λ(G) = G× (G−1)T (3.17)

where × denotes the element-by-element (Hadamard or Schur) product. The RGA
is independent of scaling, and all rows and columns of Λ sum to 1. Large elements
in Λ(G) (relative to 1) imply that the plant is inherently ill-conditioned and sensitive
to uncertainty. The RGA has a number of other uses which we will return to in later
sections.

3.4.6 Limitations due to input constraints

Whenever input constraints are active, control performance will obviously suffer. This
likely to occur if ¾̄(G−1Gd) > 1 (provided the disturbances and manipulated variables
are appropriately scaled).



Chapter 4

Control structure selection

4.1 Introduction

This section addresses the design of control structures. It starts off by describing
several common control loop configurations. Thereafter, more fundamental issues will
be discussed, such as

∙ What variables should be controlled?

∙ What variables should be manipulated to control the controlled variables?

∙ What structure should be imposed on the interconnections between the con-
trolled and manipulated variables?

The focus of this note is on the lower layer in the control system, the regulatory
control layer. The main purpose of of the regulatory control layer is to keep the plant
in safe and stable operation, by keeping the controlled variable at or close to their
setpoints. The actual values of these setpoints will be determined by higher levels in
the control hierarchy1. Thus, it is the task of the higher levels to identify the optimal
operating conditions, whereas the regulatory control layer is important for obtaining
and maintaining optimal conditions.

4.2 Common control loop structures for the regu-

latory control layer

In this section the more common control loop structures for the regulatory control
layer are described.

1The higher levels in the control system may be automated, but the tasks of the higher levels
may also be performed by human operators.
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4.2.1 Simple feedback loop

This is by far the more common control loop structure for the regulatory control
level, and is illustrated in Fig. 4.1. The controller acts on the difference between

ProcessController
-

Setpoint Manipulated
variable

Process
output

Measurement

Noise+

Disturbances

Figure 4.1: Simple feedback control loop.

the desired value for the process output (i.e., the setpoint or reference value) and the
measurement of the process output. In order to make the measurement equal the
setpoint, a process input is manipulated by the controller, this process input is then
known as the manipulated variable. Note that the measured value need not equal
the actual process output value, due to possible measurement noise or malfunctions.
Note also that the manipulated variable is normally one of several process inputs
which affects the value of the process output, there are normally additional process
inputs which will affect the process output. These additional process inputs which
are not manipulated by the controller are termed disturbances. The need for feedback
of the process measurement arises from uncertainty both with respect to the value of
the disturbances, and with respect to the process response. If we could know exactly
the value of all disturbances, and the response of the process to both the disturbances
and the manipulated value, the measurement would be superfluous, since we would
know the exact value of the process output for a specific value of the manipulated
variable. In practice such exact process knowledge is unrealistic, and hence feedback
of the measurement is needed if accurate control of the process output is required.

4.2.2 Feedforward control

Feedforward control is used to counteract the effect of disturbances without first
having to wait for the disturbances to affect the process output. This is illustrated
in Fig.4.2

The ideal feedforward signal is the one which exactly cancels the effect of distur-
bances, i.e.,

u = uff + ufb

where uff is the output of the feedforward controller. The ideal value of uff is
then given by

y = Guff +Gdd = 0 ⇔ uff = −G−1Gdd
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Process
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controller
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Figure 4.2: Feedforward control from measured disturbances combined with ordinary
feedback control.

Clearly, in order to implement the ideal feedforward controller, G−1Gd must be
both stable and realizable, and both the process transfer function G and the distur-
bance transfer function Gd must be known with reasonable accurately. The effect
of model inaccuracy on performance of feedforward control is described in e.g. [11] .
Since the feedforward control cannot be expected to be perfect, the feedback controller
will still be needed if accurate control is required.

A pure feedforward controller cannot by itself cause instability of the closed loop
system, and it is therefore very useful whenever there are bandwidth limitations which
limit the achieveable performance of a feedback controller, since most such bandwidth
limitations (with the exception of input constraints/ input rate of change constraints)
will not apply to the feedforward controller. On the other hand, feedforward cannot
be used to stabilize an unstable system.

4.2.3 Ratio control

Ratio control may be used whenever the controlled variable is strongly dependent of
the ratio between two inputs. Simple examples of control problems where this type
of control structure is appropriate are

∙ Mixing of hot and cold water to get warm water at a specified temperature.

∙ Mixing of a concentrated chemical solution with a diluent to obtain a dilute
chemical solution.

Ratio control may be considered as a special case of feedforward control. It is
particularly appropriate when one of the two inputs cannot be controlled, but vary
rapidly. Measuring the input that cannot be controlled and applying the other input
in a specific ratio to the uncontrolled one, essentially amounts to feedforward control.
Figure 4.3 illustrates a typical application of ratio control in mixing two streams.
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Uncontrolled
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Control valve
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measurement
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Property
controller
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controller
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Figure 4.3: Ratio control for mixing two streams to obtain some specific property
for the mixed stream. The property controller XC manipulates the multiplication
factor, and thereby also the ratio between the two streams.

4.2.4 Cascade control

Cascade control is used in cases where an intermediate measurement can give an
indication of what will happen with a more important primary measurement further
”downstream”. The use of cascaded control loops is illustrated in Fig. 4.4. Note that
cascade control is used also in Fig.4.3, since the property controller (via the multiplier)
manipulates the setpoint to the flow controller instead of the valve position itself. In
Fig.4.3, the flow controller will counteract disturbances in upstream pressure and
correct for a possibly nonlinear valve characteristic.

P2C2 C1 P1
__

Primary process measurement

Disturbances

Secondary process measurement

Primary 

setpoint

Secondary 

setpoint

Manipulated 

variable

Figure 4.4: Cascaded control loops. Controller C1 controls the output of process
section P1, and can counteract disturbances entering P1. The primary process
measurement is controlled by controller C2, which uses the setpoint for controller C1
as manipulated variable.

In general, there may be more than two loops in cascade. For instance, a valve
positioner can get its setpoint from a flow controller, which in turn gets its setpoint
from a level controller (i.e., three loops in cascade).

For cascade control to make sense, the inner loops must be significantly faster than
the outer loops - since the intermediate process measurements are of little interest.
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If the inner loops do not provide for faster disturbance rejection (of at least some
disturbances), they are not very meaningful. Fast inner loops will also make the
tuning of the outer loops simpler, since one then can assume that the inner loops are
able to follow their setpoints.

4.2.5 Auctioneering control

Auctioneering control is a control structure where the ”worst” of a set of measure-
ments is selected for active control, i.e. ”the measurement that places the highest
bid gets the control”. This type of control structure is particularly common in some
chemical reactors with exothermal reactions, where the process fluid flows through
tubes filled with solid catalyst. If the temperature becomes too high, the catalyst
will be damaged or destroyed, therefore the tubes are cooled by a cooling medium
on the outside. On the other hand, if the temperature is too low, the reactions will
be too slow. Thus temperature control is very important. However, the temperature
will vary along the length of the reactor tubes, and the position with the highest
temperature will vary with operating conditions. Therefore several temperature mea-
surements along the reactor length are used, and the value of the highest temperature
is chosen as the controlled variable. This arrangement is illustrated in Fig. 4.5.

Cooling medium

Reactants Products

TT1 TT2 TT3 TT5 TT6

>

TT4

High select

TC1

Temperature
controller

Figure 4.5: A chemical reactor with auctioneering temperature control.

For a control engineer, it might appear to be a better idea to use the temperature
measurements as inputs to an estimator which estimates the maximum temperature.
Such an estimator could estimate the maximum temperature when the maximum
does not occur at the position of a temperature measurement, and could also be made
more robust to measurement malfunction (if properly designed).However, this type
of chemical reactor is normally strongly nonlinear, and the estimator would therefore
need a nonlinear model, probably based on physical and chemical relationships. The
modelling work needed could be time consuming, and it could also be difficult to
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ascertain that the estimator performs well in all operating regions. Thus, it need not
be obvious which approach to temperature control is to be preferred.

4.2.6 Split range control

In split range control, several manipulated variables are used to control one controlled
variable, in such a way that when one manipulated variable saturates, the next ma-
nipulated variable takes over. In order to obtain smooth control, there is often overlap
between the operating ranges of the different manipulated variables. For example,
manipulated variable 1 may take value 0% at a controller output of 0%, and value
100% at controller output 60%. Similarly, manipulated variable 2 takes value 0% for
controller outputs below 40%, and value 100% for controller output 100%.

It should be clear that there can be a lot of freedom in how to design the split
range arrangement. It will normally be advantageous to use this freedom to make
the response in the controlled variable to changes in the controller output as linear
as possible.

4.2.7 Parallel control

Parallel control is similar to split range control in the sense that more than one phys-
ical input is used to control a single controlled variable. However, with parallel
control, the operating ranges for the manipulated variables are divided in the fre-
quency domain rather than being based on the magnitude of the controller output.
A typical motivation for using parallel control may be that fast control is required for
the controlled variable. There are several possible manipulated variables, but all the
manipulated variable for which fast control is possible are expensive to use. Thus,
the fast control must be performed with a manipulated variable that is expensive to
use, whereas the slow control can be performed with a cheaper manipulated variable
- thus allowing the expensive manipulated variable to be reset to its optimal value.
Three different ways of implementing parallel control are shown in Fig. 4.6.

In Fig.4.6a), the overall effect of the controller is that of a PI controller, with
integral action only for the slow, cheap manipulated variable. In Fig.4.6b), there
is no integral action in the controller for the fast manipulated variable, and the fast
controller will therefore leave an offset which is removed due to the integral action
in the controller for the slow variable. In Fig.4.6c), the slow manipulated variable
is not used to control the primary process measurement, but rather to control the
value of the fast manipulated variable. Whichever of these methods for implementing
parallel control are used, one should ensure that the number of pure integrators in
parallel in the controller(s) do not exceed the number of feedback paths. Thus, both
in Fig.4.6a) and b) the integral action acts only on the slow manipulated variable. If
there are more integrators in parallel in the controllers than the number of feedback
paths, all the integrators cannot be stabilized by feedback. The result can be that the
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Figure 4.6: Three different ways of implementing parallel control.

manipulated variables start to drift, until the controller output saturates. In Fig.4.6c)
there are two independent feedback paths, and both controllers may therefore contain
integral action.

4.2.8 Selective control

To this author’s knowledge, there is no commonly accepted name for this control
structure, yet it is a structure that is seen in many plants. The term ”selective con-
trol” is coined by the author, who would welcome suggestions for a more illuminating
term for this type of control structure. Selective control is sometimes used when
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there are more than one candidate controlled variables for a manipulated variable.
For each of the candidate controlled variable there is then a separate controller, and
the value of the manipulated variable that is implemented is selected among the con-
troller outputs. A simple example of selective control with pressure control on both
sides of a valve is shown in Fig. 4.7. Normally one selects simply the highest or
lowest value. A few points should be made about this control structure:

PT1 PT2

PC1 PC2<

Pressure
transmitter

Pressure
transmitter

Pressure
controller

Pressure
controller

Selector

Control
valve

Figure 4.7: Selective control of pressure of both sided of a control valve. Note that
the applied control signal is fed back to the controllers.

∙ Clearly, a single manipulated variable can control only one controlled variable
at the time, i.e., the only variable that is controlled at any instant is the variable
for which the corresponding controller output is implemented. It might appear
strange to point out such a triviality, but this author has been in discussions
with several otherwise sensible engineers who have difficulty comprehending
this. Thus, one should consider with some care how such a control structure
will work.

∙ The selection of the active controller is usually based on the controller outputs,
not the controller inputs. Nevertheless the local operators and engineers often
believe that the selection is based on the controller inputs, or that ”the control
switches when the a measurement passes its setpoint”. In principle, the selec-
tion of the active controller may also be based on the controller inputs2. Some
type of scaling will then often be necessary, in order to compare different types
of physical quantities (e.g., comparing flowrates and pressures).

∙ If the controllers contain integral action, a severe problem that is similar to ”re-
set windup” can occur unless special precautions are taken. The controllers that
are not selected, should be reset (for normal PID controller this is done by ad-
justing the value of the controller integral) such that for the present controller
measurement, the presently selected manipulated variable value is obtained.

2Provided appropriate scaling of variables is used, the auctioneering control structure may be a
better alternative to using selective control with the selection based on controller inputs.
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Commonly used terms for this type of functionality are ”putting the inactive
controllers in tracking mode” or ”using a feedback relay”. This functionality
should be implemented with some care, this author has seen faulty implemen-
tations which permanently lock the inactive controllers. On a digital control
system, the controllers should do the following for each sample interval:

1. Read in the process measurement.

2. Calculate new controller output.

3. The selector now selects the controller output to be implemented on the ma-
nipulated variable.

4. The controllers read in the implemented manipulated variable value.

5. If the implemented manipulated variable value is different from the controller
output, the internal variables in the controller (typically the integral value)
should be adjusted to obtain the currently implemented manipulated variable
value as controller output, for the current process measurement.

∙ Some thought should be spent on the function that selects the controller output.
If a simple high or low select is used, there is a possibility that measurement
noise may temporarily drive the manipulated variable the wrong way. The
problem arises due to digital implementation of the controllers, and the need
for the tracking function that is explained above. It is more likely to happen
if derivative action is used, or the proportional action ”dominates” the integral
action in a PI controller. To overcome this problem, some logic may be added
to the selector function, such that a controller output can only be selected
if the corresponding measurement is on the right side of the setpoint. To
illustrate, consider a controller for which there is positive (steady state) gain
from manipulated variable to measurement. Then, if the selector is of a low
select type, this controller should only be selected if the process measurement
is above the setpoint.

4.2.9 Combining basic single-loop control structures

Most of the simple control structures shown above may be combined with each other.
With the exception of the feedforward control, all the control structures shown are
variants of feedback control. Feedforward control is normally combined with some
form of feedback control, but it may be somewhat complicated to combine feedforward
with auctioneering or selective control.

Note that selective control should not be used for one of the manipulated vari-
ables of a split range controller. This is because the tracking function will then
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constrain the output of the split range controller to be in the range where this ma-
nipulated variable is manipulated, and the other manipulated variables in the split
range arrangement will not be used (or they may be used over a minor fraction of
their operating range). On the other hand, there is nothing conceptually wrong with
the output of the selector in selective control acting on a set of manipulated variables
which operate in a split range arrangement.

4.2.10 Decoupling

The use of decouplers have long been a popular way of converting multivariable control
problems into (what appears to be) a number of monovariable control problems.
This popularity of decoupling seem to continue, despite the more general and easily
applicable multivariable control design methods that have been developed over the
last several decades.

The basic idea behind the use of a decoupler can be illustrated in Fig. 4.8. A

k1

ki

kn

Actual 

inputs

Outputs
Decoupler

”Apparent 

inputs”

to decoupled 

plant

Figure 4.8: The basic idea behind decoupling: A precompensator (W ) is used to
make the ’decoupled plant’ inside the dotted box diagonal, allowing for simple design
of monovariable controllers ki.

precompensator W (s) is used, in order to make the precompensated plant GW di-
agonal, thus allowing for simple monovariable control design of the individual loop
controllers ki. Assume that the desired precompensated plant is given by Gdes(s). It
is then simple to find the corresponding precompensator, by solving the equation

G(s)W (s) = Gdes(s). (4.1)

Note that

∙ Typically Gdes(s) is diagonal (which will be assumed henceforth), but occasion-
ally ’one way decouplers’ are used, corresponding to Gdes(s) being upper or
lower triangular.

∙ Gdes(s) must contain all RHP poles and (multivariable) RHP zeros of G(s) -
otherwise the system will be internally unstable.
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∙ The precompensator obviously cannot remove time delays.

∙ A popular choice is Gdes(s) = gdes(s) ⋅ I, with gdes(s) scalar. Any multivariable
RHP zeros in G(s) must then also be present in gdes(s). This means that all
loops for the precompensated system will be affected by the RHP zero, even if
only a few inputs or outputs in G(s) are affected by the multivariable zero.

Decouplers are prone to robustness problems, especially for highly interactive and
ill-conditioned plants - which is exactly the type of plant for which one would like
to use decoupling. This is discussed in more detail in [93]. The robustness problems
can be exasperated by input saturation. Anti-windup for decoupling controllers will
therefore be addressed in a subsequent section.
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4.3 Control configuration elements and decentral-

ized controller tuning

In this section we will consider how to determine the control configuration, i.e., the
structure of the interconnections between the controlled and manipulated variables via
the control system. Most of this section will address the pairing of manipulated and
controlled variables to arrive at a decentralized control structure (i.e., multiple single
control loops) for regulatory control, but the analysis tool (RGA) that is introduced
in this section can also be used to assess the appliccability of decoupling control.

4.3.1 The relative gain array

The relative gain array (RGA) was first introduced by Bristol[14] in 1966, and has
since proved to be a useful tool both for control structure design and analysis of
proposed control structures, as well as an interaction measure and an indicator of
robustness problems. Although extensions of the RGA to non-square systems have
been proposed, we will here focus on the use of the RGA for square plants, i.e.,
plant for which the number of controlled variables equal the number of manipulated
variables. Consider a n× n plant G(s)

y(s) = G(s)u(s) (4.2)

The open loop gain from uj(s) to yi(s) is gij(s). Writing Eq.(4.2) as

u(s) = G−1(s)y(s) (4.3)

it can be seen that the gain from uj(s) to yi(s) is 1/[G
−1(s)]ji when all other y’s

are perfectly controlled. The relative gain matrix consists of the ratios of these open
and closed loop gains. Thus, a matrix of relative gains can be computed from the
formula

Λ(s) = G(s)× (G−1(s))T (4.4)

Here the symbol ’×’ denotes the element-by-element product (Schur or Hadamard
product).

Note that although the assumption that ”all other y’s are perfectly controlled”
can only be fulfilled at steady state, provided integral action is used in the control
of all the ”other y’s”, the RGA can be computed also at non-zero values of s (as
implied by Eq.(4.4)) except at the zeros of G(s). Although the interpretation of
the RGA as a ratio of open to closed loop gains gradually becomes less accurate as
frequency increases, and fails totally in the bandwidth region and beyond, the RGA
has repeatedly proven to be a useful analysis tool also at higher frequencies. We
will therefore consider the RGA as a function of frequency (s = j!). The RGA as
defined above has some interesting algebraic properties (see e.g. [28]):
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∙ It is scaling independent (independent of the units of measure used for u and y).
Mathematically, Λ(D1GD2) = Λ(G) where D1 and D2 are diagonal matrices.

∙ All row and column sums equal one.

∙ Any permutation of rows or columns of G result in the same permutation in
Λ(G).

∙ If G is triangular (and hence also if it is diagonal) Λ(G) = I.

∙ Relative permutations in elements of G and its inverse are related by
d[G−1]ji/[G

−1]ji = −¸ijdgij/gij.

These properties can be proven from the following expression for the individual
elements of the RGA:

¸ij(s) = (−1)i+j gij(s) det(G
ij(s))

det(G(s))
(4.5)

Here Gij(s) denotes the matrix G(s) with row i and column j removed.

4.3.2 The RGA as a general analysis tool

In this section we will consider the RGA as a general analysis tool.

The RGA and zeros in the right half plane. It has been shown [43] that if

the RGA has different sign at steady state and at infinite frequency, then this is an
indication of RHP zeros in either G,gij or Gij. However, in order to evaluate the
RGA as a function of frequency, one will generally need a state space representation
of G. It would then make sense to calculate the zeros (and poles) from the state
space representation rather than looking at the RGA.

The RGA and the optimally scaled condition number. Bristol [14] pointed
out the formal resemblance between the RGA and the condition number °(G) =
¾(G)/¾(G) = ¾(G)¾(G−1). However, the condition number depends on scaling,
whereas the RGA does not. Minimizing the condition number with respect to all
input and output scalings yields the optimally scaled condition number,

°∗(G) = min
D1,D2

°(D1GD2) (4.6)

The optimal scaling matrices can be obtained by solving a structured singular
value problem[13]. However, formulating and solving this problem is quite com-
plicated, and there is no readily available software with a simple function call for
solving Eq.(4.6). Anyway, the main purpose for obtaining °∗(G) would be to get
an indication of possible robustness problems - a large value of °∗(G) would indicate
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that the control performance would be sensitive to small errors in the plant model
G. However, Nett and Manousiouthakis [73] have proven that large elements in the
RGA matrix imply a large value of °∗(G) :

∥Λm(G)∥ − 1

°∗(G)
≤ °∗(G) (4.7)

where ∥Λm∥ = 2max {∥Λ(G)∥i1 , ∥Λ(G)∥i∞} (i.e., twice the larger of maxi
∑

j ∣¸ij(G)∣
and maxj

∑
i ∣¸ij(G)∣)3. There is also a conjectured (but not rigorously proven) up-

per bound on °∗(G) based on the RGA [90], and it is therefore good reason to believe
that °∗(G) cannot be large without some elements of the RGA matrix also being
large.

The RGA and individual element uncertainty. It can be shown (e.g. [43])
that a matrix G becomes singular if the ij’th element is perturbed from gij to gPij =
(1− 1

¸ij
)gij. Some implications of this result are:

1. Element uncertainty. If the relative uncertainty in an element of a transfer func-
tion matrix at any frequency is larger than ∣1/¸ij(j!)∣, then the plant may have
zeros on the imaginary axis or in the RHP at this frequency. However, inde-
pendent, element-by-element uncertainty is often a poor uncertainty description
from a physical point of view, since the elements of the transfer function matrix
are usually coupled in some way.

2. Model identification. Models of multivariable plants G(s) are often obtained by
identifying one element at the time, i.e., by step or impulse responses. If there
are large RGA element, such model identification is likely to give meaqningless
results (e.g., wrong sign of det(G(0)) or non-existing RHP zeros) if there are
large RGA elements within the bandwidth where the model is intended to be
used. Truly multivariable identification techniques may alleviate this problem,
but physical knowledge about the process should always be used to validate and
correct identified models.

3. Uncertainty in the state matrix. Consider a plant described by a linear state
space model. If the state autotransition matrix A has large RGA elements,
only small relative changes in the elements of A can make the plant unstable4.

3The row and column sums of the RGA matrix only equal 1 if the actual (complex) values of the
elements are added, not their absoulte values.

4The result above only tells the necessary relative change in an element to make an eigenvalue
equal to zero. Even smaller perturbations in the elements may make a complex conjugate pair of
eigenvalues move from the LHP to the RHP by crossing the imaginary axis (away from the origin).
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RGA and diagonal input uncertainty. One type of uncertainty that is alway
present is input uncertainty. This can be described by assuming that the true (per-
turbed) plant GP is related to the nomminal (assumed) plant G by

GP = G(I +Δ), Δ = diag (Δi)

where the Δi’s represent the relative uncertainty in each of the manipulated vari-
ables. If an ”inverse-based” controller (decoupler) is used, C(s) = G−1(s)K(s),
where K(s) is a diagonal matrix, then the true open-loop gain GPC is

GPC = (I +GΔG−1)K

The diagonal elements of GΔG−1 are directly given by the RGA [90]:

(GΔG−1)ii =
n∑

j=1

¸ij(G)Δj

Since we cannot know the values of the Δi’s during control system design, it is
risky to use an inverse-based controller for plants with large RGA elements. On the
other hand, a diagonal controller (consisting of SISO control loops) will be relatively
insensitive to the diagonal uncertainty, but will not be able to counteract the strong
interactions in the process (as indicated by the large RGA elements).

The RGA as an interaction measure. Since the elements of the RGA can be
interpreted as the ratio of the open loop process gain to the gain when all other
outputs are perfectly controlled, it should be intuitively clear that the RGA can serve
as an interaction measure (i.e., a measure of to what extent the control of output i
will be affected by the control of other outputs). If an element of the RGA differs
significantly from one, the use of the corresponding input-output pair for control will
imply that the control of that output will be affected by the control actions in the
other loops to a significant degree. It is of most interest to consider the interactions
in the (expected) bandwidth region for control. Provided the steady state RGA is
positive, it is of less interest.

However, it should be noted that the RGA is only a measure of two-way inter-
action. If there is only one-way interaction (e.g., if the transfer function matrix is
triangular), the relative gain matrix will be Λ = I. This is both a strength and a
weakness of the RGA. It is a strength when it comes to relating the RGA to stability
of the closed loop system, an issue which is addressed in the next section.

4.3.3 The RGA and stability

The RGA is a measure of two-way interaction, and thus also a measure of potentially
destabilizing interaction. If Λ(j!) = I, ∀!, stability of the individual loops will
also imply stability of the overall system, since the interactions then cannot introduce
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any additional feedback paths in the closed loop system. This is because Λ = I can
only occur if the transfer function matrix is triangular - or can be made triangular by
simple row and column interchanges while keeping the same elements on the diagonal.

Let us next consider loop 1 in a plant control system (the generalisation to loop k
is trivial). Introduce G′ = diag{g11, G11}, where G11 is obtained from G by removing
row 1 and column 1. Let G′ have n′

U RHP poles (note that n′
U can be different for

different loops), and let the controller transfer function matrix be K. Assume:

∙ The transfer function GK is strictly proper.

∙ The controllerK is diagonal, has integral action in all channels, and is otherwise
stable.

∙ The plant transfer function matrix G have nU RHP poles.

Then a necessary condition for simultaneously obtaining

a) Stability of the closed loop system

b) Stability of loop 1 by itself

c) Stability of the system with loop 1 removed (e.g., loop 1 in manual)

is that

sign{¸11(0)} = sign{(−1)−nU+n′
U} (4.8)

For proof, see [43]. Note that for stable systems this implies the widely used
criterion of pairing on positive RGA’s, see e.g. [28].

The RGA and pairing of controlled and manipulated variables

The steady state RGA is a widely used criterion for pairing controlled and manipu-
lated variables. Equation (4.8) provides a generalisation of the traditional pairing
criterion based on the sign of the steady state RGA. The magnitude of the steady
state RGA is also widely used as a pairing criterion, but the magnitude of the RGA
in the bandwidth region for control is a more reliable pairing criterion. Ideally, we
would like that in the bandwidth region Λ = I. Thus, it makes sense to select a
pairing which minimizes ∥Λ− I∥ in the bandwidth region. Often, this corresponds
to selecting a pairing corresponding to RGA elements of magnitude close to 1 in the
bandwidth region. However, for systems with more than two inputs and outputs,
there may be some special cases where minimizing ∥Λ− I∥ gives another pairing than
selecting RGA elements of magnitude close to 1. In such cases, the minimization of
∥Λ− I∥ appears to be the more reliable pairing criterion.
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4.3.4 Summary of RGA-based input-output pairing

4.3.5 Alternative interaction measures

There have been proposed a number of alternative interaction measures. One family
of such interaction measures is based on the width of the socalled Gershgorin bands.
However, this type of interaction measure can be exceedingly conservative, and will
not be discussed further. Measures more closely related to the RGA are the socalled
Rijnsdorp interaction measure [80, 11]and the Niederlinski Index [74]. Both these
measures are equivalent to the RGA for 2 × 2 systems. The Rijnsdorp interaction
measure is in a form which makes it more straight forward to analyse tradeoffs between
control performance in individual loops [10], but cannot strictly be generalised to
larger-dimensional systems (without making the interaction measure dependent on
the controller). The Niederlinski index applies also to systems of large dimension,
but it is this authors (subjective) opinion that it is of less use than the RGA.

4.3.6 Input-output pairing for stabilization

4.4 Tuning of decentralized controllers

4.4.1 Introduction

In this section, we consider the case when the control configuration is fixed, and
focus on fully decentralized control. That is, it is assumed that the overall con-
troller consists of multiple single-input, single-output controllers, and the pairing of
manipulated and controlled variables has been determined. Despite the prevalence of
decentralized controllers in industry, the tuning (determination of controller parame-
ters) of decentralized controllers is not a solved problem in mathematical terms. The
well established controller synthesis methodologies, like H2− or H∞−optimal con-
trol, cannot handle a pre-specified structure for the controller. In fact, a truly H2−
or H∞−optimal decentralized controller would have an infinite number of states[82].
This follows, since these controller synthesis procedures result in controllers which
have the same number of states as the ’plant’. When synthesizing one decentralized
controller element, all the other decentralized controllers would become a part of the
’plant’ as seen from the controller to be synthesized, and this controller element would
therefore have a large number of states. Now, with this new controller in operation,
it becomes a part of the ’plant’ as seen from the other controllers, and the other
controllers may therefore be improved - thereby introducing yet more states. Sourlas
et al. have looked at l1-optimal 5 decentralized control [95, 94], and have developed a
method for calculating the best achievable decentralized performance, both for decen-
tralized control in general and for fixed order decentralized controllers. However, the
computations involved are rather complex, and may well become hard to solve even
for problems of moderate dimension. In the absence of any decentralized controller

5In l1-optimal control, the ratio ∥y(t)∥∞ / ∥d(t)∥∞ is minimized.
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synthesis method that has both solid theoretical foundation and is easily applicable,
a few practical approaches have been developed:

∙ Independent design. The individual decentralized controller elements are de-
signed independently, but bouds on the controller designs are sought which
ensure that the overall system will behave acceptably.

∙ Sequential design. The controller elements are designed sequentially, and the
controllers that have been designed are assumed to be in operation when the
next controller element is designed.

∙ Simultaneous design. Optimization is used to simultaneously optimize the
controller parameters in all decentralized controller elements. A particular
controller parametrization (e.g. PI-controllers) have to be chose a priori.

In the following, these three tuning approaches will be described in some detail,
but first some methods for tuning conventional single-loop controllers will be reviewed.

4.4.2 Loop shaping basics

4.4.3 Tuning of single-loop controllers

There are a number of methods for tuning single-loop controllers, and no attempt will
be made here at providing a comprehensive review of such tuning methods. Instead,
a few methods will be described, which all are based on simple experiments or simple
models, and do not require any frequency-domain analysis (although such analysis
may enhance understanding of the resulting closed loop behaviour).

Ziegler-Nichols closed-loop tuning method

This tuning method can be found in many introductory textbooks, and is probably
the most well-known tuning method. It is based on a simple closed loop experiment,
using proportional control only. The proportional gain is increased until a sustained
oscillation of the output occurs (which neither grows nor decays significantly with
time). The proportional gain giving the sustained oscillation, Ku, and the oscillation
period (time), Tu, are recorded. The proposed tuning parameters can then be found
in Table 1. In most cases, increasing the proportional gain will provide a sufficient
disturbance to initiate the oscillation - measurement noise may also do the trick. Only
if the output is very close to the setpoint will it be necessary to introduce a setpoint
change after increasing the gain, in order to initiate an oscillation. Note that for
controllers giving positive output signals, i.e., controllers giving output signals scaled
in the range 0− 1 or 0%− 100%, a constant bias must be included in the controller
in addition to the proportional term, thus allowing a negative proportional term to
have an effect. Otherwise, the negative part of the oscillation in the plant input will
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be cut off, which would also effect the oscillation of the output - both the input and
output of the plant may still oscillate, but would show a more complex behaviour
than the single-frequency sinusoids that the experiment should produce.

Table 1. Tuning parameters for the closed loop Ziegler-Nichols method

Controller type Gain, KP Integral time, TI Derivative time, TD

P 0.5 ⋅Ku

PI 0.45 ⋅Ku 0.85 ⋅ Tu

PID 0.6 ⋅Ku 0.5 ⋅ Tu 0.12 ⋅ Tu

Essentially, the tuning method works by identifying the frequency for which there
is a phase lag of 180∘. In order for the tuning method to work, the system to be
controlled must therefore have a phase lag of 180∘ in a reasonable frequency range,
and with a gain that is large enough such that the proportional controller is able to
achieve a loop gain of 1 (0 dB). These assumptions are fulfilled for many systems.
The tuning method can also lead to ambiguous results for systems with a phase lag
of 180∘ at more than one frequency. This would apply for instance to a system with
one slow, unstable time constant, and some faster, but stable time constants. Such
a system would have a phase lag of 180∘ both at steady state and at some higher
frequency. It would then be essential to find the higher of these two frequencies.
Furthermore, the system would be unstable for low proportional gains, which could
definitely lead to practical problems in the experiment, since it is common to start
the experiment with a low gain. Despite its popularity, the Ziegler-Nicols closed
loop tuning rule is often (particularly in the rather conservative chemical processing
industries) considered to give somewhat aggressive controllers.

Tuning based on the process reaction curve

In process control, the term ’reaction curve’ is sometimes used as a synonym for a step
response curve. Many chemical processes are stable and well damped, and for such
systems the step response curve can be approximated by a first-order-plus-deadtime
model, i.e.,

y(s) =
Ke−µs

1 + Ts
u(s) (4.9)

and it is relatively straight forward to fit the model parameters to the observed step
response. This is illustrated in Figure 4.9. Assuming that the response in Fig. 4.9
is the result of a step of size B at time 0 in the manipulated variable, the model
parameters are found as follows:

1. Locate the inflection point, i.e., the point where the curve stops curving upwards
and starts to curve downwards.

2. Draw a straight line through the inflection point, with the same gradient as the
gradient of the reaction curve at that point.

3. The point where this line crosses the initial value of the output (in Fig.4.9 this
is assumed to be zero) gives the apparent time delay µ.
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Figure 4.9: Estimating model parameters from the process reaction curve.

4. The straight line reaches the steady state value of the output at time T + µ.

5. The gain K is given by A/B.

Ziegler-Nichols open loop tuning Ziegler and Nichols [105] propose the tuning
rules in Table 2 based on the model in Eq. (4.9).

Table 2. Tuning parameters for the open loop Ziegler-Nichols method

Controller type Gain, KP Integral time, TI Derivative time, TD

P T
Kµ

PI 0.9T
Kµ

µ
0.3

PID 4T
3Kµ

µ
0.5

0.5µ

Cohen-Coon tuning Cohen and Coon [16] have modified the Ziegler-Nichols open
loop tuning rules. The modifications are quite insignificant when the deadtime µ small
relative to the time constant T , but can be important for large µ. The Cohen-Coon
tuning parameters are given in Table 3.
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Table 3. Tuning parameters for Cohen-Coon method

Controller type Gain, KP Integral time, TI Derivative time, TD

P T
Kµ

(1 + µ
3T
)

PI T
Kµ

(0.9 + µ
12T

) µ(30+3µ/T
9+20µ/T

)

PID T
Kµ

(4
3
+ µ

4T
) µ(32+6µ/T

13+8µ/T
) µ 4

11+2µ/T

IMC-PID tuning

In internal model control (IMC), the controller essentially includes a process model
operating in ”parallel” with the process, as illustrated in Figure 4.10. The IMC

IMC

controller, Q
Plant, G

Plant model,

Gm

_

+

_

Reference
Manipulated

variable

Controlled

variable

Corresponding

conventional controller, K

Figure 4.10: An internal model controller.

controller Q and the corresponding conventional feedback controller K are related by

K = Q(1−GmQ)−1 (4.10)

Note that if the model is perfect, Gm = G, IMC control essentially results in an open
loop control system. This means that it is not straight forward to use it for unstable
systems, but for stable systems (and a perfect model) any stable IMC controller Q
results in a stable closed loop system - this holds also for non-linear systems. In the
following discussion on IMC controllers we will therefore assume the open loop system
to be stable. Another advantage with IMC control is that the transfer function from
reference r to controlled variable y is simply given by y = Tr = GQr. Designing the
closed loop transfer function T (or S = 1−T ) therefore becomes simple. Conventional
IMC controller design consists of factoring the plant G into a minimum phase part
Gm and a non-minimum phase part Gn, with Gn chosen such that Gn(0) = 1. For
example, the plant

G =
10(s− 1)

(10s+ 1)(30s+ 1)
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may be factorized to

Gm =
−10(s+ 1)

(10s+ 1)(30s+ 1)
; Gn = −(s− 1)

(s+ 1)

The IMC controller Q is then chosen as Q = (Gm)−1F , where F is a low pass filter
which is used both to make Q proper6, and to make the closed loop system robust.
Normally, the filter F is chosen to be on the form

F =
1

(¸s+ 1)n

Clearly, the order n of the filter must be sufficiently large to make Q proper, but
usually a low order is sufficient (i.e., n is in the range 1 to 3). This leaves only one
free parameter, ¸, which makes it feasible to tune the system on-line. A large ¸
make the system slow, decreasing it increases the speed of response. It is common to

use simple, low order transfer function models of the system when designing feedback
controllers. Rivera et al. [81] have shown that IMC controllers designed based on low-
order transfer function models of the plant in most cases result in overall controllers
K having the familiar PID structure, possibly with an additional lag. This additional
lag would correspond to the time constant that is commonly applied to the derivative
action in many PID controllers. In their paper, Rivera et al. list numerous such
low-order plant transfer functions, the corresponding PID parameters, including the
dependence of the PID parameters on the low pass filter time constant ¸.

Autotuning

Many industrial PID controllers include some self-tuning or autotuning function, al-
lowing the controller to find controller tuning parameters ”by itself”. In order to
find tuning parameters, some sort of automated identification experiment is neces-
sary. Although many different types of experiments and identification procedures in
principle are possible, most autotuners use relay feedback, i.e., the ordinary controller
is replaced by a relay, as shown in Fig. 4.11. Whith the use of relay feedback, most

systems which are stable or integrating in open loop will enter a stable limit cycle,
with a (dominant) oscillation frequency of !u = 2¼/Tu. Similarly, Ku can be found

from Ku = 4d/¼a, where d is the relay amplitude and a is the amplitude of oscillation
of the output. The tuning of the controller can then be based on the Ziegler-Nichols
closed-loop tuning, or modifications thereof. The relay based autotuning in its sim-
plest form thus works by identifying the frequency at which the process has a phase
lag of 180∘, and the corresponding gain. Other points on the Nyquist curve may
be identified by connecting a linear system in series with the relay. A more compre-
hensive treatment of relay-based autotuning can be found in articles by Åström and
Hägglund [6, 8], or by Schei [83].

6A proper transfer function model has a denominator polynomial of order at least as high as the
order of the numerator polynomial. A system has to be proper in order to be physically realizable.
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Figure 4.11: Block diagram showing controller with relay-based autotuner.

What type of controller should be used?

Åström et al. [9] studied PID control for a number of different monovariable systems
that were either asymptotically stable or integrating. The dynamical behaviour of the
systems studied were categorized in terms of four dimensionless numbers defined in the
paper, and depending on the value of these dimensionless numbers, recommendations
were made with respect to whether P, I, PI, PD or PID control should be used,
or when more complex controllers should be used (e.g., deadtime compensation or
feedforward). In addition, conclusions are drawn with respect to when the Ziegler
Nichols closed loop tuning method can be expected to give good results.

4.4.4 Multiloop controller tuning

The term ’multiloop controller’ is often used for decentralized controllers. Below, we
will briefly discuss the three different tuning approaches listed in the Introduction.
In addition to fulfilling the overall performance criteria (whatever they may be), a
desireable property of multiloop controllers is that they exhibit integrity, i.e. that
they remain stable when one or more of the loops are taken out of service. Ideally,
they should also show a modest and predictable performance degradation when loops
are taken out of service. One must clearly accept poor performance in the loops
that are out of service, but preferably control quality will not be much affected in
the loops that remain on-line. Whether such predictable performance degradation
is achieved, may depend on both the system itself, the control structure chosen, and
the tuning parameters.

Independent design

One may group independent design techniques into two categories:
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∙ Naive independent design, where the individual loops are design without par-
ticular regard for the fact that hey have to operate in a multivariable control
system. If it turns out that the overall system is unacceptable, there is hopefully
some method for improving an initial design.

∙ Rigorous independent design. In this group of approaches, explicit bounds are
derived for the behaviour of each individual loop. If these bounds are fulfilled
when each individual loop is designed, it is guaranteed that the overall system
will fulfill the performance criteria.

Naive independent design The most well known of tuning methods in this cate-
gory, is the so-called ’BLT tuning’. It essentially consists of tuning each loop individ-
ually (typically with the Ziegler-Nichols closed loop tuning), and then to check the
infinity norm of the multivariable complementary sensitivity function (the transfer
function from reference to controlled variable), T = GK(I + GK)−1. If the ’peak
value’ of this transfer function is too large, a common detuning factor is applied to
the proportional gain for all loops. Typically, this peak value should be less than 2,
possibly in the range 1.2-1.5. The term ’peak value’ here refers to the infinity norm,
i.e., the maximum value of the largest singular value over all frequencies.

∥T∥∞ = max
!

¾(T (j!))

Some problems with this tuning procedure are:

∙ Applying a common detuning factor to all loops is often not desireable, and the
result may be that the loops are detuned more than necessary. This is typically
the case when several loops have similar bandwidths, and there is unacceptable
interaction in the bandwidth region. In such cases, it is often sufficient to detune
only one of the interacting loops.

∙ Detuning can produce stability problems for loops that have a phase lag close to
or more than 180∘ at low frequencies, which will occur for instance for unstable
systems or for integrating processes controlled by an integrating controller.

∙ The tuning procedure does not address issues related to integrity or tuning
modifications made by operators.

The main advantage of this tuning procedure is its simplicity. Despite its short-
comings, it is frequently used in the process control literature as a comparison against
which other tuning procedures are compared. It should not be a surprise that most
authors are able to find examples for which their proposed tuning procedure outper-
forms the BLT tuning.
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Rigorous independent design Rigorous independent design was introduced by
Skogestad and Morari[91]. They approach the tuning problem from a robust control
viewpoint, using the structured singular value (¹) framework. Instead of finding
the controller directly using DK-iteration (which anyway would not have resulted in
a decentralized controller) they effectively include the controller in the uncertainty
description for the robust stability (or robust performance) problem. This is done in
two different ways, by

1. expressing the controller as an LFT of the sensitivity functions for the individual
loops, and

2. expressing the controller as an LFT of the complementary sensitivity functionss
for the individual loops.

The two different LFTs thus result in two different robust stability problems, in
which the controller is replaced by a diagonal, complex-valued ’uncertainty’. It-
eration is used (i.e., a skewed-¹ problem) to find the largest magnitude for these
’uncertainties’ for which the robust stability/performance can be guaranteed. Ro-
bust stability/performance will then be guaranteed provided all individual loops at
all frequencies fulfill the magnitude bound on either the sensitivity function or the
complementary sensitivity function. Some advantages of this approach include

∙ It can handle robustness issues rigorously.

∙ It places no unnecessary constraint on the controller type, only on the sensitivity
and complementary sensitivity functions. Thus the design freedom for the
individual loops is not compromised.

∙ Explicit bounds are derived for the individual loops, which could be used to
indicate how much plant operators (or engineers) should be allowed to modify
the controller tuning parameters.

Disadvantages include

∙ The theoretical and numerical complexity inherent in using the structured sin-
gular value framework, which makes the method inaccessible to many practising
engineers.

∙ It provides the same bounds for all loops, and thus cannot take advantage of
using different bandwidths in different loops. Differences between individual
loops may be entered explicitly into the structured singular value problem, but
the method itself provides no indication on what differences between the loops
to use.

∙ It is inherently conservative, since it can only specify a magnitude bound for
the uncertainties corresponding to the closed loop transfer functions. This is
related to the fact that the method does not specify any particular controller
type.
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∙ It does not cover integrity issues explicitly, they have to be explored after de-
signing the controllers.

In order to minimize the inherent conservatism in the rigorous independent design
procedure of [91], Hovd and Skogestad [47] introduced independent design for Internal
Model Controllers. In this work, bounds are found for the IMC filter time constant
and its inverse. Thus, the uncertainty associated with the controller tuning can be
assumed to be real-valued, leading to less conservative bounds. Clearly, this comes at
the cost of numerically even more complex calculation, and the à priori determination
of controller parametrization.

Sequential design

This is probably the most common design approach in industry for designing decen-
tralized controllers. The controllers are designed and put into operation one at the
time, and the controllers that have been designed are kept in operation when new
controllers are designed. Thus, ’sequential design’ does not necessarily imply any
specific method for designing the individual controller elements, but merely that they
are designed in a sequence. It therefore also allows controller design methods that
does not require any explicitly formulated system model. Methods based on experi-
mentation/feedback alone, like Ziegler-Nichols or autotuning, are also accommodated.
More complex controller synthesis methods that do require a system model are also
possible. Sequential design provides a limited extent of system integrity. Normally,
one design requirement for the controller in each loop would be that the system should
be stable after closing that loop. The system will therefore remain stable if loops
are taken out of service in the reverse of the order in which they were designed. It is
not uncommon that the controllers in some loops have to be re-designed when new
controllers are put into service, due to unacceptable interactions between different
control loops. In such cases, the limited integrity guarantee of sequential design no
longer holds. The very term ’sequential design’ begs the question ’In what sequence
should the individual controllers be designed?’ The conventional rule of thumb is to
close the fast loops first. This is intuitively reasonable, as it is often the case that the
faster loops are comparatively unaffected by the tuning in slower loops. However,
in some cases there may be strong one-way interactions causing even slow loops to
significantly disturb faster loops. This conventional rule also requires the engineer
to have a good idea of what speed of control can be expected in the individual loops.
Note that closing the fast loops first normally implies that the inner loops in a cascade
shouild be designed first, which clearly makes sense.

Simultaneous design

Simultaneous design implies that the tuning parameters for all loops are determined
simulataneously. Since formal controller synthesis methods will not lead to decen-
tralized controllers, simultaneous design is done by choosing a particular controller
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parametrization (e.g., PID control), and using optimization to find the controller
parameters which optimizes some measure of system performance. Although such
simultaneous design often works reasonably well, the optimization problems are typ-
ically non-convex, and convergence to a global optimum can not be guaranteed. If
the optimization fails to find acceptable controller parameters, it need not be obvious
whether this is because no acceptable parameters exist (for the perticular choice of
controller parametrization), or whether it is simply due to an unfortunate initial guess
of parameter values. Simultaneous design typically provides no integrity guarantee.
Integrity may be enforced by introducing additional constraints in the formulation of
the optimization problem. However, such constraints are typically non-linear, and
the required number of additional constraints will grow quickly with system size.

4.4.5 Tools for multivariable loop-shaping

Shaping the Bode diagram of a monovariable transfer function is a well-known tool
for designing monovariable controllers. Performance requirements usually dictate a
high loop gain at low frequencies, whereas measurement noise and possibly robustness
issues means that the loop gain has to be small at high frequencies. The closed loop
transfer function from disturbance to control offset for a single-input single-output
system is given by

e = r − y =
−gd

1 + gk
d

and thus at frequencies well within the loop bandwidth (assuming ∣gk∣ >> 1), we
get y ≈ (gk)−1gdd. Therefore, a requirement like ’the effect of disturbances should
be reduced by a factor of 10 at frequency wd’ implies that the magnitude of the loop
gain,∣gk∣, should be 10 times the magnitude of the disturbance transfer function, ∣gd∣,
at frequency wd. Similarly, the transfer function from reference signal to control offset
is given by

e = r − y =
1

1 + gk
r

which at frequencies where ∣gk∣ >> 1 can be approximated by y ≈ (gk)−1r.Thus, if
the control offset should be no more than 10% of the reference signal at frequency we,
then the loop gain ∣gk∣ should be at least 10 at frequency we. In the following, loop
gain requirements for individual loops in multivariable systems will be presented. In
the same way as for the SISO case above, these loop gain requirements are reasonable
accurate at low frequencies (well below the bandwidths of the individual loops), but
the underlying approximation breaks down in the bandwidth region.

The Performance Relative Gain Array

The relative gain array, RGA, is a useful measure of two-way (i.e., potentially de-
stabilizing) interactions, but severe one-way interactions can exist even if the RGA
matrix Λ = I. The Performance Relative Gain Array, PRGA, is able to capture both
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one-way and two-way interactions. To arrive at the PRGA, we introduce the matrix
G̃(s), which is a diagonal matrix consisting of the elements on the diagonal of G(s),
i.e., the elements corresponding to the individual control loops. Then, the matrix of
sensitivity functions for the individual loops is given by S̃ = (I + G̃K)−1, which is a

diagonal matrix (since K is diagonal). Note that the diagonal elements of S̃ are not
the same as the diagonal elements of the sensitivity function S = (I +GK)−1. The

relationship between S and S̃ by

S = (I + S̃(Γ− I))−1S̃Γ

where Γ = G̃G−1 is the Performance Relative Gain Array (PRGA) matrix. At

frequencies where the loop gains of the individual loops is large, S̃ is small, and hence
S ≈ S̃Γ. Thus, the effect of reference changes on control offset is given by

e = r − y = SRr ≈ S̃ΓRr

where R is just a diagonal scaling matrix which is chosen such that the (scaled)
reference changes ∣rj∣ ≤ 1∀j. Thus, the effect of a change in reference j on control
offset i is given by

ei = [SR]ijrj ≈ [S̃ΓR]ijrj = s̃i°ijRjrj ≈ °ij
giiki

Rjrj

where s̃i = 1/(1+ giiki) is the sensitivity function for loop i, °ij is element ij of Γ,
and Rj is element j on the diagonal of R. The second approximation in the above
equation holds provided ∣giiki∣ >> 1, and thus holds whenever the first approximation
holds. Consequently, if the effect of reference change j on control offset i should be
less than ® at frequency !®, we require ∣giiki∣ > ® ∣°ijRj∣ at frequency !®. The
PRGA (and our performance requirements) thus provide us with estimated loop gain
requirements for achieving acceptable performance.

The Closed Loop Disturbance Gain

The Closed Loop Disturbance Gain (CLDG) is similar to the PRGA, with the dif-
ference that it looks at the effect of disturbances on control offset. The closed loop
transfer function from disturbances to control offset is given by

e = −SGdd ≈ −S̃ΓGdd

where, as before, the approximation holds where the loop gains are large. The
matrix Δ = ΓGd is the Closed Loop Disturbance Gain. We get

ei = − [SGd]ij dj ≈
±ij
giiki

dj

where ±ij is element ij of Δ.

The CLDG’s thus provide estimates of loop gain requirements for disturbance
rejection in much the same way as the PRGA’s do for reference changes.
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Example

A simplified model of a distillation column may be given by

[
y1
y2

]
=

1

75s+ 1

[
87.8 −86.4
108.2 −109.6

] [
u1

u2

]

+
1

75s+ 1

[
7.88 8.81
11.72 11.19

] [
d1
d2

]

where y1 is the composition of the top product, y2 is the composition of the
bottom product, u1 is the reflux flowrate, u2 is the boilup rate, d1 is a feed flowrate
disturbance, and d2 is a feed composition disturbance.

Assuming that the variables are reasonably scaled, it is clear from looking at the
disturbance model that control will be necessary, since the disturbances can cause
composition offsets larger than 1 in magnitude. It would appear that both dis-
turbances are approximately equally severe, and that output 2 is somewhat more
affected by the disturbances than output 1. However, this only holds for open loop
operation. The CLDG’s and PRGA’s for this example are shown in Figs. 4.12 and
4.13. The figures also show the loop gains resulting from using the PI controller
ui(s) =

75s+1
75s

(yi(s)− ri(s)) in both loops (for loop 2, a negative controller gain must
be used, since the process gain is negative). The vertical distance between the loop
gain and the CLDG’s is an estimate of the degree of disturbance attenuation (inside
the loop bandwidth). The figures indicate that the simple PI controllers are able
to provide acceptable response to disturbances, but that disturbance 1 is much more
difficult to reject than disturbance 2.

The predictions based on the CLDG’s are shown to hold up reasonably well in
Figs. 4.14 and 4.15. Disturbance 2 causes control offsets that are insignificant,
whereas disturbance 1 causes larger - although still acceptable - control offsets.

Unachievable loop gain requirements

The PRGA and CLDG presented above provide us with approximate loop gain re-
quirements for acceptable control (provided the variables are properly scaled). It
may happen that it is impossible to fulfill these loop gain requirements, if there are
significant bandwidth limitations in the system. One then has to choose between
three alternatives
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Figure 4.12: CLDG’s and loop gain for loop 1.

1. Use more advanced controllers. This may help, at the cost of using more
complex design and implementation. However, one should realize that even the
most advanced controller cannot remove fundamental bandwidth limitations,
like e.g. multivariable RHP transmission zeros.

2. Modify your performance requirements. The PRGA and CLDG, when ana-
lyzed together with relevant performance limitations, can indicate how much
the performance requirements will need to be relaxed. The PRGA can indicate
to what extent setpoint changes have to be filtered - which typically results in
slower setpoint following, but also less interactions between loops.

3. Modify your system. The system may be modified to make control easier. Such
modifications may include faster actuators, new and improved measurements
(e.g., with less deadtime), or installing buffer tanks to filter disturbances. The
CLDG can be used to estimate the required size for such buffer tanks.
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Figure 4.13: CLDG’s and loop gain for loop 2.
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Figure 4.14: Response to a step in disturbance 1 of unit magnitude.
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Figure 4.15: Response to a step in disturbance 2 of unit magnitude.
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Chapter 5

Control structure selection and
plantwide control

5.1 Introduction

The term control structure design refers to the structural decisions involved in control
system design:

1. Selection of controlled variables c (’controlled outputs’, with setpoints cs).

2. Selection of manipulated variables u (’control inputs’).

3. Selection of measurements y.

4. Selection of control configuration (the structure of the interconnections between
the variables cs, u, and y).

5. Selection of the controller type (PID, decoupler, MPC, ...)

The term plantwide control is only used in the process control community. Al-
though the term is generally well understood within that community, it has lacked a
clear, generally accepted definition. We will here (attempt to) adhere to the defini-
tion of Larsson and Skogestad [65]: plantwide control are the structural and strategic
decisions involved in the control system design of a complete chemical plant.

The distinction between plantwide control and control structure design is thus
somewhat vague. Larsson and Skogestad state that control structure design is the
systematic (mathematical) approach to solving the plantwide control problem.

Like the other areas addressed by this note, the area of plantwide control is very
large, worthy of a book on its own. This chapter is therefore by necessity incomplete.
Larsson and Skogestad [65] provide a nice review of the area up to the year 2000,
with a large number of references to relevant previous work. Other key sources for
this chapter include [3], [4], [88], [31], [2] and [5].

87
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5.2 General approach and problem decomposition

Considering the multi-layered control hierarchy described in section 1.3, one quickly
realizes that when designing plantwide control structures one is faced with a ’hen-
and-egg’ type of paradox.

The system, as seen from the top layers, is not well defined until the lower layers
of the control hierarchy have been designed. On the other hand, the objectives of the
lower layers are not clearly defined until the higher layers of the control hierarchy
have been designed.

It is clearly necessary to break this deadlock. Often, this is done by starting with
a ’bottom-up’ design, where the lower layers are designed first, with experience and
process insight substituting for a clear objective formulation for the lower layers.

Although experience and process insight will give useful guidance, this bottom-up
approach can easily result in design decisions with unfortunate consequences for the
capabilities of the overall system. Larsson and Skogestad instead propose an initial
top-down analysis, followed by a subsequent bottom-up design.

5.2.1 Top-down analysis

The top-down analysis seeks to clarify two issues:

1. What constitutes optimal operation, and what variables should be controlled in
order to achieve (close to) optimal operation?

2. Where should the throughput (production rate) be set?

Defining and exploring optimal operation

In most cases, the objective of the overall plant is to achieve economically optimal op-
eration, subject to environmental and safety constraints, and accommodating relevant
disturbances (whether caused by market conditions or physical conditions).

It is assumed that this optimal operation is quantified in terms of a cost function
J which should be minimized1, and that the relevant constraints can be expressed
mathematically as equality or inequality constraints.

It is further assumed that a plant model is available. Although detailed dynamical
models often are not available, steady state models typically are. For most continuous
chemical production plants, economics is dominated by steady state operation, and
restricting the analysis to steady state is therefore usually acceptable.

The equality constraints should include the plant model, since the plant model
must be fulfilled at any steady state operating point in order to ensure feasible op-
eration. The inequality constraints will typically include operational constraints on
variables such as temperature and pressure, product quality constraints, purity con-
straints on effluents, etc.

1Maximizing profit P may be formulated as minimizing the cost J = −P .
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At this initial stage, major disturbances should also be identified. The number of
steady-state degrees of freedom should also be identified. This determines how many
variables can be specified (at steady state) in order to optimize operation.

The goal of this analysis is to determine how many and which variables should be
selected as controlled variables, in order to achieve close to optimal operation. This
is further discussed in sections 5.4 and 5.5 below.

The focus here is on specifying the controlled variables for the Supervisory control
layer of the control hierarchy, see Fig. 1.1. The objectives of the Regulatory control
layer are often linked to economics only in an indirect way, and at this layer there are
typically many more variables that are controlled.

Determining where to set the throughput

The position of the throughput manipulator will greatly affect the structure of the
remaining inventory control system. This issue is addressed further in section 5.8.

5.2.2 Bottom-up design

The bottom-up design starts with the lower layer of the control hierarchy, the regu-
latory control layer, and then works its way up the layers of the control hierarchy.

Whereas the top-down analysis attempts to keep the overall picture in focus to
determine the throughput manipulator and controlled variables for optimal economic
operation of the entire plant, further decomposition and a more local focus will fre-
quently be necessary in the bottom-up design, especially at the lower layers of the
control hierarchy.

In section 1.3 a hierarchical (’vertical’) decomposition of the control system is
presented. This decomposition is based on the observation that each layer has a
different purpose - and that there is a corresponding timescale on which the individual
layers operate.

One may also decompose the design problem ’horizontally’, i.e., divide the design
task at each layer into a set of smaller subtasks. Ideally the design of each such
subtask will depend only weakly on each other.

The process structure or layout is often utilized to perform such ’horizontal’ de-
composition. The decomposition may be based on individual process units or small
sets of closely connected units. However, one should be aware that process units that
seem far apart may actually affect each other through plant recycles or utility systems
(such as heating or cooling medium systems).

This horizontal decomposition is used more extensively at the lower layers of the
control hierarchy. It is simply not practical (and hardly possible with foreseeable
computing power) to account rigorously for the interactions between hundreds or
thousands of control loops at the regulatory control layer. The purpose of the higher
layers is to coordinate and optimize wider sections of the lower layers, and hence the
extent of horizontal decomposition will decrease for the higher layers.

The design of the regulatory control layer is addressed next, in section 5.3. Sections
5.4 - 5.7 will address issues of more relevance to the higher layers of the control
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hierarchy, in particular the supervisory and RTO layers. The chapter closes with a
closer loop at inventory control in section 5.8.

5.3 Regulatory control

The top-down analysis should define the throughput manipulator as well as a (typ-
ically rather low) number of controlled variables used for keeping the plant close to
optimal operation.

The number of variables that are controlled at the regulatory control layer will,
however, be substantially higher. The purpose of the regulatory control layer may be
said to be twofold:

1. To enable the operators to keep the plant in operation without the higher layers
of the control hierarchy. The regulatory control layer uses simple algorithms and
very reliable hardware, and will therefore be relatively reliable.

2. To make the design task at the higher layers simpler, by reducing the effects of
uncertainty and nonlinearity.

The tasks of the regulatory control system may alternatively be described as

∙ Stabilization. In addition to stabilizing variables that are unstable in a strict
system theoretic sense, this task will also include ’stabilizing’ any variable that
drifts over a wide operating range or otherwise shows unacceptably large vari-
ation.

∙ Local rejection of disturbances. Local control loops are used to reject distur-
bances before they can affect wider sections of the plant.

∙ Linearization by feedback. Feedback (when successful) typically has the effect
of reducing the effect of nonlinearity within the loop. This is utilized in many
circumstances, e.g., valve positioners to achieve the desired valve position, flow
controllers to counteract valve nonlinearities, temperature controllers on heat
exchangers, etc.

∙ Reduction of uncertainty. There will always be uncertainties and imperfections
in out knowledge of the plant. Within the bandwidth of the feedback loop,
feedback can reduce the effect of such uncertainty by moving its effect from an
important controlled variable to a less important manipulated variable.

The tasks of the regulatory control layer are typically achieved using single loop
controllers (PI/PID-controllers), with the occasional use of cascaded loops or feedfor-
ward. The other loop configurations of section 4.2 are used in more special cases.

Understanding of the tasks of the regulatory control layer, when combined with
knowledge of how the plant works and is operated, will be of great help when selecting
controlled and manipulated variables for regulatory control. The RGA and pole
vectors introduced in section 4.3 will be of further help.
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It should be noted that closing loops in the regulatory control layer (or in any other
layer), although it ’uses up’ manipulated variables, does not reduce the number of
degrees of freedom available to the higher layers of the control system. Although the
manipulated variable in a loop will be unavailable to the higher layers, the setpoint of
the loop will be introduced as a new variable that may be used by the higher layers.

Example: Regulatory control of liquid level in a deaeration tower

Design of a regulatory control layer will here be illustrated on the example of a deaera-
tor tower used in petroleum production. The aim is to illustrate how understanding of
the tasks of the regulatory control layer and plant operation can be used in designing
the regulatory control layer.

Plant description. It is common to inject water into petroleum reservoirs in or-
der to maintain reservoir pressure and enhance oil production. Oxygen needs to be
removed from the water before injection, as oxygen in the reservoir can result in bac-
terial growth and the production of acids that will corrode the production equipment.

The plant and a rudimentary control system is shown in Fig. 5.1. Vacuum is
applied to the water in the deaerator tower, to liberate dissolved oxygen from the
water. In the top of the deaerator tower, there is a packing which both increases the
surface area and the retention time of the water, thereby improving oxygen removal.
The deaerated water is collected in the ’sump’ at the bottom of the tower.

High pressure is needed to inject the water in the reservoir. However, due to the
low pressure in the deaerator tower, a specially designed booster pump is required
to raise pressure up to an acceptable suction pressure for the main water injection
pump.

The pumps run on constant speed, and require a minimum flowrate. There is
therefore a minimum flow recycle control, which will open a recycle valve routing
water from the pump outlet back to the deaerator tower sump in case of low flow.

The water level in the deaerator needs to be controlled. In case of low level, the
suction pressure to the booster pump may become too low, causing cavitation, which
may lead to excessive vibration and abrasion. Too high level can mean that the water
covers part of the packing, reducing the deaeration efficiency and making the tower
very heavy. A rudimentary regulatory control system is shown in Fig. 5.1. This
rudimentary control system achieves stabilization of the liquid level, by controlling
the liquid level by manipulating directly the feed water valve. In addition, there is
the minimum flow recycle control mentioned above.

Plant dynamics and disturbances. Without control, the liquid level will have an
almost purely integrating dynamics. This is easily stabilized by feedback, as indicated
in Fig. 5.1. However, due to the residence time in the packing, there is a significant
time delay from the feed water valve to the liquid level, limiting the achievable band-
width for level control. At the same time there are significant disturbances both up-
and downstream:

∙ On the upstream side, changing flowrates at other water consumers leads to
disturbances in the inlet pressure, and hence disturbances in the feed water
flowrate.
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∙ On the downstream side, production engineers can change the openings of the
injection water chokes, leading to large and fast disturbances to the outlet
flowrate2.
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Figure 5.1: Deaerator tower with rudimentary regulatory control.

Improvements to the regulatory control. There is a conflict between the level con-
trol loop bandwidth required for disturbance rejection, and the bandwidth limitation
resulting from the deadtime. The regulatory control system’s ability to handle dis-
turbances should therefore be improved. Two such improvements are relatively easy
to achieve:

1. The disturbances in the upstream pressure may be rejected locally by using
flow control on the feed water valve. Furthermore, this flow control loop will
counteract any nonlinearity or uncertainty in the valve characteristic. This flow
control loop is the inner loop in a cascade with the level control loop.

2. Feedforward from the outlet flowrate may be used to quickly counteract distur-
bances in the outlet flowrate, without being limited by the bandwidth of the
level control loop. The feedforward signal is added to the output of the level
controller, and changes the setpoint for the feed flowrate controller.

2In order to mantain reservoir pressure, it would be sufficient to adjust the water injection rate
very slowly. From the control point of view, the obvious solution would be to reduce the flowrate
disturbance by slow flowrate control on the water injection chokes. For what appears to be mainly
psychological reasons, this appears to be unacceptable to production engineers, who insist on setting
the injection choke opening directly. The production engineer ’makes the real money’, and therefore
decides on how the plant is operated.
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With these improvements in handling disturbances, significantly lower bandwidth
can be used in the level control loop, thus removing the conflict between the required
bandwidth for disturbance rejection and the bandwidth limitation from the deadtime.
The modified regulatory control structure is shown in Fig. 5.2.
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Figure 5.2: Deaerator tower with improved regulatory control.

Concluding remarks on the example. This example illustrates how understand-
ing of the tasks of the regulatory control layer, combined with plant understanding,
can help in designing the control structure for the regulatory control layer. A few
additional comments may be in order:

1. The improvements in the regulatory control require two new flowrate sensors
and a new controller. In general there is a cost issue as well as a maintenance
issue with increasing instrumentation. In this case, avoiding a single shutdown
due to improved control should more than justify the costs involved.

2. A mass balance on the deaerator sump yields

½Adℎ

dt
= ½Fin(t− T )− ½Fout(t) (5.1)

where ½ is the water density, A is the tower cross-sectional area, ℎ is the liq-
uid level, Fin is the flowrate through the feed water valve, T is the time delay,
and Fout is the outlet flowrate. Thus, the time derivative of the level depends
on the outlet flowrate. A commonly held misconception is therefore that feed-
forward from the outlet flowrate is equivalent to derivative action in the level
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controller. However, (5.1) shows that the derivative of the level depends on two
components, the outlet flowrate and the time-delayed inlet flowrate. Even with
derivative action, the level controller is therefore limited in bandwidth by the
time delay - and derivative action is seldom recommended for loops with signif-
icant time delay. No such bandwidth limitation arises for feedforward control.

3. Some readers may find it puzzling that the feedforward signal actually is trans-
mitted against the direction of flow, i.e., ’the feedforward signal is transmitted
backwards’. Drawing the control structure using ordinary control block dia-
grams (rather than a process flow diagram) may clarify this matter.

4. The improved control structure is simple to understand and to tune, and is a
good alternative to more advanced controllers for this problem. Little would
here be gained from using e.g. deadtime compensation or MPC.

Newer process designs for oxygen removal from injection water has replaced the deaer-
ator tower in modern offshore platforms. This is due to the lower space requirements
for the newer designs, rather than control problems.

5.4 Determining degrees of freedom

In order to obtain a well-defined operating point, all degrees of freedom have to be
fixed. A simple and straight forward way to determine the degrees of freedom is to
simply count the number of variables that may be freely set in the plant: the valve
positions, pump and compressor speeds, heat inputs, etc. Let the resulting number
of degrees of freedom be NF .

However, some variables (or combinations thereof) will have no steady state effect.
These must be removed to find the number of steady state degrees of freedom. I.e.,
we have

NF = NFs +NFd (5.2)

where NFs is the number of degrees of freedom which have a steady state effect, while
NFd is the number of degrees of freedom with only dynamic effect. Following [65] we
have

NFd = Nm0 +Ny0 (5.3)

where Nm0 is the number of manipulated variables, or combinations thereof, with no
steady state effect, and Ny0 is the number of manipulated variables used to control
variables with no steady state effect.

Typical cases when combinations of manipulated variables have no steady state
effect include

∙ When there are multiple valves in the same pipeline. The steady-state mass
flowrate must be the same everywhere along the pipeline.

∙ If a heat exchange has a bypass on both the hot and the cold side. Clearly, there
will nevertheless be only one heat transfer rate, even though one may have two
manipulated variables with which one may affect the heat transfer rate.
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Identifying such (combinations of) manipulated variables will establish Nm0.
Control of variables with no steady state effect is usually associated with control

of liquid levels. Most liquid levels will have to be stabilized by feedback3, and each
such level control will ’consume’ a manipulated variable. Sometimes a little thought
is required to determine which levels do have a steady state effect.

∙ Most commonly, liquid levels have no steady state effect. This is the case for
buffer tanks, etc.

∙ One example where the liquid level will have steady state effect is when the
level affects available heat transfer area, such as in flooded condensers.

∙ In liquid-phase chemical reactors the liquid level will affect the effective reactor
volume, and will thus have steady state effect.

This list is not exhaustive, but with proper understanding of the plant it should be
clear what liquid levels have steady state effect, and determining Ny0 therefore should
not be difficult. Thus, NFs can be found, and we will know the number of variables
which must be determined in order to achieve optimal (steady state) operation.

5.5 Selection of controlled variables

In section 5.3 we discussed the considerations behind selection of controlled and ma-
nipulated variables in the regulatory control layer. Consisting mainly of monovariable
control loops, the measured variables and controlled variables are more or less the
same in the regulatory control layer. In the higher layers of the control hierarchy the
focus shifts towards economically (or otherwise) optimal operation, and more complex
controllers are more often found. This also opens the possiblity that the controlled
variables may differ from the variables that are actually measured.

Having determined the number of steady state degrees of freedom above, we have
established the number of variables that need to be set in order to achieve optimal
operation.

Basic insight into optimization will reveal that the optimal operating point can
be equivalently specified in terms of different sets of variables, as long as the chosen
variables can be set independently and the total number of variables specified equals
the number of available degrees of freedom. This may lead to the belief that it does
not matter what variables we control, provided the correct number of variables are
controlled. This is a serious misunderstanding.

3Detailed modelling may well show that liquid levels are weakly self-regulating, and hence ’stable’
in a strict system theoretic sense. This self-regulating effect comes from the effect of the liquid level
on the outlet pressure. However, this self-regulating effect is very often to weak for the level to be
considered ’stable’ in a more practical sense - the level will vary too widely in response to common
disturbances. The more common exception is when the level is ’controlled’ by overflow over a weir.
In such cases the level is typically strongly self-regulating, but on the other hand there is no way of
manipulating the outlet flowrate anyway.
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Consider again the control structure hierarchy in section 1.3, and the supervi-
sory control layer receiving its specifications from the layer above. Ideally, achieving
these specifications would be sufficient to achieve optimal operation. There are three
reasons why this ideal situation rarely is achieved:

1. Model errors, or an ill-chosen optimality criterion in the higher layer, may result
in errors in the specifications. Model errors will always be present. Engineering
insight will hopefully guard against erroneous formulation of the optimization
criterion in the higher layer, but inaccuracies such as inaccurate price data may
occur.

2. The timescale separation between the layers may mean that the specifications
received from the higher layer is outdated, based on old values of disturbances,
etc.

3. There may be (most likely will be) an implementation error, i.e., the lower
layer does not perfectly achieve the specifications of set by the higher layer.
Even if integral action is used, which in the absence of active constraints should
ensure that the specifications (setpoints) are achieved without steady state error,
measurement bias will cause implementation error.

Each of these three errors will result in optimal operation not being achieved, and
a loss is incurred. It turns out that the size of the loss can be highly dependent on
what variables are used to specify the operating point4.

It is therefore important to specify the desired operating point in terms of vari-
ables such that the loss will be small despite the three sources of error listed above.
This is the main idea behind self-optimizing control, which will be presented next
following the ideas in [88], which addresses points 2 and 3 above. Point 1 is not
directly addressed, but uncertainty/variations in the parameters of the plant model
or the optimality criterion may be handled in much the same way as the changes in
disturbances that are covered by the proposed approach.

5.5.1 Problem formulation

It is assumed that

1. Optimal operation can be addressed using a steady state consideration, neglect-
ing plant dynamics. This is reasonable for most continuous processes, but will
not hold for batch processes.

2. The overall objective can be quantified in terms of a scalar objective J0(x, u, d),
equality constraints ge(x, u, d) = 0, and inequality constraints gi0(u, d) ≤ 0. The

4There is no contradiction between this statement and the statement above that the optimal
operating point may be equivalently specified in terms of different sets of variables. The optimal
point is identical for different sets of variables - but the cost of deviating from the optimal point can
be strongly dependent on what variables are used to specify the optimal operating point.
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objective J0(x, u, d) typically represents production cost or profit. Model equa-
tions lead to equality constraints, whereas the inequality constraints typically
represents product quality and operational constraints.

3. The reference values r for the controlled variables z are kept constant for signif-
icant periods, i.e., between ’re-optimization’ at the higher layer the references
r are independent of the disturbances d.

4. For any disturbance d, there are corresponding optimal values for the states x =
xopt(d), manipulated variables u = uopt(d) and controlled variables z = zopt(d).

For a given disturbance d = d∗, the task of identifying the optimal operating point
can thus be formulated as

{xopt(d
∗), uopt(d

∗)} = argmin
x,u

J0(x, u, d
∗) (5.4)

ge(x, u, d
∗) = 0

gi0(x, u, d
∗) ≤ 0

The model equations (in the equality constraints) may be used to eliminate the
state variables x from the problem formulation. The resulting expressions for the
objective function and inequality constraints may be rather complex, and in imple-
mentation we may choose not to perform this elimination. However, here we will
assume that the state variables x are eliminated from the formulation - mainly for
notational convenience. This gives the following optimization problem formulation,
equivalent to (5.4):

uopt(d
∗) = argmin

u
J(u, d∗) (5.5)

gi(u, d
∗) ≤ 0

where the relationships between J and gi in (5.5) and J0 and gi0 in (5.4) should be
clear from context.

Ideally, we want always to keep u = uopt(d) whenever d changes. However, we will
not in practice manage to achieve this, and we get the loss

L(u, d) = J(u, d)− J(uopt(d), d) (5.6)

Instead of keeping manipulated variables u constant, we may use the manipulated
variables to counteract changes in a chosen set of controlled variables z. In this case,
the manipulated variables will change when disturbances change. Skogestad [88] de-
fines self-optimizing control as follows:
Self-optimizing control is when we can achieve an acceptable loss with constant set-
point values for the controlled variables without the need to reoptimize when distur-
bances occur.



98CHAPTER 5. CONTROL STRUCTURE SELECTION AND PLANTWIDE CONTROL

5.5.2 Selecting controlled variables by direct evaluation of
loss

Using direct evaluation of loss, we account rigorously for the nonlinearity in the
problem formulation. The procedure is as follows:

1. List all possible sets of controlled variables. Note that we may choose to hold
manipulated variables constant, and thus the manipulated variables should be
included (in addition to measured variables) among the candidate controlled
variables.

2. For each set of controlled variables in the list, evaluate the loss using (5.6).

3. Select the set of controlled variables that gives the smallest loss.

Step 2 above requires further explanation. We are faced with several design choices
in this step:

∙ Whether to minimize the worst case loss or the expected loss. Minimizing the
worst case loss may be the more ’robust’ choice, but the worst case may seldom
or never occur in practice.

∙ How to select the disturbances that are used in the loss evaluation. If we min-
imize the worst case loss, it is natural to include all extreme combinations of
disturbance values5. Minimizing the average or expected value for the distur-
bance would imply including more of the disturbance combinations that are
more likely to occur.

∙ Often, the loss evaluation is performed by keeping the reference values r constant
at the optimal values for the optimal operating point. However, the optimal
references may also be a result of the optimization, i.e., we wish to find the
’robust references’ that minimize the loss.

Regardless of design choices, the direct evaluation of loss is often very demanding
computationally. Certain design choices will further add to the computational load,
in particular the calculation of robust references6. We will therefore in the following
present controlled variable selection based on local analysis. This can be much less
computationally intensive, and will also give insight into the desired characteristics
of the controlled variables.

5.5.3 Controlled variable selection based on local analysis

When using local analysis, we explore how the loss depends on the choice of controlled
variables in the vicinity of the nominal operating point. In addition to the assumptions
made above, we further assume

5Although, since the optimization problem is nonlinear, we cannot really be sure that the worst
case loss occurs at an extreme combination of disturbance values.

6On the other hand, references calculated for the nominal operating point need not allow a feasible
solution for all disturbance values.
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∙ The optimization problem is unconstrained. If a variable is at a constraint at
the optimum, it is natural to use control to keep the variable at the constraint.
The constrained variable is therefore assumed to be ’pre-selected’ among the
controlled variables, and the controlled variable selection problem can be ad-
dressed in the ’reduced space’ with the constrained variable eliminated from
the problem. Note, however, that the manipulated variable used to control the
constrained variable should be included as a potential controlled variable in the
remaining analysis.

∙ The cost function J(u, d) is twice differentiable.

∙ We select as many controlled variables as the available degrees of freedom, and
it is assumed that the selected controlled variables are independent (as seen
from the manipulated variables).

We may then perform a Taylor series expansion of the cost function around the
operating point (u∗, d∗), where u∗ = uopt(d

∗). Thus

J(u, d∗) = J(u∗, d∗) +JT
u (u− u∗) +

1

2
(u− u∗)TJuu(u− u∗) + ⋅ ⋅ ⋅ (5.7)

wℎere

Ju =

(
∂J

∂u

)∣∣∣∣
u∗,d∗

Juu =

(
∂∂J

∂u2

)∣∣∣∣
u∗,d∗

Note that since we are addressing an unconstrained optimization problem, Ju = 0,
and the loss related to non-optimal u therefore depends only on Juu. To relate the
loss due to non-optimal manipulated variables u to the output selection problem, we
assume a linear (steady state) model relating disturbances, manipulated variables and
controlled variables:

z = Gu+Gdd (5.8)

The assumption on the number and independence of the selected controlled variables
implies that G is invertible, and for a constant d we thus get

(u− u∗) = G−1(z − z∗) (5.9)

where z∗ = zopt(d
∗). Substituting this equation into to Taylor series expansion for the

cost, we obtain

L = J(u, d∗)− J(u∗, d∗) ≈ 1

2
(z − z∗)TG−TJuuG

−1(z − z∗) (5.10)

Clearly, we would like z = z∗, but as explained at the top of section 5.5 this will
not be achieved in practice. Two important sources of error are addressed here

∙ Optimization error r−z∗. We get r ∕= z∗ because the disturbance is not perfectly
known, or because the disturbance has changed since the optimal references were
calculated by the higher layer.
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∙ Implementation error z − r.. The controlled variables do not achieve their
reference values. Although integral action removes steady state offset in the
controlled variable, measurement bias will cause a difference between the true
value and the value read by the control system.

These two sources of error are normally independent of each other.
Equation (5.10) provides a criterion for selecting controlled variables. However, to

use this equation we must estimate the expected magnitude of z− z∗. Thus, we scale
G such that the scaled ∥z− z∗∥2 ≤ 1. Halvorsen et al. [31] argue for scaling based on
the vector 2-norm rather than the vector ∞ norm. This may be somewhat surprising,
since assuming ∥z − z∗∥2 ≤ 1 only allows one vector element at the time reaching its
extreme value. The argument in [31] is partly based on mathematical convenience,
but it is also supported by the reasonable assertion that multiple elements of the
vector z − z∗ reaching their extreme values simultaneously is unlikely or rare.

Anyway, to perform the scaling, estimates of both the optimization error and the
implementation error for each control variable must be obtained.

∙ The implementation error estimate should reflect the quality of the measure-
ment of the given variable (or the expected quality of the estimate of the con-
trolled variable, should it not be directly measurable). Maintenance quality
may also be a consideration, even high quality sensors can become inaccurate
if poorly maintained and poorly calibrated.

∙ The optimization error can be estimated by re-optimizing the cost function for
a number of different disturbance values. The changes in disturbances used in
this optimization should reflect the expected changes in disturbances between
each time the higher layer re-optimizes reference values, it should not reflect the
extreme range of disturbances over the lifetime of the plant.

For each element of the controlled variable vector, the sum of these two error
components should be used in the scaling.

This gives the following procedure for selecting controlled variables:

∙ Scale all candidate controlled variables as outlined above.

∙ List all candidate sets of controlled variables. The number of controlled variables
in each set should equal the number of steady state degrees of freedom, and the
individual controlled variables in each set should be independent. Let k be the
index identifying the candidate controlled variable set.

∙ For each candidate controlled variable set, evaluate sk = ¾̄
(
G−T

k JuuG
−1
k

)
(or,

equivalently, s̃k = ¾̄
(
J
1/2
uu G−1

k

)
.

∙ Select the controlled variable set k corresponding to the smallest sk.

In practice, one may wish to retain a few candidate sets with small sk for further
investigation using non-linear simulation.
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The minimum singular value rule

With the appropriate scaling of the manipulated variables (in addition to the scaling
of the controlled variables described above), one may base the controlled variable
selection on Gk alone, without involving Juu.

The ideal manipulated variable scaling in this context is such that Juu = ®U ,
where U is a unitary matrix7. This scaling means that the effect of non-optimal
manipulated variables (u ∕= u∗) only depends on ∥u− u∗∥2, but is independent of the
direction of u− u∗.

Due to the fact that ¾̄(G−1) = 1/¾(G), we get [93]

max
∥z−z∗∥2≤1

L =
®

2¾2(G)
(5.11)

Thus, the controlled variable selection can be based on ¾(G), which should be large.
Efficient numerical procedures for selecting controlled variables to maximize ¾(G) is
investigated in [57].

Comment. We also prefer large ¾(G) to avoid input saturation in the face of dis-
turbances and reference changes. Note, however, that these two reasons for preferring
a large ¾2(G) are not related, and that different scaling are used in these two settings.

Desirable characteristics of the controlled variables

At this point we are able to summarize some desirable characteristics for the controlled
variable sets:

1. There should be a large gain from the manipulated to the controlled variables,
it should be easy to control the chosen controlled variables independently. This
will ensure that ¾(G) is large.

2. The optimization error r − z∗ should be small. That is, the optimal values of
the controlled variables should depend only weakly on the disturbances d.

3. The implementation error z − r should be small. In addition to the desired
’ease of control’ mentioned in point 1 above, this also implies that it should be
possible to determine the value of the controlled variables with good accuracy,
i.e., measurement error/bias should be small.

5.5.4 An exact local method for controlled variable selection

The minimum singular value rule for controlled variable selection is based on two
critical assumptions:

7Note: i) A unitary matrix has all singular values equal to 1, ii) This manipulated variable scaling
differs from the scaling used elsewhere in this note, iii) Whereas Juu determines the optimal scaling,
it is the effect of the scaling on G that is of interest when using the minimum singular value rule.
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∙ Scaling of the manipulated variables such that Juu = ®U , where U is a uni-
tary matrix. Finding the appropriate scaling may be hard or even impossible.
However, avoiding this assumption can easily be done by basing the measure-

ment selection on ¾̄
(
J
1/2
uu G−1

k

)
(which should be small)instead of ¾ (Gk) (which

should be large).

∙ The assumption that any combination of controlled variable errors such that
∥z − z∗∥2 ≤ 1 may occur in practice.

The second assumption may not hold in practice. In Halvorsen et al. [31], an
alternative local method is proposed. The method is based on a Taylor series ex-
pansion in terms of both u and d around the nominal operating point (u′, d′), where
u′ = uopt(d

′). Thus, here u′ and d′ are fixed, whereas in (5.7) d∗ could vary and u∗

changed with changes in d∗.
The Taylor series expansion in terms of both u and d gives

J(u, d) = J(u′, d′) +
[
J ′
u

J ′
d
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(d− d′)

]
+

1

2
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]
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(5.12)
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In [31] it is shown that the loss can be written as

L =
1

2
∥z∥22 (5.13)

where

z = (J ′
uu)

1/2 [(
(J ′

uu)
−1J ′

ud −G−1Gd

)
(d− d′) +G−1n

]
(5.14)
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where n is the implementation error. Introduce the diagonal scaling matrices Wd

and Wn, where Wd represents the expected magnitudes of the disturbances and Wn

represents the expected magnitude of the implementation error, such that

(d− d′) = Wdd̃

n = Wnñ

where d̃ and ñ are scaled to be less than 1 in magnitude. For reasons mentioned
briefly above, and further explained in [31], it is in the following assumed that

∣∣∣∣
∣∣∣∣
[
d̃
ñ

]∣∣∣∣
∣∣∣∣
2

≤ 1 (5.15)

This assumption leads to the following expression for the worst case loss:

L =
1

2
¾̄2(M) (5.16)

where

M =
[
Md Mn

]

Md = (J ′
uu)

1/2
[
(J ′

uu)
−1

Jud −G−1Gd

]
Wd

Mn = (J ′
uu)

1/2
G−1Wn

5.5.5 Measurement combinations as controlled variables

It was concluded above that we would like the optimal value for our controlled vari-
ables to be insensitive to the value of disturbances. Previously, we have (implicitly)
assumed that the controlled variables are selected among available measurements and
manipulated variables8. In general, we may also consider combinations of variables
as controlled variables. The nullspace method of Alstad and Skogestad [3] provides a
method for finding controlled variables that are linear combinations of the candidate
variables, such that the optimal values for the controlled variables are insensitive to
changes in disturbances.

The nullspace method for selecting controlled variables

Neglecting measurement bias (implementation error) n, we see from (5.14) that the
loss resulting from changes in disturbances will be zero provided J ′

uu)
−1Jud−G−1Gd =

0, or, equivalently, if G(J ′
uu)

−1Jud−Gd = 0. Let G and Gd be factorized, respectively,
as

G = HGy, Gd = HGy
d

8It may well turn out that it is optimal to keep a manipulated variable at a constant value -
e.g., maximizing a flowrate - and the manipulated variables themselves should therefore be included
among the candidate controlled variables.



104CHAPTER 5. CONTROL STRUCTURE SELECTION AND PLANTWIDE CONTROL

where Gy is the steady state transfer function from the manipulated variables to all
candidate controlled variables, and Gy

d is the steady state transfer function from the
disturbances to candidate controlled variables. The matrix H is a matrix containing
the linear relationships between the candidate controlled variables and the controlled
variables actually used9. Thus, the optimal values of the controlled variables are
insensitive to changes in disturbances provided

H
(
Gy(J ′

uu)
−1J ′

ud −Gy
d

)
= HF = 0 (5.17)

and we see immediately that the optimal values of the controlled variables are insen-
sitive to changes in disturbances if H lies in the left nullspace of F . That is, the rows
of H can be chosen as any linearly independent combination of the output singular
vectors of F corresponding to singular values equal to zero.

It has been noted before that the number of controlled variables will equal the
number of steady state degrees of freedom, i.e., nc = nu. The dimensions of F will be
ny×nd, where ny is the number of candidate controlled variables and nd is the number
of disturbances. A sufficient condition for the existence of nu controlled variables to
exist, whose optimal values are independent of changes in disturbances, is therefore
that ny ≥ nu + nd. If F has full column rank (which is normally the case), this
sufficient condition is also necessary.

Extending the nullspace method to account for implementation error

A shortcoming of the nullspace method is that it ignores implementation error. Kari-
wala and coworkers [56] extends the method to account for implementation error, and
also addresses the problem of minimizing the average loss, not only the worst-case
loss. Interestingly, they find that when combinations of measurements are selected to
minimize the average loss, the worst-case loss is also minimized (whereas minimizing
the worst-case loss does not necessarily minimize the average loss).

The solution in [56] is reformulated by Alstad et al. in [4], and it is shown that
an optimal H that minimizes (both average and worst-case) loss in the face of both
implementation error and changes in disturbances is given by

HT = (F̃ F̃ T ))−1Gy(GyT (F̃ F̃ T ))−1Gy)−1(J ′
uu)

1/2 (5.18)

5.5.6 The validity of the local analysis for controlled variable
selection

The exact local method presented above, including the use of measurement combina-
tions as controlled variables, is based on a Taylor series expansion around the nominal
operating point. A relevant question is then whether the conclusions will hold also
for non-optimal operating points, i.e., will changes in the disturbances invalidate the
choice of controlled variables?

9If individual variables are selected as controlled variables, the matrix H would be a selection
matrix consisting mostly of zeros, but with exactly one 1 in each row and at most one 1 in any
column.
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This issue is studied by Alstad [2], who found that the effect of a non-optimal
operating point on the average cost is independent of the choice of controlled variables.
That is, a non-optimal operating point will increase the average cost, but this increase
is the same independent of what controlled variables are chosen. Thus, the ranking
of sets of controlled variables based on average cost does not require the operating
point to be optimal.

The conclusion in [2] is found to hold provided as long as (5.12) is a good ap-
proximation of the operating cost, and the linear plant and disturbance models are
valid.

In this context we should bear in mind that although the second-order Taylor
series expansion in (5.12) may be a good approximation to the cost function in ’the
reduced space’ over a significant operating region, this is not necessarily the same
as it being a good approximation of the actual cost function in the same region.
That is, we have assumed that any constraints that are active at the optimum are
eliminated from the problem formulation, and the cost function is expressed in the
’reduced space’ remaining after this elimination. When the operating point changes,
the set of active constraints may change (active constraints may become inactive, or
new constraints may become active). This will in general result in a ’break’ in the
cost function (in the ’full space’). Thus, at points where the set of active constraints
changes, the cost function will be non-differentiable, and we must expect the Taylor
series approximation to be significantly less accurate when moving beyond the region
where the set of active constraints remains unchanged.

When the set of active constraints at optimum changes within the range of dis-
turbances expected in operation, self-optimizing control has little to offer beyond the
rather laborious exact evaluation of cost.

Another issue is what controller or controllers is used to implement the control
of the selected controlled variables. Model Predictive Control (MPC) has a partic-
ular strength compared to most other controller types when it comes to managing
constraints, in particular in accommodating changes in the set of active constraints.

5.6 Selection of manipulated variables

The manipulated variables are the variables that are manipulated directly by the
control system. Sometimes these are referred to as ’physical’ degrees of freedom, and
typically include valve positions, electrical power inputs, etc.

With reference to the hierarchical control system structure in section 1.3, however,
a somewhat more general interpretation of the term manipulated variable is often
used: For any control layer, the manipulated variables are the variables that layer
manipulates in the layer below. In this context, a setpoint to a loop in the layer below
may well be regarded as a ’manipulated variable’. In this setting, the manipulated
variables for one layer are thus not fully defined until the lower layers of the control
system have been defined.

In this section we will briefly discuss the ’fundamental’ manipulated variables /
’physical’ degrees of freedom. It is noted in [65] that the selection of these typically
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is not much of an issue, as they follow as a direct consequence of the design process
itself. This is to a large extent true, as the control engineering discipline usually gets
involved after the basic process design has been determined. It has frequently been
stated that this state of affairs is unfortunate, and that control should be considered
at every stage in the design process. Nevertheless, efforts to integrate control more
tightly in the design process seems to have found very limited industrial application.

Although design limits the ability to choose manipulated variables for control, the
process control engineer should attempt to

∙ verify as far as possible that the proposed manipulated variables make accept-
able control possible, and

∙ review that the characteristics of the manipulated variables are appropriate.

In some cases, it may also be possible to provide additional manipulated variables
(not available in the original plant design) at acceptable cost. This could involve,
e.g., installing by-pass lines (with control valves) on heat exchangers.

Verifying that the proposed manipulated variables make acceptable control
possible. Many plants are designed based on steady-state models only. In such
circumstances, only steady state aspects of control are readily assessed. The ability
to achieve a consistent inventory control system can often be assessed using only
the Piping and Instrumentation Diagram (P&ID). Consistency of inventory control
will be addressed more thoroughly in section 5.8, here we will only illustrate using a
simple example (from an actual plant design) of how the P&ID can be used to assess
whether consistent inventory control is possible.

Example. The wellstream in petroleum production typically consists of a mixture
of gas, oil and water. These three phases have to be separated, before the oil and
gas are transported to market, and the water (usually) discharged. There are ’purity’
requirements for all these three phases. The main separation takes place in a series
of three-phase separators. To further reduce the water content in the oil, the oil from
the last separator is passed to a coalescer, where high voltage is used to force the
remaining fine water droplets in the oil to coalesce. The coalesced, hence larger, water
droplets separate easily from the oil. The final separator and coalescer, with proposed
control system, are shown in Fig. 5.3. The oil level in the separator is controlled
using a control valve in the oil export pipeline. This is OK, since the coalescer is
filled with liquid, and no control of oil level in the coalescer is necessary. The water
from the separator and coalescer are routed together to a produced water pump,
which transports the water to treatment. The water levels in both the separator
and the coalescer are measured, and the highest level signal is used for level control,
manipulating the speed of the produced water pump. A manual value on the water
pipeline from the separator is intended to adjust for different rates of water separation
in the separator and coalescer.

The water levels in both the separator and coalescer are essentially integrating,
and need to be stabilized by feedback. These integrators are in parallel, and we will
therefore need two independent feedback paths to stabilize them. Here we have only
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Figure 5.3: Final stage separator and coalescer with proposed level control.

one manipulated variable available to the control system for this stabilization task,
and no controller can achieve the stabilization. The proposed control will avoid high
water levels. However, for the vessel with the lower water level, the control provides
no protection against emptying the vessel of water - consequently sending significant
quantities of oil to the produced water treatment.

The manual valve will need to be replaced by an automatic valve to enable stabi-
lization of both water levels - or one must expect the need for continuous monitoring
and manual changes in the valve position by the operators.

Even when the need for additional manipulated variables is as blatantly obvious as
in the above example, it may be a challenge to convince that additional manipulated
variables need to be installed - in particular if the need for additional manipulated
variables is discovered during the very hectic construction phase. Typically, when
the need for additional or improved manipulated variables arise from dynamic rather
than steady-state considerations, these are much harder both to identify and to argue
convincingly for at the plant design stage - simply because a dynamic model often is
not available.

To the extent that the available model allows, the limitations on achievable per-
formance in section 3.4 should be assessed. This can provide clues also on how to
improve the manipulated variables.

Reviewing the characteristics of the proposed manipulated variables. Three
important aspects of a manipulated variable are:
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1. Size or capacity. The manipulated variable should have the capacity to control
throughout the expected range of operation. This implies that some range
of manipulation should be available beyond the range of variation expected
in steady state operation. Although this is an issue that may require some
attention, typical steady-state plant designs will often fulfill this requirement.
Typical manipulated variables (e.g., valves) are relatively inexpensive compared
to the cost of major plant equipment, and therefore it is rarely economically
optimal even from steady state considerations to let a manipulated variable
limit throughput.

2. Linearity of response. Ideally, the response to a manipulated variable should
be linear throughout its operating range, as this will minimize the need for
changing controller parameters (retuning the controller) depending on operat-
ing conditions. This particularly relevant for that most common of manipulated
variables, the control valve, which come in many different designs. A complete
specification of control valves is (far) beyond the scope of this note. Neverthe-
less, we mention briefly that:

∙ A linear valve characteristic is typically appropriate when the valve pro-
vides the main resistance to flow in the pipeline in which it is installed.

∙ When there is other equipment providing significant resistance to flow, an
equal percentage valve characteristic may be more appropriate, and may
give an overall response (from valve position to flowrate) that is more linear
than what would be achieved by a linear valve characteristic.

3. Speed of response. The control engineer should try to establish the required con-
trol bandwidth, and ensure that the manipulated variables are sufficiently fast
to allow the required bandwidth. The speed of response of major disturbances,
or the presence of unstable modes may give a clue to the required bandwidth.

5.7 Selection of measurements

When selecting measurements for control, one is often less restricted by the original
design than what is the case for the selection of manipulated variables. Often, more
measurements are available to choose from, and additional measurements may be
installed at acceptable cost.

The understanding of the objectives of the different layers is important when
selecting measurements. For example, the objectives of the regulatory control layer
are, as described in section 5.3:

∙ Stabilization. Hence, it is important to select measurements that make the
unstable mode(s) observable.

∙ Linearization and removal of uncertainty by feedback. For example, uncertainty
or nonlinearity in a valve characteristic may be counteracted by flowrate control
- which clearly implies that the flowrate needs to be measured.
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∙ Local rejection of disturbances is much easier if the disturbances can be mea-
sured.

For the supervisory control layer, the selection of measurements will be influenced by

∙ the ability to measure or estimate the controlled variables of that layer (which
preferably have been selected by considering plant economics, as described in
preceding sections), and

∙ the ability to monitor important operational constraints (e.g., for constrained
control using MPC).

Input-output controllability considerations are often useful when selecting measure-
ments (at any layer).

∙ The selection of measured variables may affect the presence and location of
(monovariable and multivariable) RHP zeros. For example, in [48] it is shown
that the presence and location of multivariable RHP zeros in the FCC process10

depend strongly on the choice of measured variables.

∙ The RGA may be used to avoid selecting measurement giving a very interactive
system.

∙ Strong and direct responses from the manipulated to the measured variables are
usually preferred. This typically implies having the measurements close to the
manipulated variables. For example, if temperature control is used to control
the mixing of a hot and a cold stream, positioning the measurement close to the
mixing point will minimize time delay. However, positioning the measurement
too close to the mixing point may make the measurement unreliable due to
imperfect mixing.

5.8 Mass balance control and throughput manip-

ulation

In most process plants there are a number of inventories (in particular liquid inven-
tories, i.e., levels) that have to be stabilized by feedback. This is a major part of
the ’stabilization objective’ of the regulatory control layer. Stabilization of (liquid)
inventories is often called ’mass balance control’11.

Where the production rate or ’throughput’ is set will greatly affect the structure
of the inventory control system. There are generally three different cases:

∙ The production rate is set at the plant inlet. This is the case when the produc-
tion is limited by raw material availability, or the plant receives its feedstock
from an upstream plant with lower capacity. Sewage / waste water treatment
plants also fall into this category.

10Fluid Catalytic Cracking (FCC) is an important process in refineries.
11A term this author actually finds somewhat inappropriate, since the dynamic mass balance

necessarily will be fulfilled at all times.
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∙ The production rate is set at the plant outlet. This is the ’produce-to-order’
scenario, and is often the situation when product demand is weak.

∙ The throughput is set internally in the plant.

Selection of the throughput manipulator has very direct consequences for inventory
control (also called mass balance control - typically level and pressure control loops).
The throughput manipulator becomes unavailable for inventory control, and thus the
inventory control loops have to ’radiate outwards’ from the throughput manipulator.
This is illustrated in Fig. 5.4 for a case where the throughput manipulator is located
internally in the plant.

ICIC IC IC

Throughput 

manipulator

Figure 5.4: Throughput manipulator located internally in the plant - and the inven-
tory control configuration ’radiating outwards’ from the throughput manipulator.

According to Skogestad [89], the throughput has traditionally been set at the
plant inlet. Price at al. [77] recommend using an internal stream for throughput
manipulation instead. This is further specified in [89], where it is proposed to set the
throughput at the bottleneck unit.

With hindsight, setting the throughput at the plant bottleneck seems the obvious
choice when the plant is operating at maximum capacity, as should imply the ability
to operate close to the capacity constraint. Setting the throughput several units away
from the capacity constraint normally implies a ’long and slow loop’ controlling the
plant to its maximum capacity - which would imply a larger safety margin (or ’back
off’) to avoid violating operational constraints.

Aske [5] relates the rule of setting the throughput at the plant bottleneck to
established results in network theory, discusses how to obtain estimates of the required
back off, and how back off can be reduced.

When setting the throughput at the bottleneck unit in order to maximize produc-
tion, the throughput is typically not set directly. Instead, the throughput manipulator
is used to control some variable in the bottleneck unit to its constraint. For example,
consider a process train where the capacity is limited by the available cooling capac-
ity in a reactor, and cooling is required to stabilize the reactor. This is illustrated
in Fig. 5.5. The stabilization is achieved by controlling reactor temperature using
the opening of the cooling medium valve. The throughput may then be set by the
feed to the reactor, but this is used to control the cooling medium valve opening to
a setpoint. This setpoint should leave some range of operation for the temperature
control, i.e., the setpoint for the cooling medium valve opening should be less than
100%, since some back off is required to avoid saturation of the temperature control
loop.
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Figure 5.5: Throughput manipulator used to control cooling capacity to a safe dis-
tance from its constraint.

Changing operating conditions may cause the bottleneck unit to move, i.e., the
constraint limiting production may change and move to another unit. With the rule
of setting the throughput at the bottleneck unit, this would imply the need for re-
configuring the inventory control, which would be very impractical. An alternative
may be to use MPC as a (multivariable) supervisory controller to handle the move-
ment of the bottleneck.

5.8.1 Consistency of inventory control

Price and Georgakis [76] introduce the concept of consistency of inventory control,
and state that ”when an inventory control system is inconsistent, it cannot operate
effectively by itself without additional control loops to supplement its action”. This
interpretation is modified by Aske [5]: ”An inventory control system is consistent if
the steady-state mass balances (total, components and phases) are satisfied for any
part of the process, including the individual units and the overall plant”.

Aske [5] similarly define the concept of self-consistency of inventory control: A
consistent inventory control system is said to be self-consistent ... if for each unit
the local inventory control loops by themselves are sufficient to achieve steady-state
mass balance consistency for that unit. Clearly, consistency is required of any control
system, while self-consistency is desired.

Further developing the ideas on consistency and self-consistency, Aske proposes
the following self-consistency rule:

Self-consistency requires that:

1. The total inventory of any part of the process must be ”self-regulated” by its
inflows or outflows, which implies that at least one flow in or one flow out of
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that part of the process must depend on the inventory inside that part of the
process.

2. For systems with several components, the inventory of each component foe any
part of the process must be ”self-regulated” by its in- or outflows or by chemical
reaction.

3. For systems with several phases, the inventory of each phase for any part of the
process must be ”self-regulated” by its in- or outflows, or by phase transition.

In this context, ”self-regulation” means that the inventory is stabilized either by
inherent feedback mechanisms in the process (the usual concept of self-regulation),
or by local control loops.

Aske further develops the idea of self-regulation for some special cases:

∙ For units in series self-consistency implies that the inventory control must ’ra-
diate outwards’ from the throughput manipulator, as mentioned earlier.

∙ For recycle loops, the inventory within the loop must be ”self-regulated” by the
in- or outflows to the recycle loop.

∙ For closed systems (with no mass entering or leaving the system) one of the
inventories must be left uncontrolled.

Illustrations of consistent and inconsistent inventory control structures for recycle
loops are shoen in Fig. 5.6. For closed systems, the rule follows from noting that the
outflow of one unit must be routed to other units, and that the total inventory is
fixed.

Note: Aske’s formulation of the self-consistency rule requires that at least one of the
in- or outflows must depend on the inventory in the system. While this is correct, this
still leaves room for conflicts between controllers when more than one in-or outflow
is used to control the inventory. This is illustrated in Fig. 5.7. If both LC1 and LC2
are integrating, there is a possibility for conflict between the two controllers, leading
one to increase output and the other to decrease output until a constraint is reached
(open or closed valves). The conflict between the controllers can be caused by:

∙ Different level setpoints in the two loops.

∙ Different measurement noise in the two level measurements.

∙ Even if the two controllers were to use the same level sensor, there is a potential
for differences in measurement noise if the sensor updates the measurement
between the times when the two controllers are executed.

If either LC1 or LC2 is a P or PD controller (without integral action), the inventory
control in Fig. 5.7 will be consistent.
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Figure 5.6: Illustrations of inventory control systems for recycle loops. Top: incon-
sistent inventory control, bottom: consistent inventory control.
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Figure 5.7: Inventory control which adheres to Aske’s self-consistency rule, but where
the consistency of the inventory control depends on the controllers used.



Chapter 6

Model-based predictive control

6.1 Introduction

Model-based predictive control (MPC) has become the most popular advanced control
technology in the chemical processing industries. There are many variants of MPC
controllers, both in academia and in industry, but they all share the common trait
that an explicitly formulated process model is used to predict and optimize future
process behaviour. Most MPC controllers are able to account for constraints both
in manipulated variables and states/controlled variables through the formulation of
the optimization problem.

When formulating the optimization problem in MPC, it is important to ensure
that it can be solved in the short time available (i.e., the sampling interval is an upper
bound on the acceptable time for performing the calculations). For that reason, the
optimization problem is typically cast into one of two standard forms:

∙ Linear programming (LP) formulation. In an LP formulation, both the objec-
tive function and the constraints are linear.

∙ Quadratic programming (QP) formulation. In a QP formulation, the objective
function is quadratic, whereas the constraints have to be linear. In addition,
to ensure that there exists a unique optimal solution that can be found quickly
with effective optimization solvers, the Hessian matrix in the objective function
has to be positive definite1.

LP problems can be solved more efficiently than QP problems, and an LP formu-
lation may therefore be advantageous for very large optimization problems. However,
a QP formulation generally leads to smoother control action and more intuitive ef-
fects of changes in the tuning parameters. The connection to ’traditional advanced
control’, i.e., linear quadratic (LQ) optimal control, is also much closer for a QP

1The Hessian matrix defines the quadratic term in the objective function, and is a symmetric ma-
trix. Positive definiteness means that all eigenvalues are positive - for a monovariable optimization
problem this implies that the coefficient for the quadratic term in the objective function is positive.
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formulation than for an LP formulation. For these reasons, we will focus on a QP
formulation in the following, and describe in some detail how a QP optimization
problem in MPC may be formulated.

6.2 Formulation of a QP problem for MPC

A standard QP problem takes the form

min
v

0.5vT H̃v + cTv (6.1)

subject to the constraints

Lv ≤ b (6.2)

Here v is the vector of free variables in the optimization, whereas H̃ is the Hessian
matrix, that was mentioned above, and which has to be positive definite. The vector
c describes the linear part of the objective function, whereas the matrix L and the
vector b describe the linear constraints. Some QP solvers allow the user to specify
separate upper and lower bounds for v, whereas other solvers require such constraints
to be included in L and b. For completeness, we will assume that these constraints
have to be included in L and b.

The formulation of the MPC problem starts from a linear, discrete-time state-
space model of the type

xk+1 = Axk +Buk + Edk (6.3)

yk = Cxk + Fdk (6.4)

where the subscripts refer to the sampling instants. That is, subscript k+1 refers
to the sample instant one sample interval after sample k. Note that for discrete time
models used in control, there is normally no direct feed-through term, the measure-
ment yk does not depend on the input at time k, but it does depend on the input at
time k − 1 through the state xk. The reason for the absence of direct feed-through
is that normally the output is measured at time k before the new input at time k
is computed and implemented. One may also argue that in most physically realis-
tic system descriptions, inputs and disturbances affect the rate of change of states
rather than the states themselves. To illustrate: mass transfer/flowrate disturbances
affect the rate of accumulation of mass, heat transfer/temperature disturbances affect
the rate of accumulation of energy, force disturbances affect acceleration (the rate of
accumulation of momentum), etc.

In the same way as is common in control literature, the state x, input u, external
disturbance d and measurement y above should be interpreted as deviation variables.
This means that they represent the deviations from some consistent set of of variables
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{xL, uL, dL, yL} around which the model is obtained2. For a stable process, the set
{xL, uL, dL, yL} will typically represent a steady state - often the steady state we want
to keep the process at. To illustrate, if in yL represents a temperature of 330K, a
physical measurement of 331K corresponds to a devation variable y = 1K.

A typical optimization problem in MPC might take the form

min
u

f(x, u) =
n−1∑
i=0

{(xi − xref,i)
TQ(xi − xref,i) (6.5)

+(ui − uref,i)
TP (ui − uref,i)

T}
+(xn − xref,n)

TS(xn − xref,n)

subject to constraints

x0 = given

UL ≤ ui ≤ UU for 0 ≤ i ≤ n+ j

YL,i ≤ Hixi ≤ YU,i for 1 ≤ i ≤ n+ j (6.6)

In the objective function Eq. (6.5) above, we penalize the deviation of the states
xi from some desired reference trajectory xref,i and the deviation of the inputs ui

from some desired trajectory uref,i. These reference trajectories are assumed to be
given to the MPC controller by some outside source. They may be constant or may
also vary with time (subscript i). The constraints on achievable inputs or acceptable
states are usually not dependent on the reference trajectories, and therefore these
reference trajectories do not appear in the constraint equations (6.6). Usually, the
state constraints represent constraints on process measurements (giving H = C), but
constraints on other combinations of states are also possible (including constraints
on combinations of inputs and states). Typically, the constraints are constant with
time, but we will express the constraints for i > n in terms of the (predicted) state
at i = n, and for that reason the time index i also appear in the state constraints.

In the following, this formulation of the optimization problem will be recast into
the standard QP formulation in Eqs.(6.1) and (6.2), but first a number of remarks
and explanations to the optimization problem formulation in Eqs.(6.5) to (6.6) are
needed.

∙ In addition to the above constraints, it is naturally assumed that the process
follows the model in Eqs. (6.3) and (6.4).

∙ The matrices Q,P, and S are all assumed to be symmetric. P and S are
assumed to be positive definite, whereas Q may be positive semi-definite.

2We do not here specify how the model is obtained, but typically it is either the result of iden-
tification experiments performed around the values {xL, uL, dL, yL} or the result of linearizing and
discretizing a non-linear, physical model around the values {xL, uL, dL, yL}.
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∙ In many applications it may be more natural to put a weight (or cost) on
the actual measurements rather than the states. This can easily be done by
choosing Q = CT Q̃C, where Q̃ is the weight on the measurements.

∙ One may also put constraints on the rate of change of the inputs, giving addi-
tional constraints on the form ΔUL ≤ ui − ui−1 ≤ ΔUU .

∙ For the output constraints in Eq. (6.6) to be well defined, we must specify
how the inputs ui should behave in the interval n ≤ i ≤ n + j. Typical
choices for this time interval are either that ui = uref,i, ui = ui−1, or that
(ui − uref,i) = K(xi − xref,i). The latter choice assumes that a (stabilizing)
state feedback controller is used in this time interval. Note that this controller
will never be used in practice (since the MPC calculations are re-computed at
each sample instant), but it is needed to make the constraints well defined.

∙ Similarly, we must predict future values for disturbances. Good predictions may
sometimes be available, due to e.g., knowledge about operation of upstream
equipment. In the absence of such information, it is common to assume that
the disturbance will keep its present (measured or estimated) value over the
prediction horizon.

∙ If one assumes that (ui−uref,i) = K(xi−xref,i) for n ≤ i ≤ n+j, one should also
include the input constraints in the problem formulation for the time interval
n ≤ i ≤ n+j. These input constraints then effectively become state constraints
for this time interval.

∙ SomeMPC formulations use an objective function of the form f(x, u) =
∑np

i=0(xi−
xref,i)

TQ(xi−xref,i)+
∑nu

i=0(ui−uref,i)
TP (ui−uref,i), where np > nu, and typ-

ically assume that ui = uref,i for nu < i < np. Note that this corresponds to a
particular choice for ’terminal state weight’ S, since xi for nu + 1 < i ≤ np will
then be given by xnu+1 (and the process model).

∙ It is common to introduce integral action in MPC controllers by using the input
changes at time i as free variables in the optimization, rather than the input
itself. This follows, since the actual inputs are obtained by integrating the
changes in the input. This can be done within the same framework and model
structure as above, using the model

x̃k+1 =

[
xk+1

uk

]
= Ãx̃k + B̃Δuk +

[
E
0

]
dk

yk = C̃x̃k

where Δuk = uk − uk−1, and

Ã =

[
A B
0 I

]
, B̃ =

[
B
I

]
, C̃ =

[
C 0

]
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Alternatively, integral action may be included by including a disturbance esti-
mate in the model update function, and adjusting state and input references
according to the disturbance estimate. This approach provides more flexibility
to account for different disturbance dynamics, the method described above is
best suited for step-like disturbance or reference changes.

∙ To have a stable closed-loop system, it is necessary to have at least as many
feedback paths as integrators. When integral action is included in the way
described above, this means that one needs at least as many (independent)
measurements as inputs. When the number of inputs exceeds the number of
measurements, it is common to define ’ideal resting values’ for some inputs.
This essentially involves putting some inputs in the measurement vector, and
defining setpoints for these.

In the following, we will recast the MPC optimization problem as a standard QP
problem. We will assume that ui−uref,n = K(xi−xref,n) for n ≤ i ≤ n+ j− 1. To
start off, we stack the state references xref,i, input references uref,i, input deviations
vi = ui−uref,i, state deviations Âi = xi−xref,i, and predicted disturbances di in long
(column) vectors xref , uref , v, Âdev, and ±:

uref =

⎡
⎢⎢⎢⎢⎢⎣

uref,0

uref,1
...

uref,n−2

uref,n−1

⎤
⎥⎥⎥⎥⎥⎦
; xref =

⎡
⎢⎢⎢⎢⎢⎣

xref,1

xref,2
...

xref,n−1

xref,n

⎤
⎥⎥⎥⎥⎥⎦
;

v =

⎡
⎢⎢⎢⎢⎢⎣

v0
v1
...

vn−2

vn−1

⎤
⎥⎥⎥⎥⎥⎦
; Â =

⎡
⎢⎢⎢⎢⎢⎣

Â1

Â2
...

Ân−1

Ân

⎤
⎥⎥⎥⎥⎥⎦
; ± =

⎡
⎢⎢⎢⎢⎢⎣

d0
d1
...

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎦

Introducing the matrices

Q̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q 0 ⋅ ⋅ ⋅ 0 0

0 Q
. . .

...
...

0 0
. . . 0 0

...
...

. . . Q 0
0 0 ⋅ ⋅ ⋅ 0 S

⎤
⎥⎥⎥⎥⎥⎥⎦
, P̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

P 0 ⋅ ⋅ ⋅ 0 0

0 P
. . .

...
...

0 0
. . . 0 0

...
...

. . . P 0
0 0 ⋅ ⋅ ⋅ 0 P

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.7)

Ĥ =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1 0 ⋅ ⋅ ⋅ 0 0

0 H2
. . .

...
...

0 0
. . . 0 0

...
...

. . . Hn−1 0
0 0 ⋅ ⋅ ⋅ 0 Hn

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.8)
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and the vectors

ÛL =

⎡
⎢⎣

UL
...
UL

⎤
⎥⎦ ; ÛU =

⎡
⎢⎣

UU
...
UU

⎤
⎥⎦ ; ŶL =

⎡
⎢⎣

YL
...
YL

⎤
⎥⎦ ; ŶU =

⎡
⎢⎣

YU
...
YU

⎤
⎥⎦ (6.9)

The future state trajectory may now be expressed as

Â+ xref =

⎡
⎢⎢⎢⎢⎢⎣

A
A2

...
An−1

An

⎤
⎥⎥⎥⎥⎥⎦
x0 +

⎡
⎢⎢⎢⎢⎢⎣

B 0 ⋅ ⋅ ⋅ 0 0

AB B
. . .

...
...

...
...

. . . 0 0
An−2B An−3B ⋅ ⋅ ⋅ B 0
An−1B An−2B ⋅ ⋅ ⋅ AB B

⎤
⎥⎥⎥⎥⎥⎦
(v + uref )

+

⎡
⎢⎢⎢⎢⎢⎣

E 0 ⋅ ⋅ ⋅ 0 0

AE E
. . .

...
...

...
...

. . . 0 0
An−2E An−3E ⋅ ⋅ ⋅ E 0
An−1E An−2E ⋅ ⋅ ⋅ AE E

⎤
⎥⎥⎥⎥⎥⎦
±

= Âx0 + B̂(v + uref ) + B̂d± (6.10)

Next, three nominally equivalent formulations of the QP optimization problem in
MPC will be described.

6.2.1 Future states as optimization variables

The optimization problem may now be expressed as

min
v,Â

[
ÂT vT

]
[

Q̂ 0

0 P̂

][
Â
v

]
(6.11)

subject to constraints

⎡
⎢⎢⎣

0 −I
0 I

−Ĥ 0

Ĥ 0

⎤
⎥⎥⎦
[
Â
v

]
≤

⎡
⎢⎢⎢⎣

−ÛL + uref

ÛU − uref

−ŶL + xref

ŶU − xref

⎤
⎥⎥⎥⎦

[
I − B̂

] [ Â
v

]
= Âx0 + B̂uref + B̂d±

If the particular QP solver in use does not accept equality constraints, these can
always be specified using two inequalities3.

3I.e., ax = b ⇔ {ax ≤ b and ax ≥ b} .
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In this case, the optimization variables are both the future plant inputs v and
future plant states Â. The model equations (expressed as equality constraints) guar-
antee that the relationship between inputs and states are fulfilled, and the de facto
maximum number of degrees of freedom in the optimization is given by the number
of inputs times the prediction horizon n.

6.2.2 Using the model equation to substitute for the plant
states

We will use the superposition principle, which states that the total effect of several
inputs can be obtained simply by summing the effects of the individual inputs. The
superposition principle is always valid for linear systems, but typically does not hold
for non-linear systems. This allows us to split Â into to components, Â = Âdev + Âv.
Here Âdev is the deviation from the desired state trajectory that would result, given
the initial state x0 and assuming that the nominal reference input uref is followed,
and that the predicted future disturbances are correct. Similarly, Âv is the effect on
the future state trajectory from the future deviations from the reference input. The
model equations then give

Âdev = Âx0 + B̂uref + B̂d± − xref (6.12)

Âv = B̂v (6.13)

Adding (6.12) and (6.13) we get the model equations used in the preceding subsection.

The objective function can be written as

f(x, u) = f(Âdev, Âv, v) = (x0 − xref,0)
TQ(xo + xref,0)+

(Âdev + Âv)
T Q̂(Âdev + Âv) + vT P̂ v

= (x0 − xref,0)
TQ(xo + xref,0) + ÂT

devQ̂Âdev+

2ÂT
devQ̂Âv + ÂT

v Q̂Âv + vT P̂ v

which should be minimized using the vector v as free variables.

Now, the terms (x0 − xref,0)
TQ(xo + xref,0) + ÂT

devQ̂Âdev will not be affected by
the optimization, and may therefore be removed from the objective function. This is
because we are primarily interested in finding the inputs that minimize the objective
function, and not in the optimal value of the objective function. Thus, the objective
function is in the form of a standard QP problem as defined in Eqs. (6.1) and (6.2)
if we define

H̃ = B̂T Q̂B̂ + P̂ (6.14)

cT = ÂT
devQ̂B̂
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It now remains to express the constraints in the MPC problem in the form of a
standard QP problem. Using (6.12) and (6.13) to substitute the model equations
into the inequality constraints, we obtain

⎡
⎢⎢⎢⎣

−B̂

B̂

−ĤB̂

ĤB̂

⎤
⎥⎥⎥⎦ v ≤

⎡
⎢⎢⎢⎣

−ÛL + uref

ÛU − uref

−ŶL + xref

ŶU − xref

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0
0

Ĥ
(
Âx0 + B̂uref + B̂d± − xref

)

−Ĥ
(
Âx0 + B̂uref + B̂d± − xref

)

⎤
⎥⎥⎥⎥⎦

(6.15)

6.2.3 Optimizing deviations from linear state feedback

The main reason for using model predictive control is usually it’s ability to handle
constraints. If constraints are not a problem, linear state feedback (using e.q. LQ-
optimal control) would often be preferred. Indeed, if no constraints are active, many
MPC formulations can be shown to be equivalent to linear state feedback. This has
lead Rossiter (XXXX cite Rossiter) to propose an MPC formulation where the degrees
of freedom in the optimization are the deviations from linear state feedback that are
necessary to adhere to the constraints. Thus, the input is parameterized as

ui − uref,i = K(xi − xref,i) + ci (6.16)

for some given state feedback controller K. Here ci are the deviations from linear
state feedback that are to be minimized, and it is assumed that ci = 0 for i ≥ n. We
introduce the notation

K̂ = diag{K}; ĉ =
[
cT0 , c

T
1 , ⋅ ⋅ ⋅ , cTn−1

]T

Next, we use the model equations to express the future manipulated variables. When
using (6.10) one needs to keep in mind that v starts from time i = 0, whereas Â starts
from time i = 1. Thus we define

Â′ = the n first blocks of rows of

[
I

Â

]

B̂′ = the n first blocks of rows of

[
0

B̂

]

B̂′
d = the n first blocks of rows of

[
0

B̂d

]

x′
ref = the n first blocks of rows of

[
xref,0

xref

]

where the ′ sign should not be confused with the transposition of the matrix. Future
plant inputs may thus be expressed as

v = K̂
(
Â′x0 + B̂′(v + uref ) + B̂′

d± − x′
ref

)
+ ĉ (6.17)
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Rearranging, we obtain

v = (I − K̂B̂′)−1K̂
(
Â′x0 + B̂′uref + B̂′

d± − x′
ref

)
+ (I − K̂B̂′)−1ĉ (6.18)

where we note that (I− K̂B̂′) is always invertible since B̂′ have all non-zero elements
below the main diagonal. It is trivial (but tedious) to substitute (6.18) into (6.14)
and (6.15) to obtain the corresponding standard QP formulation in terms of the new
optimization variables ĉ.

6.2.4 Constraints from time n to n+ j

For time n to n+ j, it is relatively straight forward to use the model equation (6.3),
together with the specified input usage (usually (ui − uref,i) = K(xi − xref,i)) to
express the states for i > n and plant inputs for i ≥ n in terms of the predicted
state xn, predicted input and state references uref,i and xref,i and predicted future
disturbances di. Thus, constraints in states and inputs for i ≥ n can be expressed
as constraints on xn. Thus, all constraints specified in (6.6) are well defined, even
though the prediction horizon is of length n.

Many of these state constraints at time n representing state or input constraints
in the interval n ≤ i ≤ n + j may be redundant. One would ideally like to remove
redundant constraints to ensure that the optimization problem is as small as possi-
ble. This can be done using the procedure described in Appendix 2. However, in
applications where references (uref,i and xref,i) or disturbances di vary, one will either
have to determine redundant constraints on-line (prior to the optimization), or only
remove constraints that are always redundant, i.e., constraints that are redundant for
all conceivable values for uref,i, xref,i and di, for i ≥ n.

This is not as hopeless as it may seem. The constraints are linear, and this allows
us to check for redundancy only at the extreme values of the variables. Furthermore,
the prediction horizon is also commonly chosen sufficiently long for the plant to reach
steady state, and thus it is reasonable to assume that uref,i = uref,n, xref,i = xref,n

and di = dn, for i ≥ n. This will reduce the number of variables that need to be
considered.

Furthermore, if the control is supposed to remove offset at steady state, the ref-
erences have to be consistent, i.e., at steady state (denoted by subscript ss), input
uref,ss and disturbance dss must result in the state xref,ss. Normally, one would con-
sider dss and xref,ss as independent variables, and uref,ss as a dependent variable.
Calculating consistent steady state references for given disturbances is the task of the
target calculation, addressed in Section XXXX.

Many control problems are formulated based on the assumption that the reference
values for states and inputs are zero, and reference changes are implemented by
’shifting the origin’ for the deviation variables. However, the constraints are typically
independent of the references, and shifting the origin will result in a corresponding
shift in the constraints. Thus, shifting the origin does not remove the problem of
variable references when constraints have to be considered.
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6.2.5 Required value for j

The purpose of imposing constraints over j time steps longer than the prediction
horizon is to ensure that optimizing over horizon of n steps does not lead to future
optimization problems with no feasible solution. Furthermore, one of the ways of
ensuring closed loop stability with MPC, is to design the MPC to correspond to a
stabilizing, unconstrained state feedback controller (i.e., (ui − uref,i) = K(xi − xref,i,
again) after the prediction horizon n. However, for the MPC to correspond to the
unconstrained state feedback controller, the state feedback controller must not violate
any constraints.

Thus, we want the predicted state at i = n to lie within a set within which the
state feedback controller does not violate any constraints, and the state feedback
controller should be able to keep the state within that set for all i > n. Ideally, we
would like to identify the largest such set in the state space, since this leads to the
largest feasible region for a given prediction horizon n.

This set is known as the maximal output admissible set, often denoted O∞. The
properties and the determination of O∞ are studied by Gilbert and Tan [27]. We
will assumed that the state constraints in (6.6) constitute a closed and bounded poly-
hedron in the state space, and that the origin is in the interior of this polyhedron.
Operation arbitrarily far from the origin is of no practical interest, and if the assump-
tion above is not fulfilled it is therefore possible to add very lax state constraints to
fulfill the assumption. This allows us to use the results of [27] for rather straight
forward determination of the required j.

Let Ot denote the set in the state space for which the constraints are feasible over
t time steps using the state feedback controller. Obviously, O∞ ⊆ Ot+1 ⊆ Ot. We
will use the following results from [27]:

R1 O∞ is closed and bounded (and is convex due to the linearity of the constraints).

R2 O∞ is finitely determined if O∞ = Ot for finite t. For the cases studied here, O∞
is finitely determined by construction.

R3 If Ot = Ot+1 then O∞ = Ot.

This leads to the following algorithm for determination of O∞, and simultaneously
determining the required value of j:
Algorithm 1. Maximal Output Admissible Set.

1. Set t = 0, and let O′ be parameterized by (6.6) for k = n. The constraints
considered should be both the state constraints, and the constraints on the
states implied by the input constraints, due to the use of the state feedback
controller.

2. Increment the time index t, and express the constraints at time t in terms of xn,
using the system model (6.3) and the equation for the state feedback controller.

3. Remove any redundant constraints for time t. If all constraints for time index
t are redundant, Ot−1 = Ot, and hence O∞ = Ot−1. Stop. Otherwise, augment
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the set of constraints describing Ot−1 by the non-redundant constraints for time
t to define Ot. Go to Step 2.

Due to R2 above, this algorithm will terminate in finite time for the problems consid-
ered here. Checking for redundancy of constraints is also straight forward for linear
systems subject to linear inequality constraints, as explained in Appendix 2.

For problems where references or disturbances may vary, it is necessary to verify
the redundancy of the constraints for all combinations of extreme values of these
variables, as explained in the preceding subsection. The determination of O∞ for
systems with disturbances has been addressed in [62].

6.2.6 Feasible region and prediction horizon

It was explained above that in order to guarantee closed loop stability, we will want
the state at time xn to lie within the maximal output admissible set O∞. The feasible
region for an MPC controller is therefore the set of states from which the state can be
brought to O∞ in n steps, without violating any constraints. The feasible region for
a given n and given O∞ can be found using Fourier-Motzkin elimination (Appendix
1), as noted in [58]. However, the Fourier-Motzkin procedure produces a number
of redundant constraints which subsequently has to be removed. To minimize this
problem, it is recommended to start from a prediction horizon n = 0 (i.e., the feasible
region = O∞) and gradually increment the prediction horizon, and remove redundant
constraints along the way, see [44] for more detail.

6.3 Step response models

In industrial practice, process models based on step response descriptions have been
very successful. Whereas step response models have no theoretical advantages, they
have the practical advantage of being easier to understand for engineers with little
background in control theory.

With a soild understanding of the material presented above, the capable reader
should have no particular problem in developing a similar MPC formulation based
on a step response model. Descriptions of such formulations can also be found
in available publications, like Garcia and Morshedi’s [26] original paper presenting
”Quadratic Dynamic Matrix Control”. Alternatively, step response models may
also be expressed in state space form (with a larger number of states than would be
necessary in a ”minimal” state space model), see e.g. [46] for details.

The reader should beware that step-response models have ”finite memory”, and
hence should only be used for asymptotically stable processes, that is, processes where
the effect of old inputs vanish over time. Most industrially successful MPC controllers
based on step response models are modified to handle also integrating processes,
whereas truly unstable processes cannot be handled. Handling unstable processes
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using step response models would require more complex modifications to the con-
trollers and model description, and would thereby remove the step response model’s
advantage of being easy to understand.

Partly due to these reasons, MPC controllers are seldom used on unstable pro-
cesses. If the underlying process is unstable, it is usually first stabilised by some
control loops, and the MPC controller uses the setpoint of these loops as ”manipu-
lated variables”.

In academia, there is widespread resentment against step response models - and
in particular against their use in MPC controllers. Although there are valid argu-
ments supporting this resentment, these are usually of little practical importance for
asymptotically stable processes - although in some cases the computational burden
can be reduced by using a state space model instead.

Step response identification is another matter. A step input has Laplace trans-
form u(s) = k

s
, and hence excites the process primarily at low frequencies. The

resulting model can therefore be expected to be good only for the slow dynamics (low
frequencies). If medium to high bandwidth control is desired for an MPC application,
one should make sure that any identification experiment excites the process over the
whole desired bandwidth range for the controller.

6.4 Updating the process model

The MPC controller essentially controls the process model, by optimizing the use
of the inputs in order to remove the predicted deviation from some desired state
(or output) trajectory. Naturally, good control of the true process will only be
obtained if the process model is able to predict the future behaviour of the true
process with reasonable accuracy. Model errors and unknown disturbances must
always be expected, and therefore it will be necessary to update the process model
to maintain good quality predictions of the future process behaviour.

The design of state estimators or -observers is itself a vast area, and is the subject
of numerous books. Furthermore, this is an area that has seen a lot of interesting
developments recently. No attempt will therefore be made at giving a comprehen-
sive treatment of this subject. Instead, a short description of techniques that are
particularly relevant for MPC applications will be given - but readers are certainly
encouraged to obtain more thorough insight elsewhere.

6.4.1 Bias update

For asymptotically stable systems, a particularly simple model updating strategy is
possible for MPC formulations that only use process inputs and measurements in the
formulation (i.e., when unmeasured states do not appear in the objective function
or in the constraints). In such cases, it would be natural to calculate the predicted
deviations from the desired output trajectory (which may be called, say, Ãdev), rather
than the predicted deviations from the desired state trajectory Âdev. Then, the model
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can be ’updated’ by simply adding the present difference between process output and
model output to the model’s prediction of the future outputs. This is known as a
’bias update’, and is widespread in industrial applications. Note, however, that the
bias update

∙ is only applicable to asymptotically stable systems, and may result in poor
control performance for systems with slow disturbance dynamics, and that

∙ it may be sensitive to measurement noise. If a measurement is noisy, one
should attempt to reduce the noise (typically by a simple low-pass filter) before
calculating the measurement bias.

6.4.2 Kalman filter and Extended Kalman Filters

The Kalman filter is probably the model updating technique of choice for the ’purist’,
as it is ’optimal’ in the sense of minimizing the variance of the estimation error for
linear systems subject to Gaussian noise4.

In order to present the Kalman filter equations, some nomenclature must be in-
troduced:
x̂k∣k−n The n step ahead prediction of the state at time k.
x̂k∣k−1 The 1 step ahead prediction of the state at time k, i.e., the best

estimate of the state at time k using information available up to and
including time k − 1 (also known as the a priori estimate).

x̂k∣k The estimate of the state at time k, accounting for information
available up to and including time k
(also known as the a posteriori estimate).

wk State excitation noise at time k, assumed to be normally distributed
with zero mean, and to have no correlation between values at
different times k.

vk Measurement noise at time k, also assumed to be normally
distributed with zero mean, without correlation in time.

W Variance of the state exitation noise w.
V Variance of the measurement noise v.
Πk∣k−n Variance in the state estimate for time k, when accounting for

information up to and including time k − n.
Πk∣k Variance in the state estimate for time k, when accounting for

information up to and including time k.
Π0 = Π0∣0 Variance in initial state estimate (given or estimated).

The

state excitation noise and measurement noise are included in the plant model as fol-

4The use of ’inverted commas’ around purist and optimal should not be interpreted as any disre-
gard of control theory. One should, however, keep in mind that most real-life systems are not linear,
and that Gaussian noise cannot capture all the observed differences between model predictions and
actual observations. Despite these reservations, the Kalman filter has proven valuable in numerous
applications.
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lows:

xk+1 = Axk +Buk + Ewk (6.19)

yk = Cxk + vk

The Kalman filter equations are then given by (see, e.g., [1]):

x̂k+1∣k = Ax̂k∣k +Buk (6.20)

Πk+1∣k = AΠk∣kA
T + EWET (6.21)

Πk+1∣k+1 = Πk+1∣k − Πk+1∣kC
T (CΠk+1∣kC

T + V )−1CΠk+1∣k (6.22)

(6.23)

When the measurement yk+1 is obtained, this is used to update the state estimate:

x̂k+1∣k+1 = x̂k+1∣k +Kk+1(yk+1 − Cx̂k+1∣k) (6.24)

where Kk+1 is the Kalman filter gain at time k + 1, and is given by

Kk+1 = Πk+1∣k+1C
TV −1 (6.25)

From (6.21) we see that the uncertainty (represented by the variance of the state
estimate) in stable states reduces with time, and that the uncertainty for unstable
states increase. Similarly, the same equation tells us that the state excitation noise
increases uncertainty. Equation (6.22) shows that the uncertainty is reduced by taking
new measurements, but the reduction in uncertainty is small if the measurement noise
is large. All this does of course agree with intuition.

Provided some technical assumptions are met (like detectability - all unstable
states must show up in the measurements), the variances will converge to steady val-
ues, which may be found by setting Πk+1∣k = Πk∣k−1 and Πk+1∣k+1 = Πk∣k. Equations
(6.21, 6.22) then give

Πk+1∣k = AΠk+1∣kA
T + AΠk+1∣kC

T (V + CΠk+1∣kC
T )−1CΠk+1∣kA

T + EWET (6.26)

and the corresponding steady state value of Πk∣k can be found from (6.22), and the
steady state Kalman gain from (6.25).

Although it is natural to assume that the state estimates are more uncertain
initially, it is quite common to ignore the transient behaviour described by (6.21,
6.22), and only use the steady state solution to the Kalman filter. Software for
calculating the steady state Kalman filter is readily available, (6.26) is cumbersome
and difficult to solve by hand for systems with more than one state.

Augmenting a disturbance description

In many applications, assuming disturbances (represented by the state excitation
noise, w), to be a sequence of zero mean, normally distributed, independent impulses
(a ’white noise’ description) is a poor representation of how disturbances actually
enter the system. Often, there is strong temporal correlation in how disturbances
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affect system states and outputs. Such disturbances may be modelled by augment-
ing states representing the slow disturbance dynamics to the plant model. A good
representation of disturbance dynamics is often a crucial element in achieving good
closed-loop control performance.

A Kalman filter using an augmented disturbance description is often termed an
Augmented Kalman Filter (AKF). In section 6.5.2 an example of a state space model,
augmented with integrating states to represent disturbances both at the plant inlet
and at the plant outlet, is shown in (6.89 - 6.91). When augmenting the model with
integrating states, it is important that the augmented model is detectable. This point
is further elaborated in section 6.5.2.

The Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the Kalman filter to non-linear
systems. Although this extension seems quite natural and sensible, it is nevertheless
somewhat ad hoc.

We start from a non-linear plant model, with additive measurement noise:

xk+1 = f(xk, uk, wk) (6.27)

yk = ℎ(xk, uk) + vk (6.28)

Equation (6.27) is used directly (assuming wk = 0) to calculate x̂k+1∣k. Similarly,
(6.28) is used to calculate ŷk+1∣k (using vk+1 = 0, x̂k+1∣k, and uk)

5. The value of
ŷk+1∣k then enters instead of Cx̂k+1∣k in (6.24). On the other hand, the propagation
of estimate variances (6.21, 6.22) and calculation of the Kalman filter gain (6.25) are
done with local linearizations of the nonlinear model. Thus, we use:

Ak =
∂f

∂x

∣∣∣∣
wk=0,x̂k∣k,uk

(6.29)

Bk =
∂f

∂u

∣∣∣∣
wk=0,x̂k∣k,uk

(6.30)

Ek =
∂f

∂w

∣∣∣∣
wk=0,x̂k∣k,uk

(6.31)

Ck+1 =
∂ℎ

∂x

∣∣∣∣
x̂k+1∣k,uk

(6.32)

The EKF is commonly used for state estimation for nonlinear plants, and often per-
forms well if the linearization is a fairly accurate approximation to the non-linear
system over a single time step.

5Normally, the state estimate is updated before a new input is calculated, and therefore the input
which is applied when the measurement yk+1 is obtained is actually uk (assuming that a ’zero order
hold’ is used).
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The Iterated Extended Kalman Filter

The Iterated Extended Kalman Filter (IEKF) is and attempt to enhance the ability of
the EKF to handle non-linearity. We note that Ck+1 in (6.32) is obtained by lineariz-
ing around the a priori state estimate x̂k+1∣k. If the system is strongly non-linear, the
resulting value of Ck+1 may therefore be inaccurate, and a more accurate linearized
measurement equation may be obtained by linearizing around the a posteriori esti-
mate x̂k+1∣k+1 - once that estimate is available. Further iterations would allow forther
improvements in state estimation accuracy.

To present the IEKF, we will need a second subscript on several of the matrices
in the EKF formulation, as well as the a posteriori state estimate. This second
subscript represents the iteration number (at time k + 1), with iteration number 0
representing the initial EKF calculations. Thus, from the initial EKF calculations
we have x̂k+1∣k,0 = ℎ(x̂k∣k,N , uk) and Πk+1∣k, where N is the number of iterations of
the IEKF at each timestep. For iteration i at time k + 1 the IEKF calculations then
proceed as follows:

Ck+1,i = =
∂ℎ

∂x

∣∣∣∣
x̂k+1∣k+1,i−1,uk

(6.33)

Kk+1∣i = Πk+1∣kC
T
k+1,i

(
Ck+1,iΠk+1∣kC

T
k+1,i + V

)−1
(6.34)

Πk+1∣k+1,i = (I −Kk+1,iCk+1,i)Πk+1∣k (6.35)

x̂k+1∣k+1,i = x̂k+1∣k (6.36)

+ Kk+1,i

[
yk+1 − ℎ(x̂k+1∣k+1,i−1, uk)− Ck+1,i(x̂k+1∣k − x̂k+1∣k+1,i−1)

]

The calculations proceed a predetermined number of iterations, or terminate when
the change in state estimate between subsequent iterations is sufficiently small. At
that point, after N iterations, one specifies

x̂k+1∣k+1 = x̂k+1∣k+1,N

Πk+1∣k+1 = Πk+1∣k+1,N

which allows initiating the IEKF at time k+2 using the ordinary EKF. Although it is
no general rule, it is often found that most of the improvement in the state estimate
is achieved with a low number of iterations in the IEKF - often only one iteration
after the EKF calculations.

6.4.3 Unscented Kalman filter

The Unscented Kalman Filter is a more recent modification to the Kalman filter, to
better handle nonlinear models. The UKF avoids using a local linearization of the
nonlinear model, but instead uses the model directly to propagate state estimates
and (approximations of) probability distributions forward in time. Although not
many industrial applications are reported, it seem that the UKF compares well with
the more common EKF, in particular when the nonlinearities are pronounced. The
presentation of the UKF in this note is based on Simon [87], who gives an accessible
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introduction to both traditional state estimation and more recent developments in
the area, and includes extensive references to the state estimation literature.

For simplicity of presentation, we assume that both the state excitation noise w
and the measurement noise v enter the equations linearly, i.e.

xk+1 = f(xk, uk) + wk (6.37)

yk = ℎ(xk) + vk (6.38)

The noises w and v are both assumed to be zero mean, normally distributed, with
known covariances W and V , respectively. Let n denote the number of states in the
model (the dimension of the state vector x).

The UKF is initialized with known (or assumed) initial values for the mean value
of the state x0∣0 and the state covariance Π0∣0.

The UKF then proceeds as follows:

∙ Propagate the mean state estimate from time k − 1 to time k. Instead of
propagating the mean value x̂k−1∣k−1 directly through the system dynamics,
2n perturbed state values are perturbed, to better capture how the system
non-linearity affects the mean.

1. Select the perturbed states as follows:

x̂
(i)
k−1 = x̂k−1∣k−1 + x̃(i) i = 1, . . . , 2n (6.39)

x̃(i) =
(√

nΠk−1∣k−1

)T
i

i = 1, . . . , n (6.40)

x̃(n+i) = − (√
nΠk−1∣k−1

)T
i

i = 1, . . . , n (6.41)

where
(√

nΠ
)
i
denotes the i’th row of the matrix square root of nΠ,

defined such that (
√
nΠ)T (

√
nΠ) = nΠ. The matrix square root may be

calculated by the Matlab functions sqrtm or chol6. These perturbed state
values x̂(i) are often termed sigma points.

2. Propagate each sigma point through the system dynamics:

x̂
(i)
k∣k−1 = f(x̂

(i)
k−1, uk−1) (6.42)

3. Combine the points x̂
(i)
k∣k−1 to obtain the a priori state estimate:

xk∣k−1 =
1

2n

2n∑
i=1

x̂
(i)
k∣k−1 (6.43)

∙ Calculate the a priori state covariance estimate:

Πk∣k−1 =
1

2n

2n∑
i=1

(
x̂
(i)
k∣k−1 − xk∣k−1

)(
x̂
(i)
k∣k−1 − xk∣k−1

)T

+W (6.44)

6The matrix square root is not uniquely defined (even for the positive definite covariance matrices
considered here), and the two functions may therefore give different results. This is thought to be
of little consequence here.
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∙ Implement the measurement equation.

1. Determine new sigma points around xkk−1:
7

x̂
(i)
k = xk∣k−1 + x̃(i) i = 1, . . . , 2n (6.45)

x̃(i) =
(√

nΠk∣k−1

)T
i

i = 1, . . . , n (6.46)

x̃(n+i) = − (√
nΠk∣k−1

)T
i

i = 1, . . . , n (6.47)

2. Pass each of the new sigma sigma points through the measurement equa-
tion:

ŷ
(i)
k = ℎ(x̂

(i)
k ) (6.48)

3. Calculate the predicted measurement at time k:

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (6.49)

∙ Estimate the measurement covariance:

Πy,k =
1

2n

2n∑
i=1

(
ŷ
(i)
k − ŷk

)(
ŷ
(i)
k − ŷk

)T

+ V (6.50)

∙ Estimate the cross covariance between the state estimate x̂k∣k−1 and the mea-
surement estimate ŷk:

Πxy,k =
1

2n

2n∑
i=1

(
x̂
(i)
k∣k−1 − xk∣k−1

)(
ŷ
(i)
k − ŷk

)T

(6.51)

The a posteriori state estimate and covariance are now obtained from

Kk = Pxy,kP
−1
y,k (6.52)

x̂k∣k = x̂k∣k−1 +Kk(yk − ŷk) (6.53)

Πk∣k = Πk∣k−1 −KkΠy,kK
T
k (6.54)

Remark: Note that the UKF applies also to time-varying systems. Both the
system dynamics f(⋅), the measurement equation ℎ(⋅) and the noise covariances W
and V may be time varying (as long as they are known).

Many feedback systems are characterized by continuous-time system dynamics
and discrete-time control and estimation. For such systems, so-called ’hybrid’ EKFs
have been developed, see, e.g., Simon [87]. Note that for the UKF the functions f(⋅)
and ℎ(⋅) need not be explicitly given as discrete-time functions - they may just as
well result (implicitly) from the integration of ordinary differential equations. It is

7This step may be omitted, and the propagated sigma points x̂
(i)
k∣k−1 calculated above used instead,

if reducing the computational load is essential.
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therefore rather straight forward to apply the UKF also to continuous-time systems
with discrete-time estimation and control.

In some cases the state excitation noise and the measurement noise may enter
non-linearly, i.e., we have

xk+1 = f(xk, uk, wk) (6.55)

yk = ℎ(xk, vk) (6.56)

In such cases, the state vector x can be augmented with the noise vectors, giving

xa
k =

⎡
⎣

xk

wk

vk

⎤
⎦ (6.57)

x̂a
0∣0 =

⎡
⎣

x̂0∣0
0
0

⎤
⎦ (6.58)

Πa
0∣0 =

⎡
⎣

Π0∣0 0 0
0 W 0
0 0 V

⎤
⎦ (6.59)

Thus the UKF procedure described above can be used. Note, however, that the
state excitation noise wk and the measurement noise vk are now accounted for when
calculating the sigma points. Therefore W should not be added when calculating the
a priori covariance estimate nor should V be added when calculating the measurement
covariance.

The IEKF and UKF are both modifications of the (E)KF for the purpose of
improved handling of nonlinearity. Another such modification is the second-order
EKF (see, e.g., [87]). This author is not aware of systematic comparisons of perfor-
mance and computational requirements for these state estimation methods. Clearly,
the UKF can be computationally rather demanding, if propagating the sigma points
through (6.37) is demanding. This can occur, e.g., if f(⋅) in (6.37) results implicitly
from the integration of a high order, stiff continuous-time model. However, for such
problems, the rigorous propagation of the covariance matrix Π for a hybrid (contin-
uous - discrete) EKF is also likely to be demanding.

6.4.4 Receding Horizon Estimation

Receding Horizon Estimation (RHE, a.k.a. Moving Horizon Estimation, MHE) is
inspired by the success of MPC in control problems where constraints are important.

There are also many estimation problems where knowledge about the plant is
easily formulated as constraints, and where such constraints will improve on the
plant knowledge that is captured by the model alone. An opinion commonly held
in academia seems to be that a sufficiently detailed plant model will capture all
relevant constraints. Whereas this may be true (and often relatively straight forward
to capture) in a simulation model, the way models are used in estimation may often
destroy such model features. Two examples:
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∙ The EKF uses a local linearization of the plant model, and the state update
may easily result in infeasible state estimates.

∙ When propagating probability distributions for the UKF, the states are per-
turbed. These perturbed states may be infeasible.

There does exist approaches for ensuring feasible state estimates both for the EKF
and the UKF, usually involving the ’projection’ of the state estimate onto a feasible
region of the state space. However, it may be better to embed the knowledge about
what state estimates are possible directly into the state estimation. In such cases,
RHE seems to be an obvious choice.

We assume as before that the state excitation noise and measurement noise are
zero mean, independent and normally distributed, with covariances W and V , re-
spectively. We also assume that an estimate x̂0 of the initial state is available, with
a known covariance Π0.

At time k, a natural formulation of the state estimation problem would then be
to solve

min
x̃,w,v

Ã
(x̂0 − x̃0)

TΠ−1
0 (x̂0 − x̃0) +

k∑
i=1

vTi V
−1vi + wT

i−1W
−1wi−1

)
(6.60)

subject to constraints

x̂0 given

yi given; i = 1, ⋅ ⋅ ⋅ , k
ui given; i = 0, ⋅ ⋅ ⋅ , k − 1

yi = Cx̃i + vi; i = 1, ⋅ ⋅ ⋅ , k (6.61)

x̃i+1 = Ax̃i +Bui + Ewi; i = 0, ⋅ ⋅ ⋅ , k − 1 (6.62)

XL ≤ x̃i ≤ XU ; i = 0, ⋅ ⋅ ⋅ , k (6.63)

Here

x̃ =
[
x̃T
0 ⋅ ⋅ ⋅ x̃T

k

]T

w =
[
wT

0 ⋅ ⋅ ⋅ wT
k−1

]T

v =
[
vT1 ⋅ ⋅ ⋅ vTk

]T
(6.64)

One may also put constraints explicitly on wi and vi. Note, however, that when both
wi and vi (or x̃i and vi) are constrained, outliers in measurements, etc., may result in
an infeasible optimization problem.

The optimization problem above is called a ’Full Information’ problem, at each
step in time it accounts for all the information that is available at that time. Convert-
ing the Full Information problem to a standard QP should not be difficult, following
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the lines of what was done above for the MPC formulation. However, one problem
is apparent: the size of the optimization problem grows without bounds as time pro-
gresses. The typical way of handling this problem, is to consider only a ’window’ in
the recent past in the optimization problem. The information available from the time
before the start of the current window is accounted for by a weight on the given state
estimate at the beginning of the window.

Below, the problem formulation for a fixed window length of N timesteps is pre-
sented. Following what is conventional in the literature, the time indices on the
variables are changed to reflect ’standing at time t = k and looking backwards in
time’, rather than ’standing at time t = 0 and looking forward in time’. This gives
the following problem formulation:

min
x̃,w,v

(x̂k−N − x̃k−N)
T §(x̂k−N − x̃k−N) (6.65)

+
N∑
i=1

(
vTk−N+iV

−1vk−N+i + wT
k−N−1+iW

−1wk−N−1+i

)

subject to constraints

x̂k−N given

yk−N+i given; i = 1, ⋅ ⋅ ⋅ , N
uk−N+i given; i = 0, ⋅ ⋅ ⋅ , N − 1

yk−N+i = Cx̃k−N+i + vk−N+i; i = 1, ⋅ ⋅ ⋅ , N (6.66)

x̃k−N+i+1 = Ax̃k−N+i +Buk−N+i + Ewk−N+i; i = 0, ⋅ ⋅ ⋅ , N − 1 (6.67)

XL ≤ x̃k−N+i ≤ XU ; i = 0, ⋅ ⋅ ⋅ , N (6.68)

Clearly the definitions of x̃, w and v need to be modified:

x̃ =
[
x̃T
k−N ⋅ ⋅ ⋅ x̃T

k

]T
(6.69)

w =
[
wT

k−N ⋅ ⋅ ⋅ wT
k−1

]T
(6.70)

v =
[
vTk−N+1 ⋅ ⋅ ⋅ vTk

]T
(6.71)

(6.72)

Note that

∙ The problem formulation above reflects the situation where, at each timestep,
the state estimation is performed after receiving new measurements, before the
MPC calculations are performed. Thus, the MPC calculations are performed
with the a posteriori state estimate as a initial condition. To reduce computa-
tional delay before a new manipulate variable is available, one may instead in
the MPC use the a priori state estimate as the initial condition - and at each
timestep perform the MPC calculations before the state estimation. This may
be particularly relevant for some nonlinear MPC problems, where the model
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at each timestep is linearized around a predicted future state and input trajec-
tory. Using the a priori state estimate in the MPC allows the linearization and
subsequent problem formulation to be performed ’at the end of the previous
timestep’ rather than before solving the MPC optimization ’at the start of the
new timestep’.

∙ In the problem formulation above, the effect of v0 is assumed accounted for in
the estimate x̂0, and v0 therefore does not enter the optimization problem.

∙ Likewise, no effect of wk can be observed before time k + 1, and wk therefore
does not enter the optimization problem.

∙ In the MPC formulation, the state constraints represent undesirable operating
conditions. In the estimation formulation, however, the state constraints rep-
resent impossible (or highly improbable) operating conditions - typically con-
straints such as ’the concentration of any chemical component cannot be neg-
ative’. That is, the state constraints typically are not the same in MPC and
RHE. If an operating condition is undesirable, it is important to get away from
that operating condition as quickly as possible. Therefore, the RHE must be
able to detect such an operating condition - and the state constraint introduced
in the MPC to avoid the undesirable operating condition therefore should not
be included in the RHE.

The arrival cost

In the RHE formulation above, the term (x̂k−N − x̃k−N)
T §(x̂k−N − x̃k−N) accounts

for the information hat has been available about the system before the start of the
estimation window. This term is often called the arrival cost. The ideal arrival cost
would make the fixed window length problem in (6.65-6.68) identical to the Full
Information problem in (6.60-6.63). In general, we are not able to determine such
an arrival cost. The exception is the linear, unconstrained case, where the Kalman
filter can provide us with the arrival cost. However, the arrival cost also depends on
how information is passed between subsequent timesteps of the RHE, which will be
further explained in the next two subsections.

The filtering formulation of RHE

In the filtering formulation of the RHE, we use the estimate

x̂k−N = x̃k−N ∣x−N (6.73)

That is, x̂k−N is the (a posteriori) estimate obtained the first time the time instant
k − N was included in the estimation window, and is based only on information
available at time k −N . With this formulation, we use

S = Π−1
k−N ∣k−N (6.74)

where Πk−N ∣k−N is the a posteriori estimate covariance at time k −N .
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The smoothing formulation of RHE

In the smoothing formulation, we use instead the most recent estimate of xk−N . Thus,
at time k we use

x̂k−N = x̃k−N ∣k−1 (6.75)

This means that the estimate x̂k−N is ’smoothed’ (and improved) using measurements
obtained after time k −N . In this case, it has been shown (see, e.g., [79]), that the
arrival cost should consist of two terms. The first term represents the uncertainty
(covariance) of the estimate x̂k−N , represented by Πk−N ∣k−1. The second term is added
to prevent the information in yk−N , ⋅ ⋅ ⋅ , yk−1 to be used twice (both in x̂k−N and in
the RHE calculations at time k).

To calculate the second term, we need the covariance of the estimate of the mea-

surement sequence YN−1 =
[
yTk−N+1 ⋅ ⋅ ⋅ yTk−1

]T
, given xk−N .

Manipulating the model equations, we get

YN−1 =

⎡
⎢⎢⎢⎢⎢⎣

CA
CA2

...
CAN−2

CAN−1

⎤
⎥⎥⎥⎥⎥⎦
xk−N (6.76)

+

⎡
⎢⎢⎢⎣

0 0 ⋅ ⋅ ⋅ 0 CB
...

...
...

...
...

0 0 CB ⋅ ⋅ ⋅ CAN−3B
0 CB ⋅ ⋅ ⋅ CAN−3B CAN−2B

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

uk−1

uk−2
...

uk−N+1

uk−N

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0 ⋅ ⋅ ⋅ 0 CE

0 0
. . . CE CAE

...
. . . ⋅ ⋅ ⋅ . . .

...
0 CE ⋅ ⋅ ⋅ CAN−3E CAN−2E

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

wk−1

wk−2
...

wk−N+1

wk−N

⎤
⎥⎥⎥⎥⎥⎦

+
[
0 I(N−1)⋅ny×(N−1)⋅ny

]
⎡
⎢⎢⎢⎣

vk
vk−1
...

vk−N+1

⎤
⎥⎥⎥⎦

Noting that YN−1 is independent of vk, this may be reformulated as

YN−1 −ON−1xk−N − B̃u = Ẽw + Ĩvk−1 (6.77)

where

Ĩ =
[
I(N−1)⋅ny×(N−1)⋅ny 0(N−1)ny×⋅ny

]
; vk−1 =

⎡
⎢⎣

vk−1
...

vk−N

⎤
⎥⎦
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The variance of the left hand side of (6.77) (for a given xk−N) and fixed u is therefore

S−1
2 = ẼW̃ ẼT + Ĩ Ṽ ĨT (6.78)

where W̃ = diag{W} and Ṽ = diag{V }.
The above expression corrects some minor mistakes in the expression in [79]. Next,

we need to account for the fact that the inputs u, although known, depend on the
noises w and v. To express this dependency, we need to account for feedback in
both control and estimation. An explicit formulation of MPC and RHE would enable
accounting for the constraints active at each timestep. However, the explicit solution
often is not available, and the formulation would become both complex and time-
varying. Instead, we will assume that a ’conventional’ QP-based MPC formulation is
in use, which when constraints are not active corresponds to (an easily computable)
LQ-optimal controller K. Similarly, the state estimation will be represented by the
steady-state Kalman filter gain L.

The plant model, together with the (unconstrained) control and estimation, then
yields

xk+1∣k+1 = Axk∣k +Buk + L(yk − Cxk∣k) + wk (6.79)

= (A+BK)xk∣k + Lvk + wk

Starting from a given value of xk−N , we then obtain

uk−N = Kxk−N

uk−N+1 = K(A+BK)xk−N +KLvk +Kwk

uk−N+2 = K(A+BK)2xk−N +K(A+BK)Lvk +KLvk+1 +K(A+BK)wk +Kwk+1

uk−N+i = K(A+BK)ixk−N

+ K
[
I (A+BK) ⋅ ⋅ ⋅ (A+BK)i−1

]
⎡
⎢⎣

Lvk−N+i + wk−N+i
...

Lvk−N + wk−N

⎤
⎥⎦ (6.80)

Thus, we get

⎡
⎢⎢⎢⎣

uk−1

uk−2
...

uk−N

⎤
⎥⎥⎥⎦ = K̃

⎡
⎢⎢⎢⎢⎢⎣

(A+BK)N−1

(A+BK)N−2

...
(A+BK)

I

⎤
⎥⎥⎥⎥⎥⎦
xk−N

+ K̃

⎡
⎢⎢⎢⎢⎢⎣

I (A+BK) ⋅ ⋅ ⋅ (A+BK)N−2 (A+BK)N−1

0 I (A+BK) ⋅ ⋅ ⋅ (A+BK)N−2

...
. . . . . . . . .

...

0 0
. . . I (A+BK)

0 0 ⋅ ⋅ ⋅ 0 I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

Lvk−1 + wk−1
...

Lvk−N + wk−N

⎤
⎥⎦

= K̃AKxk−N + K̃BKw + K̃BKL̃vk−1 (6.81)
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Substituting (6.81) into (6.77) we obtain

YN−1 −
(
ON−1 + K̃AK

)
xk−N =

(
Ẽ + K̃BK

)
w +

(
Ĩ + K̃BKL̃

)
vk−1 (6.82)

This corresponds to the arrival cost

Γ(x̃k−N) = (x̂k−N − x̃k−N)
TS1(x̂k−N − x̃k−N) (6.83)

−
(
YN−1 −

(
ON−1 + K̃AK

)
x̃k−N

)T

S2

(
YN−1 −

(
ON−1 + K̃AK

)
x̃k−N

)

with

S−1
1 = Πk−N ∣k−1 (6.84)

S−1
2 =

(
Ẽ + K̃BK

)
W̃

(
Ẽ + K̃BK

)T

+
(
Ĩ + K̃BKL̃

)
Ṽ
(
Ĩ + K̃BKL̃

)T

(6.85)

To obtain the smoothed covariance Πk−N ∣k−1 we must first propagate the Kalman
filter covariances forward in time to obtain Πk−N+i∣k−N+i and Πk−N+i∣k−N+i−1. The
smoothed covariance is then obtained by propagating backwards from k− 1 to k−N
using the following relationships [1]:

ΠT−i∣T = ΠT−i∣T−i − ZT−i(ΠT−i+1∣T−i − ΠT−i+1∣T )Z
T
T−i (6.86)

ZT−i = ΠT−i∣T−iA
TΠ−1

T−i+1∣T−i (6.87)

starting with Πk−1∣k−1 and T = k − 1.

6.4.5 Concluding comments on state estimation

It is clearly impossible to cover all relevant formulations of state estimators in a
chapter of this note. Other relevant and interesting estimator types include

∙ The second order EKF[87], mentioned briefly above.

∙ The particle filter [87]. This is essentially a Monte Carlo approach to state
estimation, and may be particularly relevant for systems where the probability
density function of the state estimate is multi-modal. For such systems it is
clearly misleading to represent the state estimation accuracy using the state
estimate covariance only.

∙ The Ensemble Kalman Filter (EnKF), [20, 21], a modification of the Kalman
filter for applications to systems of very high order, such as meteorological
models and petroleum reservoir models.

In addition, there is also a large area of observer design for deterministic systems.
Another area that has not been addressed, is the practical implementation of the

state estimators, both for computational efficiency and robustness. For all of these
topics, the reader is referred to more specialized literature. The book by Simon [87]
is proposed as a good place to look for information and references to other works on
many of these issues.
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6.5 Disturbance handling and offset-free control

In most control applications, the ability to handle disturbances is important. In
addition, differences between the model and the actual plant will lead to erroneous
prediction, and hence to steady state offset.

Disturbances thet can be measured directly, and whose effect on the controlled
variables are known, can be handled by feedforward, which is easily included in MPC.
This is addressed briefly in the next subsection.

Unmeasured disturbances and plant-model mismatch require integral action for
offset-free control at steady state. The simplest way of including integral action is to
formulate the MPC in terms of the changes in manipulated variables, as described
in Section 6.2, combined with a ’bias update’. Provided the actuation limits for the
manipulated variables are included in the constraints, to avoid windup, this is a fairly
straight forward way of achieving offset-free control.

The problem with this simple way of achieving offset-free control is that it can re-
sult in poor control performance. It implicitly assumes that the effects of disturbances
is modelled well as steps in the measured output. In many applications, disturbances
show dynamics over a significant timescale - typically the same timescale as for the
manipulated variables. That is, disturbances often enter at the plant inputs rather
than at the plant outputs. Good performance for MPC requires the effects of dis-
turbances to be modelled well. For disturbances entering at the plant inputs, the
simple way of introducing integral action described above will lead to poor perfor-
mance in the face of disturbances. A more general way of ensuring offset-free control,
which is able to handle disturbances entering both at the plant inputs and at the
plant outputs, will be described below. This is based on [71], where a more complete
description may be found.

6.5.1 Feedforward from measured disturbances

With MPC it is very simple to include feedforward from measured disturbances,
provided one has a model of how the disturbances affect the states/outputs.

Feedforward is naturally used to counteract the future effects of disturbances on
the controlled variables (it is too late to correct the present value). Thus, feedforward
in MPC only requires that the effect on disturbances on the controlled variables are
taken into account when predicting the future state trajectory in the absence of
any control action. Feedforward from measured disturbances is included in the MPC
formulation above, through the term B̂d± in (6.10), where ± represents the present and
future disturbances. If no other information is available, it is usually assumed that the
future disturbances are equal to the present disturbance. Control performance will
of course be affected by the accuracy of this assumption. In some cases information
from upstream units, or knowledge of planned production changes, can provide better
information about future disturbances.

The benefit obtained by using feedforward will (as always) depend on what band-
width limitations there are in the system for feedback control. Furthermore, effective
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feedforward requires both the disturbance and process model to be reasonably accu-
rate.

6.5.2 Disturbance estimation and offset-free control

If offset-free control is desired, it is necessary to account for differences between the
model and the actual plant. This can be done by estimating unmeasured disturbances
affecting the plant. The ’bias update’ is a simple way of doing this, but it is often
desired to be able to account for more general disturbance dynamics. This is done
by augmenting the plant model with additional states di,k representing disturbances
entering at the plant inputs, and do,k representing disturbances entering at the plant
output. Thus, the augmented state space model becomes

x̃k+1 = Ãkx̃k +Buk + Edk (6.88)

yk = C̃x̃k + Fdk

Here dk represent measured disturbances, whereas the estimated disturbances are
included in the augmented state vector x̃. The augmented state vector and the
correspondingly modified state space matrices are given by

x̃ =

⎡
⎣

x
di
do

⎤
⎦ (6.89)

Ã =

⎡
⎣

A Ei 0
0 I 0
0 0 I

⎤
⎦ (6.90)

C̃ =
[
C 0 Cdo

]
(6.91)

This model can be used for state estimation, using, e.g., a Kalman filter or Receding
Horizon Estimation. Muske and Badgwell [71] show that it is always possible to
choose Ei and Cdo such that the augmented state space model is detectable, provided

∙ the original model {C,A} is detectable, and

∙ the number of estimated disturbance states (the sum of the number of elements
in di and do) is no larger than the number of independent measurements used
for estimation.

Naturally, the matrices Ei and Cdo, as well as the dimensions of di and do, should
be chosen to reflect the observed disturbance dynamics as well as possible. However,
unfortunate choices for Ei and Cdo may make the augmented model undetectable.

If {C,A} is detectable, detectability of the overall system is determined by

Rank

[
(I − A) −Ei 0

C 0 Cdo

]

which should equal the number of states in the augmented model. From this is derived
a few conditions for detectability of the augmented system:
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∙ The augmented system {C̃, Ã} is not detectable if Ei and/or Cdo are not full
column rank.

∙ The augmented system {C̃, Ã} is not detectable if the number of disturbance
states exceeds the number of linearly independent outputs.

∙ The augmented system {C̃, Ã} is not detectable if the range of Ei contains an
unobservable mode of {C,A}.

∙ The augmented system {C̃, Ã} is not detectable if the range of Cdo contains the
output space spanned by an integrating mode of A.

If a detectable augmented state-space model is used for estimation, the estimated
input disturbances di can be used just like measured disturbances in the MPC. That
is, the following state space equation should be used

xk+1 = Axk +Buk +
[
E Ei

] [ dk
di,k

]
(6.92)

In addition, one must ensure that the state references xref and manipulated variable
references uref are consistent at steady state with the steady state (measured and
estimated) disturbances and the input and output targets specified by higher levels
of the operational hierarchy. This is further addressed in the section on Target cal-
culation below. If the references are consistent at steady state, and the system is
stable in closed loop, the disturbance estimation scheme described above will result
in offset-free control at steady state.

6.6 Feasibility and constraint handling

For any type of controller to be acceptable, it must be very reliable. For MPC con-
trollers, there is a special type of problem with regards to feasibility of the constraints.
An optimization problem is infeasible if there exists no exists no set of values for the
free variables in the optimization for which all constraints are fulfilled. Problems
with infeasibility may occur when using MPC controllers, for instance if the operat-
ing point is close to a constraint, and a large disturbance occurs. In such cases, it
need not be possible to fulfill the constraint at all times. During startup of MPC
controllers, one may also be far from the desired operating point, and in violation
of some constraints. Naturally, it is important that the MPC controller should not
’give up’ and terminate when faced with an infeasible optimization problem. Rather,
it is desirable that the performance degradation is predictable and gradual as the
constraint violations increase, and that the MPC controller should effectively move
the process into an operating region where all constraints are feasible.

If the constraints are inconsistent, i.e., if there exists no operating point where the
MPC optimization problem is feasible, then the problem formulation in meaningless,
and the problem formulation has to be modified. Physical understanding of the
process is usually sufficient to ensure that the constraints are consistent. A simple
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example of an inconsistent set of constraints is if the value of the minimum value
constraint for a variable is higher than the value of the maximum value constraint.

Usually, the constraints on the inputs (manipulated variables) result from true,
physical constraints that cannot be violated. For example, a valve cannot be more
than 100% open. On the other hand, constraints on the states/outputs often
represent operational desireables rather than fundamental operational constraints.
State/output constraints may therefore often be violated for short periods of time
(although possibly at the cost of producing off-spec products or increasing the need
for maintenance). It is therefore common to modify the MPC optimization problem
in such a way that output constraints may be violated if necessary. There are (at
least) three approaches to doing this modification:

1. Remove the state/output constraints for a time interval in the near future. This
is simple, but may allow for unnecessarily large constraint violations. Further-
more, it need not be simple to determine for how long a time interval the
state/output constraints need to be removed - this may depend on the operat-
ing point, the input constraints, and the assumed maximum magnitude of the
disturbances.

2. To solve a separate optimization problem prior to the main optimization in
the MPC calculations. This initial optimization minimizes some measure of
how much the output/state constraints need to be moved in order to produce
a feasible optimization problem. The initial optimization problem is usually a
LP problem, which can be solved very efficiently.

3. Introducing penalty functions in the optimization problem. This involves mod-
ifying the constraints by introducing additional variables such that the con-
straints are always feasible for sufficiently large values for the additional vari-
ables. Such modified constraints are termed soft constraints. At the same
time, the objective function is modified, by introducing a term that penalizes
the magnitude of the constraint violations. The additional variables introduced
to ensure feasibility of the constraints then become additional free variables in
the optimization. Thus, feasibility is ensured by increasing the size of the
optimization problem.

The two latter approaches are both rigorous ways of handling the feasibility prob-
lem. Approach 3 has a lot of flexibility in the design of the penalty function. One
may ensure that the constraints are violated according to a strict list of priorites, i.e.,
that a given constraint will only be violated when it is impossible to obtain feasibility
by increasing the constraint violations for less important constraints. Alternatively,
one may distribute the constraint violations among several constraints. Although
several different penalty functions may be used, depending on how the magnitude of
the constraint violations are measured, two properties are desireable:

∙ That the QP problem in the optimization problem can still be solved efficiently.
This implies that the Hessian matrix for the modified problem should be positive
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definite, i.e., that there should be some cost on the square of the magnitude of
the constraint violations.

∙ That the penalty functions are exact, which means that no constraint violations
are allowed if the original problem is feasible. This is usually obtained by
putting a sufficiently large weight on the magnitude of the constraint violations
(i.e., the linear term) in the objective function.

The use of penalty functions is described in standard textbooks on optimization
(e.g. [23]), and is discussed in the context of MPC in e.g. [17, 85, 45].

Feasibility at steady state is discussed in more detail in the section on ’Target
calculation’ below. The techniques used there closely resemble those that are applied
to the dynamic optimization problem in MPC, with the simplification that only steady
state is addressed i.e., there is no prediction horizon involved and the variation in
constraint violations over the prediction horizon is not an issue. Thus, only the
techniques of points 2 and 3 above are relevant for target calculation.

In addition to the problem with feasibility, hard output constraints may also
destabilize an otherwise stable system controlled by an MPC controller, see [104].
Although this phenomenon probably is quite rare, it can easily be removed by using
a soft constraint formulation for the output constraints [17]. The following section
will discuss closed loop stability with MPC controllers in a more general context.

6.7 Closed loop stability with MPC controllers

The objective function in Eq. (6.5) closely resembles that of discrete-time Linear
Quadratic (LQ) - optimal control. For stabilizable and detectable8 systems, infinite
horizon LQ-optimal control is known to result in a stable closed loop system. Note
that the requirement for detectability does not only imply that unstable modes must
be detectable from the physical measurements (i.e., that (C,A) is detectable), but
also that the unstable modes must affect the objective function, i.e., (Q1/2, A) must
be detectable.

With the stabilizability and detectability requirements fulfilled, a finite horizon
LQ-optimal controller is stable provided the weight on the ’terminal state’, S, is
sufficiently large. How large S needs to be is not immediately obvious, but it is quite
straight forward to calculate an S that is sufficiently large. In the MPC context,
this can be done by designing a stabilizing state feedback controller K , and then
calculate the S that gives the same contribution to the objective function that would
be obtained by using the controller K, and summing the terms (xi − xref,n)

TQ(xi −
xref,n) from i = n to infinity. Since the controller K results in an asymptotically

8Stabilizability is a weaker requirement than the traditional state controllability requirement,
since a system is stabilizable if and only if all unstable modes are controllable, i.e., a system can
be stabilizable even if some stable modes are uncontrollable. Similarly, a system is detectable if all
unstable modes are observable.
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stable system, this sum is finite, and hence S is finite. The value of S can be obtained
by solving a discrete Lyapunov equation

S − (A+BK)TS(A+BK) = Q

Note that if one chooses to use the infinite horizon LQ-optimal controller, solving the
Riccati equation gives both the controller K and the terminal state weight S:

S = ATSA+Q− ATSB(P +BTSB)−1BTSA

and the corresponding controller is given by

K = −(BTSB + P )−1BTSA

Whereas the solution from teh discrete Lyapunov equation sums only the ’state
cost’ over the infinite time horizon, the solution from the Riccati equation accounts for
both the state and manipulated variable costs over the infinite horizon. The Riccati
equation solution for S is thus preferable.

With a sufficiently large S, obtained as described above, the remaining require-
ment for obtaining closed loop stability is that constraints that are feasible over the
horizon n ≤ i ≤ n+ j will remain feasible over an infinite horizon (assuming no new
disturbances enter). How to find a sufficiently large j has been described above.

The above results on how to find values for S and j to guarantee stability, are not
very useful if, e.g., a step response model is used, since the values of the states are then
unavailable. Step response-based MPC controllers therefore do not have a terminal
state weight S, but rather extend the prediction of the outputs further into the future
than the time horizon over which the inputs are optimized (corresponding to np > nu

in the comments following Eq. (6.6). Although a sufficiently large prediction horizon
np compared to the ”input horizon” nu will result in a stable closed loop system (the
open loop system is assumed asymptotically stable, since a step response model is
used), there is no known way of calculating the required np. Tuning of step-response
based MPC controllers therefore typically rely heavily on simulation. Nevertheless,
the industrial success of step response-based MPC controllers show that controller
tuning is not a major obstacle in implementations.

6.8 Target calculation

It is common for MPC controllers perform a ’target calculation’ prior to the main
optimization described above. The purpose of this target calculation is to determine
consistent steady-state values for the state references xref,∞ and input references
uref,∞. Most MPC implementation have infrequently changing setpoints, and will
use reference values that are constant throughout the prediction horizon, i.e. xref,i =
xref,∞∀i and uref,i = uref,∞∀i. This covers industrial practice in the majority of
installations, but will not be applicable to some problems, e.g. batch processes or
cyclically operated plants. We will use a linear plant model, which is also common
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industrial practice. Extending the following to non-linear plant models should in
principle not be difficult for the competent reader. However, performing the target
calculation at each timestep means that one should be concerned with being able
to do the calculations quickly and reliably, and using linear models makes it much
simpler to ascertain that will actually the case.

One prerequisite for offset-free control is that the minimum value of the objective
function is at the desired references, and to ensure that one desires that

(I − A)xref,∞ = Buref,∞ + Ẽd̃∞ (6.93)

yref = Cxref,∞ + F̃ d̃∞ (6.94)

Here yref,∞ is the desired steady state value of some variables, the desired values
of which are determined by higher levels in the operational hierarchy9.

The disturbance variable vector d̃∞ is the expected/predicted/estimated steady
state value of all disturbances affecting the process, i.e., it should contain the steady
state values of measured disturbances d, estimated input disturbances di, and esti-
mated output disturbances do. Thus,

d̃∞ =

⎡
⎣

d∞
di,∞
do,∞

⎤
⎦

Ẽ =
[
E Ei 0

]

F̃ =
[
F 0 Cdo

]

In the (rare) unconstrained case, and with as many inputs u as controlled outputs
y, the state and input targets can be found from a simple matrix inversion

[
xref,∞
uref,∞

]
=

[ −(I − A) B
C 0

]−1 [
0 −Ẽ

I −F̃

] [
yref,∞
d̃∞

]
(6.95)

= M−1

[
0 −Ẽ

I −F̃

] [
yref,∞
d̃∞

]
(6.96)

Clearly, for the targets xref,∞ and uref,∞ to be well defined, the matrix M above
needs to be of full rank. Many factors may make it impossible to obtain the targets
by the simple calculations above:

∙ There may be more inputs than outputs.

9In general, the higher levels of the operational hierarchy may specify targets in terms of different
measurements than those that are used for control/estimation at the supervisory control level. In
such cases, the relationships between the variables used for supervisory control (including estimated
output disturbances) and the variables for which targets are specified, will need to be modelled.
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∙ There may be more controlled variables than inputs.

∙ In addition to desired values for the controlled variables, one may wish to keep
the inputs close to specific values.

∙ Achieving the desired values for the controlled variables may be impossible (or
otherwise unacceptable) due to constraints.

When such problems of concern (and if they are not, there is probably little reason
to use MPC in the first place), the target calculations are performed by solving
an optimization problem or a series of such problems. In the following, we will
use the subscript d to denote desired values of controlled variables y and inputs u,
whereas the subscript ref will still refer to the reference values or targets used in the
MPC calculations. The desired values are set by operators or higher level plant
optimization, whereas the MPC targets are the result of the target calculation.

The most straight forward formulation will cast the target calculation as a QP
problem:

min
xref,∞,uref,∞

(
yd − Cxref,∞ − F̃ d̃∞

)T

Q
(
yd − Cxref,∞ − F̃ d̃∞

)
(6.97)

+(ud − uref,∞)TW (ud − uref,∞) (6.98)

subject to given values for yd, ud and d∞ , the model equations Eq. (6.93) and the
relevant maximum and minimum value constraints on xref,∞ and uref,∞. The matrix
Q is assumed to be positive definite. A positive definite W will in general result
in offset in the controlled variables even in cases when the desired values ŷd can be
achieved. The matrixW may therefore be chosen to be positive semi-definite. Muske
[70] shows how to specify a semi-definite W which does not introduce offset in the
controlled variables. Note, however, that when there are more inputs than controlled
variables, the number of inputs whithout any weight in the optimization problem must
not exceed the number of controlled variables. Also, in many cases there may be
reasons for keeping the inputs close to a specified value, and in such cases the inputs
concerned should be given a weight in the optimization problem above. Ideally, the
target values should comply with the same maximum and minimum value constraints
as that of the MPC problem, c.f. Eq. (6.6), but there may also be other constraints.
Let us assume that all such constraints can be described by the inequality

Ĥ

[
xref,∞
uref,∞

]
≥ b̂ (6.99)

Difficulties will arise whenever there is no feasible region in which the constraints
of Eq. (6.93) and Eq. (6.99) cannot all be fulfilled. This is indeed often the case
when operating in a highly constrained region (which is the major advantage of MPC),
but may also result from operators specifying overly stringent constraints. For any
sort of control to be feasible in such a case, it becomes necessary to relax some of
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the constraints. It should be obvious that the process model Eq. (6.93) cannot be
relaxed, since it is given by the physics of the problem at hand. Likewise, most input
constraints are hard constraints that cannot be relaxed, such as actuator limitations.
On the other hand, many state or output constraints represent operational desirables
rather than physical necessities, and violation of such constraints may be possible
without putting the safety of the plant in jeopardy. Allowing violations in selected
constraints can be achieved by introducing additional variables into the optimisation
problem. Thus, instead of Eq. (6.97) we get

min
xref,∞,uref,∞,p

(yd − Cxref,∞ − F̃ d̃∞)TQ(yd − Cxref,∞ − F̃ d̃∞) (6.100)

+(ud − uref,∞)TW (ud − uref,∞) + lTp+ pTZp (6.101)

where l is a vector of positive constraint violation costs and Z is positive definite.
The vector p gives the magnitude of the constraint violations. The model equations
in Eq. (6.93) are assumed to hold as before, whereas the constraints in Eq. (6.99)
are modified to

Ĥ

[
xref,∞
uref,∞

]
+ L̂p ≥ b̂ (6.102)

p ≥ 0

The matrix L̂ determines which constraints are relaxed. Its elements will take
the values 0 or 1, with exactly one element equal to 1 for each column, and at most
one element equal to 1 for each row. If a row of L̂ contains an element equal to 1,
this means that the corresponding constraint may be relaxed.

For a sufficiently large l, the optimal solution to Eq. (6.100) is also the optimal
solution to Eq. (6.97), provided a feasible solution for Eq. (6.97) exists.

The target calculation formulation in Eqs. (6.100 - 6.102) will distribute the
constraint violations between the different relaxable constraints. If one instead wishes
to enforce a strict priority among the constraints, so that a given constraint is violated
only if feasibility cannot be achieved even with arbitrarily large constraint violations
in the less important constraints, this may be achieved by solving a series of LP
problems 10, followed by a QP problem for the target calculation. The following
algorithm may be used:

1. Simple inspection at the design stage will often ensure that the non-relaxable
constraints are always feasible. If not, it may be necessary to check that

10A series of QP problems may sometimes be preferable, if one wishes to distribute constraint
violations between several constraints of the same importance. Using a QP formulation only affects
the criterion functions of the following optimization problems, not the constraints.
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there exists a feasible solution to the problem when only considering the non-
relaxable constraints. Set Ĥr to the rows of Ĥ corresponding to the non-
relaxable constraints, and b̂r to the corresponding elements of b̂. Set cr to[
0 0 1 ⋅ ⋅ ⋅ 1

]T
,where the leading zeros should be interpreted as zero vec-

tors of dimensions corresponding to the dimensions of the state and input vec-
tors, respectively. Solve the LP problem

min
xref,∞,uref,∞,p

cTr

⎡
⎣

xref,∞
uref,∞

p

⎤
⎦

subject to the constraints

[
Ĥr I

]
⎡
⎣

xref,∞
uref,∞

p

⎤
⎦ ≥ b̂r

p ≥ 0

If the optimal value for this LP problem is larger than 0, the non-relaxable con-
straints are infeasible, which would indicate serious mistakes in the constraint
specifications or abnormally large disturbances (the latter of which could affect

b̂r). Proceed to the next step in the algorithm if the non-relaxable constraints
are feasible, if not, there is reason to activate an alarm to get operator attention.

2. Add the most important of the remaining relaxable constraints and find the
minimum constraint violation in that constraint only which results in a fea-
sible solution. This is done by adding the corresponding row of Ĥ and b̂
to Ĥr and b̂r, respectively, using a scalar ’dummy variable’ p, and setting cr
to

[
0 0 1

]T
The zeros in cr are still zero vectors of appropriate dimension,

whereas the 1 is scalar. The LP problem to solve at this stage becomes

min
xref,∞,uref,∞,p

cTr

⎡
⎣

xref,∞
uref,∞

p

⎤
⎦

subject to the constraints

⎡
⎢⎢⎢⎣ Ĥr

0
...
0
1

⎤
⎥⎥⎥⎦

⎡
⎣

xref,∞
uref,∞

p

⎤
⎦ ≥ b̂r

p ≥ 0
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3. Move the contribution of the dummy variable p into b̂r. That is, set b̂r Ã
b̂r +

[
0 ⋅ ⋅ ⋅ 0 1

]T
p. If there are more relaxable constraints, go to point 2

above.

4. When all constraints are accounted for, and a feasible solution is known to exist,
solve the QP problem for target calculation with modified constraints.

Instead of solving a series of LP problems, the solution may be found by solving
a single LP problem [103]. However, the required LP problem is quite complex to
design. Although this design problem is solved off-line, it will need to be modified
whenever the constraint specifications change. At the time of writing, no reliable
software is known to exist for solving this LP design problem.

6.9 Robustness of MPC controllers

The main advantage of MPC controllers lie in their ability to handle constraints. On
the other hand, they may be sensitive to errors in the process model. There have
been tales about processes which are controlled by MPC controllers when prices are
high (and it is important to operate close to the process’ maximum throughput), but
are controlled by simple single-loop controller when prices are low (and production is
lower, leading to no active constraints). The potential robustness problems are most
easily understood for cases when no constraints are active, i.e., when we can study
the objective function in Eq. (6.1) with H and c from Eq. (6.14). We then want to
minimize

f(v) = 0.5vT (B̂T Q̂B̂ + P̂ )v + ÂT
devÂ

T Q̂B̂v

with respect to v. The solution to this minimization can be found analytically,
since no constraints are assumed to be active. We get11

v = −(B̂T Q̂B̂ + P̂ )−1B̂T Q̂ÂÂdev

Clearly, if the model contains errors, this will result in errors in B̂ and Â, and hence
the calculated trajectory of input moves, v, will be different from what is obtained
with a perfect model. If the Hessian matrix B̂T Q̂B̂ + P̂ is ill-conditioned12, the
problem is particularly severe, since a small error in the Hessian can then result in a
large error in its inverse. For a physical motivation for problems with ill-conditioning
consider the following scenario:

∙ The controller detect an offset from the reference in a direction for which the
process gain is low.

11Note that Q̂ = Q̂T , and that the assumptions on Q, S and P ensures that (B̂T Q̂B̂ + P̂ ) is of
full rank, and hence invertible.

12A matrix is ill-conditioned if the ratio of the largest singular value to the smallest singular value
is large. This ratio is called the condition number.
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∙ To remove this offset, the controller calculates that a large process input is
needed in the low gain input direction.

∙ Due to the model errors, this large input actually slightly ”misses” the low gain
input direction of the true process.

∙ The fraction of the input that misses the low gain direction, will instead excite
some high gain direction of the process, causing a large change in the corre-
sponding output direction.

Now, there are two ways of reducing the condition number of B̂T Q̂B̂ + P̂ :

1. Scaling inputs and states in the process model, thereby changing B̂.

2. Modifying the tuning matrices Q̂ and P̂ .

Scaling inputs and states (or outputs, if the objective function uses outputs instead
of states) is essentially the same as changing the units in which we measure these vari-
ables. In some cases this sufficient, but some processes have inherent ill-conditioning
that cannot be removed by scaling.

In theory, one may use non-zero values for all elements in the tuning matrices
Q̂ and P̂ , with the only restriction that Q̂ should be positive semi-definite13 and P̂
should be positive definite (and hence both should be symmetric). However, little is

known on how to make full use of this freedom in designing Q̂ and P̂ , and in practice
they are obtained from Q ,P and S as shown in Eq. (6.7), and typically Q and P are
diagonal. It is common to try to reduce the ill-conditioning of the Hessian matrix by
multiplying all elements of P̂ by the same factor. If this factor is sufficiently large,
the condition number of the Hessian matrix will approach that of P - which can be
chosen to have condition number 1 if desired. However, increasing all elements of P̂
means that the control will become slower in all output directions, also in directions
which are not particularly sensitive to model uncertainty.

If the above ways of reducing the condition number of the Hessian matrix are
insufficient or unacceptable, one may instead modify the process model such that the
controller ”does not see” offsets in the low gain directions. Inherent ill-conditioning
(which cannot be removed by scaling) is typically caused by physical phenomena
which make it difficult to change the outputs in the low gain direction. Fortunately,
this means that disturbances will also often have a low gain in the same output direc-
tion. It may therefore be acceptable to ignore control offsets in the low gain output
directions. In terms of the MPC formulation above, the controller can be forced to
ignore the low gain directions by modifying B̂ by setting the small singular values of
B̂ to zero. This is known as singular value tresholding, since we remove all singular
values of B̂ that is smaller than some treshold. If we term this modified matrix B̂
for B̂m, we find that the trajectory of input moves calculated by the (unconstrained)
MPC optimization now becomes

13The lower right diagonal block of Q̂, corresponding to the terminal state weight S, should be
strictly positive definite (and sufficiently large).
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v = −(B̂T
mQ̂B̂m + P̂ )−1B̂T

mQ̂ÂÂdev = −(B̂T
mQ̂B̂m + P̂ )−1Âm

Note that the conditioning of the Hessian matrix is not improved by setting the
small singular values of B̂ to zero, but the vector Âm does not show any control offset
in the corresponding output directions, and hence the vector v will contain no input
moves in the corresponding input directions.

Singular value tresholding is effective in improving robustness to model errors,
but it clearly causes nominal control performance (the performance one would get
if the model is perfect) to deteriorate, since the controller ignores control offsets in

some output directions. Removing too many singular values from B̂ will result in
unacceptable control performance.

6.10 Using rigorous process models in MPC

Most chemical processes are inherently nonlinear. In some cases, rigorous dynamical
models based on physical and chemical relationships are available, and the process
engineers may wish to use such a model in an MPC controller. This would for
instance have the advantage of automatically updating the model when the process
is moved from one operating point to another.

However, to optimize directly on the rigorous model is not straight forward. The
non-linearity of the model typically results in optimization problems that are non-
convex. Optimization of non-convex problems is typically a lot more time consuming
than optimization of convex problems and the time required to find a solution can
vary dramatically with changing operating point or initial states. This means that
direct optimization of non-linear models is usually ill-suited for online applications
like MPC. Furthermore, it is often the case that the most important ’non-linearities’
in the true system are the constraints, which are handled effectively by MPC.

This does not mean that rigorous models cannot be utilized by MPC controllers,
but it means that one can make only partial use of such models. The idea is to
utilize these models to the extent that the available time permits. One may then
approximate the true optimization problem by a modified, convex problem, or a series
of such problems.

Predict using the rigorous model. The simplest way of (partially) ac-
counting for non-linearity in the process model, is to calculate the deviation from the
desired state (or output) trajectory from a rigorous, non-linear model, whereas the
other parts of the optimization formulation uses a linearized model. In this way, the
calculated input trajectory v will to some extent account for the non-linearities.

Line search If greater accuracy is needed, one may do a line search using the

non-linear model to optimize what multiple of v should be implemented, i.e., perform
a search to optimize (while taking the constraints into account)
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min
®

f(x, u) = min
®

f(x0, uref + ®v) (6.103)

where ® is a positive real scalar. Such line searches are a standard part of most
non-linear optimization methods, and are covered in many textbooks on optimization
e.g. in [23]. When performing the minimization in Eq. (6.103) above, the full non-
linear model is used to calculate future states from (x0, uref + ®v).

Iterative optimization. Even with the optimal value of ®, one probably has
not found the optimal solution to the original non-linear optimization problem. Still
better solutions may be found by an iterative procedure, where the predicted deviation
from the desired state trajectory xref is found using the best available estimate of
the future input trajectory. That is, for iteration number k, use the model to
calculate the resulting vector Âdev,k when the input trajectory uref + vt is applied,

where vt =
∑k−1

l=0 vl, and minimize

min
vk

f(v) = (vt + vk)
T (B̂T Q̂B̂ + P̂ )(vt + vk) + ÂT

dev,kÂ
T Q̂B̂(vt + vk)

subject to constraints that should be modified similarly. It is also assumed that a line
search is performed between each iteration. The iterations are initialized by setting
v0 = 0, and are performed until the optimization converges, or until the available
time for calculations is used up. The iterative procedure outlined above need not
converge to a globally optimal solution for the original problem, it may end up in
a local minimum. Furthermore, there is no guarantee that this is a particularily
efficient way of solving the original optimization problem (in terms of the non-linear
model). It does, however, have the advantage of quickly finding reasonable, and
hopefully feasible, input sequences. Even if the optimization has to terminate before
the optimization has converged, a ’good’ input has been calculated and is available
for implementation on the process.

Linearize around a trajectory. If the operating conditions change signifi-
cantly over the time horizon (n) in the MPC controller, the linearized model may be
a reasonable approximation to the true process behaviour for only a part of the time
horizon. This problem is relatively rare when constant reference values are used, but
may be relevant when moving from one operating point to another. It is then possible
to linearize the process around the predicted process trajectory (xref + Âdev) rather
than around a constant state. One then gets a time-varying (but still linear) model,
i.e., a ”new model” for each time interval into the future. Conceptually, linearizing
around a trajectory does not add much complexity compared to linearizing around a
constant state, but it does add significantly to the notational complexity that is nec-
essary in the mathematical formulation of the optimization problem. Furthermore,
analytical representations of the linearized models are typically not available, and the
linearization has to be performed by numerically perturbing the process around the
predicted process trajectory. This can clearly add significantly to the computational
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burden. Linearizing around a trajectory can be combined with iterative optimization
as outlined above - which would further add to the computational burden.



Chapter 7

Some practical issues in controller
implementation

This short chapter will address a few practical issues in controller implementation that
can be crucial for achieving good control performance. For an experienced control
engineer at a production plant, the issues discussed here may be trivial and self-
evident. However, after having seen trivial mistakes in controller implementation
leading to seriously reduced performance or controller malfunction, and having heard
tales of many more cases of the same, it appears necessary to address these issues.

Suggestions and motivation for extending the list of issues are welcome.

7.1 Discrete time implementation

Although many controller design procedures use continuous-time plant and controller
descriptions, controllers are nowadays invariably implemented on digital computers,
resulting in a discrete time implementation. This gives rise to the two issues that are
briefly addressed below.

7.1.1 Aliasing

Aliasing occurs when a high frequency signal (beyond the sampling frequency) , due to
slow sampling, in interpreted as a low frequency signal (below the sampling frequency.
This phenomenon is easy to understand, simply by inspecting a figure like Fig. 7.1.
The continuous curve represents the high frequency signal, and the x’s represent
sampled values. Clearly, if the signal in Fig. 7.1 is a controlled variable in a control
loop, the controller will attempt to counteract the slow oscillations it sees in the
controlled variable. Since the true oscillation is at a frequency beyond the sampling
frequency, counteracting the oscillations by control is impossible, and the controller
will merely excite the plant without achieving improved control.

Once a continuous-time signal has been sampled, there is no way of distinguish-
ing low-frequency signal components due to aliasing from ’true’ low frequency signal
components. High frequency signal components must therefore be removed from the

155
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Figure 7.1: High frequency being mistaken for a low frequency signal, due to too slow
sampling.

continuous-time signal, prior to sampling (also known as a ’presampling filter’). Usu-
ally, the continuous-time signal from a measurement device is an electrical signal, and
a presampling filter is made from a simple RC network with low pass characteristics.

7.1.2 Sampling interval

Converting from a continuous- to a discrete-time control description is fairly standard,
and covered in most books on digital control. Continuous-to-discrete conversion is
therefore not described here. We will only note that this can be done in several
different ways, among which discretization with zeroth order hold on the manipulated
variables (assuming the manipulated variables to remain constant between sampling
instances) appears to be the more common, and to work well in most cases.

Many introductory books will also provide the following rule-of-thumb for selecting
the sampling interval: The sampling interval should be at least ten times faster than
the closed loop bandwidth. Denoting the (continuous-time) crossover frequency !c,
this means that the sampling interval ts should be chosen according to

ts ≤ 2¼

10!c

(7.1)

This is not an absolute rule, slower sampling may be possible. Furthermore, adhering
to this rule is no guarantee against problems related to the discrete-time implementa-
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tion. However, if slower sampling is attempted, there is particular reason for consid-
ering the possibility of performance degradation or even instability due to infrequent
sampling.

Sampling too fast is primarily a waste of computing power. For systems where
the computing power is limited, too fast sampling should therefore be avoided. Note
that emergency situations may put significantly higher demands on the computing
power of a control system than normal operations.

Most control functions in a large plant is implemented in a Distributed Control
System (DCS). The engineer will then not have full freedom in selecting the sampling
time, it has to be in integer multiples of the basic cycle time for the DCS. Control
functions that require faster sampling than the basic sample time, will need to be
implemented in dedicated hardware. For some control problems, e.g., compressor
anti-surge control, this is often the case.

7.1.3 Execution order

Each time a controller executes, the following tasks have to be performed:

1. Read in new plant measurements.

2. Perform controller calculations, i.e., calculate new values for the manipulated
variable. For observer/state feedback type controllers, the observer or state
estimation calculations should be performed before the state feedback control
calculations.

3. Implement the new manipulated variable values.

Clearly, these tasks should be executed in the order indicated above. Executing the
tasks in the wrong order will introduce a totally unnecessary time delay into the
control loop. With reasonable sampling intervals, a wrong execution order can be
very detrimental for control. Only if sampling is very fast compared to the closed
loop bandwidth, can one safely neglect this additional deadtime.

7.2 Pure integrators in parallel

Whereas a multiple integrators in series can be stabilized by a single feedback path,
the same is not true for integrators in parallel. Thus, if there are ni integrators in
parallel, and nm independent feedback paths (the number of independent feedback
paths often corresponds to the number of independent measurements or the number
of manipulated variables, whichever is lower), there will be ni − nm integrators that
are not possible to stabilize by feedback.

Often such integrators in parallel occur because of using several controllers (with
integral action), controlling the same measurement, while using different manipulated
variables. The safe way of implementing such parallel control can be found in Section
4.2.7 and Fig. 4.6.
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To better understand the problem with integrators in parallel, consider Figure
7.2. The two integrating controllers integrate the opposite way of each other. The
combined effect on the output is zero. That is, the two integrators are not both
observable from the output (only their sum is), and they can therefore not both be
stabilized by feedback.

Plant

PI1

PI2

Input 1

Input 2

Output

Figure 7.2: Multiple integrating controllers with a single measurement.

There are at least three different reasons why two integrating controllers in parallel
may drift opposite ways, as illustrated in Fig. 7.2:

1. They may be given different setpoints. This is a rather stupid error that should
be avoided.

2. The transmission of the feedback measurement may be affected by noise - and
by different noise values for the different controllers. This was a very common
problem with analog signal transmission, but is less of a problem with digital
communications.

3. The two controllers will in practice not execute simultaneously. It is possible
that the plant measurement is updated between the times when the two con-
trollers execute, and the measurement may be updated several times for each
time the controllers execute. The effect will be that the two controllers see
different measurement and quantization noises. The result will be that the con-
troller outputs drift. This cause for drifting controllers is every as likely with
modern control systems as with older systems.

7.3 Anti-windup

In virtually all practical control problems, the range of actuation for the control input
is limited. Whenever the input reaches the end of its range of actuation (the control
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input is saturated), the feedback path is broken. If the controller has been designed
and implemented without regard for this problem, the controller will continue op-
erating as if the inputs have unlimited range of actuation, but further increases in
the controller output will not be implemented on the plant. The result may be that
there is a large discrepancy between the internal states of the controller and the input
actually applied to the plant. This problem often persists even after the controlled
variable has been brought back near its reference value, and controllers that would
work fine with unlimited inputs or with small disturbances, may show very poor
performance once saturation is encountered.

The problem described is typically most severe when the controller has slow dy-
namics - integral action is particularly at risk (since a pure integration corresponds
to a time constant of infinity). An alternative term for integral action is ’reset ac-
tion, since the integral action ’resets’ the controlled variable to its reference value
at steady state. When the input saturates while there remains an offset in the con-
trolled variable, the integral term will just continue growing, it ’winds up’. The
problem described above is therefore often termed reset windup, and remedial action
is correspondingly termed anti-reset windup or simply anti-windup.

Anti-windup techniques remain an active research area, and no attempt is made
here to give an up-to-date review of this research field. The aim is rather to present
some important and useful techniques that should be known to practicing control
engineers.

7.3.1 Simple PI control anti-windup

A simple PI controller with limited actuation range for the control inputs (i.e., con-
troller outputs), may be implemented as illustrated in Fig. 7.3. Here, the actual input
implemented on the plant is feed back to the controller through the low pass filter
1/(¿Is + 1). If the actual plant input is not measured, it suffices to know the range
of actuation for the input. The actual input can then easily be calculated.

Kp

1
τIs+1

umax

umin
+

uu~
Saturation

yref - y

Figure 7.3: Simple anti-windup scheme for a PI controller.

From Fig. 7.3, it is easy to see that when the plant input is not saturated (when
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ũ = u), we get

u = Kp
¿Is+ 1

¿Is
(yref − y) (7.2)

That is, we get the normal behaviour of a PI controller. On the other hand, consider
the case when the input is in saturation at its upper limit umax:

ũ = K(yref − y) +
1

¿Is+ 1
umax (7.3)

The internal feedback path in the controller is now broken, there is no open integrator
in the controller, and the controller state goes to umax with a time constant ¿I . Thus,
the integrating state does not wind up. Note also that when the controller state has
reached its stationary value of umax, the controller output will stay at its maximum
value until the measurement y has crossed the reference value yref .

This anti-windup scheme is straight forward and simple to implement provided
any actuator dynamics is fast compared to the PI controller time constant ¿I .

7.3.2 Velocity form of PI controllers

The PI controller in (refEq:PI) is inposition form, i.e., the controller output corre-
sponds to the desired position/value of the plant input. Alternatively, the controller
output may give the desired change in the plant input.

Whereas the equations for PI controllers in position form are often expressed in
continuous time (even though the final implementation in a plant computer will be
in discrete time), the velocity form of the PI controller is most often expressed in
discrete time. Let the subscript denote the discrete time index, and ek = yref − yk
be the control offset at time k. The discrete time equvivalent of (7.2) may then be
expressed as

Δuk = uk − uk−1 =
T

¿I
ek−1 +Kp(ek − ek−1) (7.4)

where T is the sample interval. Here Δuk represents the change in the plant input
at time k. If this change is sent to the actuator for the plant input, instead of the
desired position of the input, the windup problem goes away. This is because desired
changes that violate the actuation constraints simply will not have any effect.

The velocity form can also be found for more complex controllers, in particular for
PID controllers. However, derivative action is normally rather fast, and the effects
thereof quickly die out. It is therefore often not considered necessary to account for
the derivative action in anti-windup of PID controllers.

7.3.3 Anti-windup in cascaded control systems

For ordinary plant input, it is usually simple to determine the range of actuation.
For instance, a valve opening is constrainted to be within 0 and 100%, maximum
and minimum operating speeds for pumps are often well known, etc. In the case of
cascaded control loops, the ’plant input’ seen by the outer loop is actually the reference
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signal to the inner loop, and the control is typically based on the assumption that the
inner loop is able to follow the reference changes set by the outer loop. In such cases,
the ’available range of actuation’ for the outer loop may be harder to determine,
and may depend on operating conditions. An example of this problem may be a
temperature control system, where the temperature control loop is the outer loop,
and the inner loop is a cooling water flow control loop with the valve opening as the
plant input. In such an example, the maximum achievable flowrate may depend on
up- and downstream pressures, which may depend on cooling water demand elsewhere
in the system.

Possible ways of handling anti-windup of the outer loop in such a situation include

∙ Using conservative estimates of the available range of actuation, with the pos-
sibility of not fully utilizing plant capacity in some operating scenaria.

∙ The controller in the inner loop may send a signal informing the controller in
the outer loop when it is in saturation (and whether it is at its maximum or
minimum value). The controller in the outer loop may then stop the integration
if this would move the controller output in the wrong direction.

∙ Use the velocity form of the controller, provided the reference signal for the inner
loop is calculated as present plant output + change in reference from outer loop.
If the reference signal is calculated as ’reference at last time step + change in
reference from outer loop’, windup may still occur.

∙ For PI controllers, use the implementation shown in Fig. 7.3, where the ’plant
input’ used in the outer loop is the plant measurement for the inner loop.

Note that the two latter anti-windup schemes above both require a clear timescale
separation between the loops, otherwise performance may suffer when the plant input
(in the inner loop) is not in saturation. There is usually a clear timescale separation
between cascaded loops.

7.3.4 Hanus’ self-conditioned form

Hanus’ self-conditioned form [32, 93] is a quite general way of preventing windup in
controllers. Assume a linear controller is used, with state space realization

v̇ = AKv +BKe (7.5)

ũ = CKv +DKe (7.6)

where v are the controller states, e are the (ordinary) controller inputs, and ũ is
the calculated output from the controller (desired plant input). The corresponding
controller transfer function may be expressed as

K(s)
s
=

[
AK BK

CK DK

]
= CK(sI − AK)

−1BK +DK (7.7)
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The corresponding implementation of the same controller in Hanus’ self-conditioned
form is illustrated in 7.4, where K̃(s) given by

ũ = K̃(s)

[
e
u

]

K(s)
s
=

[
AK −BKD

−1
K CK 0 BKD

−1
K

CK DK 0

]
(7.8)
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uu~

Saturation

e

~

Figure 7.4: Illustration of anti-windup with the controller K(s) implemented in its
self-conditioned form K̃(s).

From (7.8) we see that when the plant input u is not saturated, i.e., when ũ = u,
the controller dynamics are given by (7.6). When the plant input is saturated, the
steady state controller output will be

ũ = −CK(AK −BKD
−1
K CK)

−1u+De (7.9)

If BKD
−1
K CK >> AK , we get

ũ ≈ u+DKe (7.10)

and thus the plant input will stay at its limit until the corresponding element of DKe
changes sign.

Clearly, the use of this anti-windup methodology requires DK to be invertible, and
hence also of full rank. Thus, the controller must be semi-proper. The rate at which
the controller states converge towards the steady state solution (when in saturation)
is given by the eigenvalues of AK − BKD

−1
K CK . This matrix obviously has to be

stable. A small (but non-singular) DK will generally make the convergence fast.
In [32], self-conditioning is presented in a more general setting, potentially ac-

counting also for time-varying or non-linear controllers. However, only in the case of
linear time-invariant controllers do the resulting controller equations come out in a
relatively simple form.

7.3.5 Anti-windup in observer-based controllers

Many advanced controllers are (or may be) implemented as a combination of static
state feedback controllers and a state observer/estimator. This is the case for LQG/H2-
optimal controllers as well as H∞-optimal controllers.
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For such controllers, anti-windup is achieved by ensuring that the state observer/estimator
receives the actual plant input that is implemented on the plant. This is illustrated in
Fig. 7.5
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Figure 7.5: Illustration of anti-windup for controllers based on static state feedback
combined with state estimation.

In many applications it is desired to have offset-free control at steady state. This
requires the use of integral action. This is often incorporated in a state estimator/state
feedback control design as illustrated in Fig. 7.6.

The state estimator only estimates actual plant states, whereas the state feedback
is designed for a model where integrators (which integrate the control offset) are
appended to the plant model. When implementing the controller, the integrators are
a part of the controller (in the control system). The values of the integrators are thus
directly available in the control system, and clearly there is no need to estimate these
states.

However, when integration is incorporated in this way, the integrating states may
wind up even if the actual input values are sent to the state estimator. Figure 7.7
illustrates how the anti-windup signal to the integrators must represent the range
of movement available for the integrating states, i.e., with the contribution from the
(actual) state feedback removed.

Remark. Note that if Hanus’ self-conditioned form is used for the anti-windup,
this requires a non-singular D-matrix, resulting in a PI block instead of a purely inte-
grating block. The size of thisD-matrix may affect controller performance (depending
on how and whether it is accounted for in the ’state’ feedback control design).
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Figure 7.6: State estimator and static state feedback augmented with integral action.
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7.3.6 Decoupling and input constraints

Decouplers are particularly prone to performance problems due to input constraints.
This is not easily handled by standard anti-windup, because much of the input usage
can be related to counteracting interactions. Therefore, if an output is saturated,
but other outputs are adjusted to counteract the effects of the ’unsaturated’ output,
severe performance problems may be expected.

One way of ensuring that the decoupler only tries to counteract interactions due to
the inputs that are actually implemented on the plant, is to implement the decoupler
as illustrated in Fig. 7.8.

The implementation in Fig. 7.8 is easily extended to systems of dimension higher
than 2 × 2. When the inputs are unsaturated, the ’Decoupler with saturation’ in
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Figure 7.8: Implementation of decoupler in order to reduce the effect of input satu-
ration. The decoupler will only attempt to counteract interactions due to inputs that
are actually implemented on the plant.

Fig. 7.3 corresponds to the decoupling compensator W (s) = G(s)−1G̃(s), where G̃(s)
denotes the diagonal matrix with the same diagonal elements as G(s). The precom-
pensated plant therefore becomes GW = G̃, i.e., we are (nominally) left only with
the diagonal elements of the plant.

Note that if the individual loop controllers ki(s) contain slow dynamics (which is
usually the case, PI controllers are often used), they will still need anti-windup. In
this case the anti-windup signal to the controller should not be the saturated input,
but the saturated input with the contribution from the decoupling removed, i.e., the
decoupling means that the saturartion limitations for the individual loop controllers
ki(s) are time variant.

7.4 Bumpless transfer

The term ’bumpless transfer’ refers to the ’bumps’ that may occur in the controller
output (and consequently in the plant output) when changing controller parameters,
switching between different controllers, or switching the control between manual and
automatic operation.

7.4.1 Switching between manual and automatic operation

If we want bumpless transfer in this case, we must ensure that the controller output
remains unchanged if the controller input is unchanged. For proportional controllers
this requires setting/modifying the bias on the controller output. For controllers with
dynamic states, the controller states must be set such that the states agree with both
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the controller output prior to switching to manual and the observed plant outputs
prior to switching.

Assume that a discrete time implementation of the controller is used, and that
switching from manual to automatic occurs before executing the controller calcula-
tions at time k = 1.

∙ Proportional control. The controller output bias is set such that the controller
output at time k = 0 (if the controller had been in automatic) equals the manual
controller output value for the plant output observed at time k = 0.

∙ PI control. The calculation is similar to the case for proportional-only control.
However, in this case one has the choice of either calculating an output bias,
and set the integral (i.e., state) value to zero, or vice versa.

∙ PID control. In this case, the controller output at time k = 0 must agree
with both the observed plant output at time k = 0 and the derivative of the
plant output at that time. As there are differences in how PID controllers are
implemented, particularly the derivative term, the detailed calculations are not
described further here.

∙ For SISO controllers with n states, it is generally necessary to consider the n
most recent plant outputs to calculate the controller states giving bumpless
transfer.

Note that

∙ It is well known that integral action is grenerally needed to get offset-free control
at steady state. For controllers without integral action, setting the output bias
to an unfortunate value will make the steady state offset worse.

∙ Bumpless transfer is irrelevant for PI controllers in the velocity form.

7.4.2 Changing controller parameters

The calculations are very similar to what is described for switching between manual
and automatic, the difference is only that the need for bumpless transfer arises for a
different reason.

7.4.3 Switching between different controllers

Many advanced controllers can be decomposed in a state estimator and a static state
feedback controller. Often different estimators/controllers are designed for different
operational regions or different modes of operation. In this case it is essential that
when switching to a new controller, the state estimates used are appropriate for
the state feedback controller used. Therefore, all state estimators should be run in
parallel - also the estimators corresponding to inactive controllers. The estimators
should receive the input that is actually implemented on the plant, which for estimators
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corresponding to inactive controllers typically means a plant input different from that
the corresponding state feedback controller would generate. This way, the estimator
can provide an updated state estimate when the corresponding controller is put in
operation. This is illustrated in Fig. 7.9.
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Figure 7.9: Switching between controllers that can be separated into a static state
feedback and a state estimator.
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Chapter 8

Controller Performance
Monitoring and Diagnosis

8.1 Introduction

It is a sad fact that many control loops in industrial processes actually degrade system
performance, by increasing the variability in the controlled variable rather than de-
creasing it. Still more control loops do actually work, but are very far from optimal.
Some causes for poor controller performance are:

∙ Operating conditions have changed after the controller was tuned.

∙ The actual process has changed, some process modifications have been made
after the controller was tuned.

∙ The controller has never actually been tuned, it is still using the manufacturer’s
default tuning parameters.

∙ A poor (or even inconsistent) control structure, causing severe interactions be-
tween control loops.

∙ Some equipment in the control loop may be in need of maintenance or replace-
ment, e.g., faulty measurements, control valves with excessive stiction, severe
fouling in heat exchangers, etc.

There are many reasons why such a situation may be allowed to last. Often,
plant operators are aware of what parts of the process are oscillating or show large
control offsets. However, this information often stays with the operators, and they
learn to cope with the process as it is. The typical operator will lack the competence
to assess whether the observed control performance is much worse than what should
be expected. When asked a general question about whether control of the process is

169
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acceptable, they may therefore very well confirm that the control is good even if that
is not the case.

The automation department of a large plant is normally very small. The typical
automation department is fully occupied with keeping the various automation and
control system in operation, with little time for improving the control system. Most
industrial automation engineers are therefore also trained to keep the control system
running, and have little relevant background for evaluating controller performance
or improving controllers. After an initial commissioning phase, most controllers are
therefore ”left alone” for long periods.

Considering the large number of control loops in an industrial plant, there is a
need for tools which ensure efficient use of what little time is available for improving
the control system, that is, tools which help the engineer to

∙ focus on where the control problems are most acute

∙ quickly assess whether significant improvements are easily achievable, e.g. by
retuning the controller

∙ diagnose the cause for poor control performance.

Here, Control Performance Monitoring (CPM) is understood as tools and system-
atic methods for

∙ Assessing control loop performance, by comparison with a well-defined perfor-
mance benchmark.

∙ Detecting oscillating control loops, and diagnosing the cause for oscillations.

∙ Root cause analysis for distributed oscillations (i.e., when multiple loops are
oscillating, to arrange the loops into groups which oscillate in the same pattern,
and then locate - and preferably also diagnose - the cause for oscillation for each
of the groups).

In the open literature, the performance assessment part has received by far the
most attention. This issue was brought to the attention of the academic community by
an influential paper by Harris [34] in 1989, although similar ideas had been proposed
earlier, e.g. by Fjeld [22]. These papers, as well as most publications on performance
assessment, consider performance assessment in a stochastic setting, by comparing the
observed variance in the controlled variable to the variable that can be achieved by an
ideal controller (typically a minimum variance controller). Deterministic performance
assessment has received much less attention, with Åström et al. [9] and Swanda and
Seborg [97] as exceptions. Another interesting approach to performance monitoring is
presented by Tyler and Morari [102], who show how many performance specifications
can be formulated as bounds on the system’s impulse response coefficients. The
performance monitoring then consists of testing the relative likelihood of the system
fulfilling the performance bounds, compared to the likelihood of it not doing so.
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Oscillation detection and diagnosis has received less attention, whereas only re-
cently has there appeared significant publications in the open literature on root cause
detection for distributed oscillations.

This report will first consider the issue of oscillation detection, and then address os-
cillation diagnosis and root cause detection for distributed oscillations. The rationale
for this is that loops with significant persistent oscillations will certainly fail any per-
formance assessment test, and should always be examined. Thereafter, performance
assessment is described. Issues relating to the relevance of a minimum variance bench-
mark are discussed, and a brief discussion about requirements for successful CPM is
given. Finally, available techniques for CPM are discussed, with a focus on issues
that need to be clarified, and needs for further development in analysis techniques.

There are some available literature surveys on Control Performance Monitoring,
notably by Qin [78] and Harris et al. [35]. Industrial experience is described in many
papers, this authors favourites are probably the papers by Kozub [63] and Thornhill
et al. [99]. A recent update on multivariable CPM is given by Shah et al. [86]. The
only textbook on the subject so far is that of Huang and Shah [50], a review of which
can be found in [64].

There are several commercial suppliers of CPM tools. However, there is relatively
little available in the open literature on how the CPM activities should be organized
and coordinated with other activities involved in plant operation in the processing in-
dustries. Useful information on such issues is found in papers from the CPM team at
Honeywell, e.g. [19, 67] (on the other hand, authors from ABB and Matrikon appear
more eager to publish new tools and methodologies for CPM). Some of the compli-
cations involved in correctly diagnosing control problems and proposing corrective
measures are illustrated in Owen et al. [75].

8.2 Detection of oscillating control loops

For the trained human eye, detection of oscillations may seem a trivial task. However,
it is far from trivial to define and describe oscillations in a typical signal from a process
plant in such a way that it can reliably be automated (in either on-line or off-line
tools). We will here present a few tools that have been proposed, but first present
some statistical tools. It is assumed that the signals under study are stable, or at
least only marginally unstable, as otherwise the control loops in question will have
to be taken out of service (and it should then be apparent that the control loop
needs attention). Any exponentially growing signal will eventually hit some system
constraint or cause some malfunction. Note that control loops are here classified as
oscillatory if they show an unacceptable tendency to oscillate, a perfect limit cycle
is not a requirement. Stable loops with insufficient damping will also be classified as
oscillatory in this context.
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8.2.1 The autocorrelation function

The autocorrelation function is essentially a measure of how closely the values of a
variable, when measured at different times, are correlated. For a variable y and a
data set of N datapoints, the autocorrelation function is given by

½k =

∑N−k
t=1 (yt − y)(yt+k − y)∑N

t=1(yt − y)2

The autocorrelation function is 1 for lag 0, that is, ½0 = 1. For stable signals,
it generally decays with increasing lags, whereas it will oscillate for systematically
oscillating signals, and a periodic signal will have a periodic autocorrelation function.

In principle, one should be able to detect oscillations directly from the autocor-
relation function. However, it need not be so straight forward if the signal contains
multiple frequencies, measurement noise, assymmetric oscillations, etc. Nonlinear
effects may also introduce oscillations at frequencies that are multiples of the base
oscillation frequency. Nevertheless, Moiso and Piipponen [68] propose an oscillation
index calculated from the roots of a second order AR model fitted to the autocorre-
lation function. The method of Miao and Seborg, which is described below, is also
based on the autocorrelation function.

8.2.2 The power spectrum

The power spectrum results from a Fourier transform of the autocorrelation function,
and in essence it is the frequency domain equivalent of the autocorrelation function.
If the signal exhibits a pure sinusoidal oscillation at a particular frequency, the power
spectrum will have a peak at that frequency. An oscillation that does not decay
with time, will have a very large peak at that frequency in the power spectrum. The
problems of using the power spectrum for oscillation detection are similar to those of
using the autocorrelation function. Instead of the power spectrum having a single
spike at the oscillating frequency, the signal may be corrupted by noise and nonlinear
effects that the power spectrum is blurred or contains numerous spikes.

8.2.3 The method of Miao and Seborg

Miao and Seborg[66] uses the autocorrelation function to detect oscillations. It
calculates a somewhat non-standard ’decay ratio’, as illustrated in Fig. 8.1.

The Miao-Seborg oscillation index is simply the ratio given by R = a/b. Miao and
Seborg propose a treshold value of R = 0.5, a larger value will indicate (unacceptable)
oscillations. Little justification is provided for this measure. In particular, it is
not explained why this measure is better than simply comparing the magnitude of
neighbouring peaks in the autocorrelation function.

Nevertheless, industrial experience appears to be favourable, and oscillations are
detected with reasonable reliability. Some drawbacks are
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Figure 8.1: Calculation of the Miao-Seborg oscillation index from the autocorrelation
function.

∙ it is somewhat complicated for on-line oscillation detection, it is better suited
for offline analysis of batches of data.

∙ it does not take the amplitude of oscillations directly into account. Some
oscillations of small amplitude may be acceptable, but this method will classify
also loops with acceptable oscillation as oscillatory.

∙ it assumes that the oscillations are the main cause of variability in the measured
variable. If a control loop experiences frequent (and irregular) setpoint changes
of magnitude larger than the amplitude of the oscillations, it may fail to detect
the oscillations.

8.2.4 The method of Hägglund

Hägglunds measure[29] may be said to be a more general measure of control per-
formance rather than an oscillation detection method. The basic idea behind the
measure is that the controlled variable in a well-functioning control loop should fluc-
tuate around the setpoint, and that long periods on one side of the setpoint is a sign
of poor tuning.

Hägglund’s performance monitor looks at the control error e(t) = r(t) − y(t),
and integrates the absolute value of e(t) for the period between each time this signal
crosses zero:

IAE =

∫ ti

ti−1

∣e(t)∣ dt

where ti−1 and ti are the times of two consequtive zero crossings. Whenever this
measure increases beyond a treshold value, a counter is incremented, and an alarm
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is raised when the counter passes some critical value. It is shown in [29] how a
forgetting factor can be used to avoid alarms from well-functioning loops which are
exposed to infrequent, large disturbances (or setpoint changes).

Critical tuning parameters for this monitoring method are the IAE treshold value
and the counter alarm limit. Typical choices for the IAE treshold value are

IAElim = 2a/!u

IAElim = aTI/¼

where a is an acceptable oscillation magnitude, !u is the ultimate frequency (the
oscillation frequency found in a closel loop Ziegler Nichols experiment), and TI is the
integral time in a PI(D) controller. The more rigorous of the two treshold values is
the first, and !u would be available if the loop was tuned with e.g. Hägglund’s relay-
based autotuning procedure. However, often !u will not be available, and the second
expression for IAElim will then have to be used - this expression is intended to work as
a reasonable approximation of the first expression for IAElim for a reasonably tuned
loop. Naturally, this may be misleading if the cause of poor control performance is
poor choice of controller tuning parameters.

The counter alarm limit is simply a tradeoff between the sensitivity of the moni-
toring method and the rate of ”unnecessary” alarms. This monitoring method is

∙ Simple and appliccable for on-line implementation.

∙ It takes oscillation amplitude into account - it is ignores small oscillations unless
the oscillation period is very long.

∙ Some tuning of the monitoring method must be expected. The guidelines
for choosing IAElim is based on knowledge of the ultimate frequency of the
control loop - which typically is not known unless a Ziegler-Nichols type tuning
experiment or a Hägglund type autotuner is used. Alternatively, it is proposed
to base IAElim on the controller integral time - which is only reasonable if the
loop is well tuned.

8.2.5 The regularity index

Hägglund’s monitoring method is extended in [98] for off-line oscillation detection,
resulting in a new oscillation measure called the regularity index.

To calculate the regularity index, the integral absolute error is calculated, and
when the control error crosses zero, the measure

IAEi

ΔTi¾
(8.1)

is plotted together with the time ti+1 for the most recent zero crossing. Here IAEi

is the integral absolute error between the two most recent zero crossings, ΔTi is the
time between the zero crossings, and ¾ is an estimate of the r.m.s. value of the



8.2. DETECTION OF OSCILLATING CONTROL LOOPS 175

noise. It is recommended to filter the measurements by estimating an AR model for
the measurement, and to base the analysis (calculation of IAE) based on a one step
ahead prediction from the AR model rather than the raw measurement. This will
reduce the influence of measurment noise, and the AR model estimation can also give
an estimate of the measurement noise, from which ¾ can be calculated.

Next, a treshold value » is chosen, and a regularity factor is derived from the time
intervals Δki between each time the measure in Eq. (8.1) crosses the treshold value.
Thus,

Ri =
Δki+1

Δki
; q(») =

Mean value of R

Standard deviation of R
(8.2)

The regularity index is then

q = max
»

q(») (8.3)

The period of oscillation is estimated from the number of times the measure in
Eq. (8.1) crosses the treshold » between the first and last instance of crossing the
treshold.

8.2.6 The method of Forsman and Stattin

This method also looks at the control error e(t) = r(t) − y(t), but it is strictly an
oscillation detection method and not a general performance measure. Forsman and
Stattin [24] proposes comparing both the areas between the control error and zero
and the time span that the error has the same sign. However, the resulting area and
time span is not compared with the immediately previous area/timespan (when the
control error had opposite sign), rather the comparison is made with the preceding
period when the control offset had the same sign. This is illustrated in Fig. 8.2.

The method uses two tuning constants ® and °, that both should be in the range
between 0 and 1, and simply counts the number of times ℎA in a data set that

® <
Ai+1

Ai

<
1

®
and/or ° <

±i+1

±i

and the number of times ℎB that

® <
Bi+1

Bi

<
1

®
and/or ° <

"i+1

"i

where Ai, Bi, ±i and "i are defined in Fig. 8.2. The oscillation index is then given
by ℎ = (ℎA+ℎB)/N , where N is the number of times in the data set that the control
offset crosses zero.

Forsman and Stattin recommend closer examination of loops having ℎ > 0.4, and
if ℎ > 0.8 a very clear oscillative pattern can be expected.
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Figure 8.2: The oscillation detection method of Forsman and Stattin.

8.2.7 Pre-filtering data

All methods presented above may be ineffective for noisy data, and both Miao and
Seborg [66] and Forsman and Stattin [24] discuss pre-filtering the data with a low pass
filter to reduce the noise. Thornhill and Hägglund [98] propose filtering through using
the one-step-ahead prediction from an AR model, as described previously. Clearly,
the filter should be designed to give a reasonable tradeoff between noise and oscillation
detection in the frequency range of interest. The interested reader should consult
the original references for a more comprehensive treatment of this issue.

8.3 Oscillation diagnosis

Once an oscillating control loop has been detected, it is naturally of interest to find the
cause of the oscillations, in order to come up with some effective remedy. There is no
general solution to the diagnosis problem, the proposed methods can at best handle
parts of the problem. We will present diagnosis procedures proposed by Hägglund
[29, 98], and passive procedures (that may be automated) for detecting valve stiction
proposed by Horch [39].
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8.3.1 Manual oscillation diagnosis

Hägglund [29] proposes the manual oscillation diagnosis procedure presented in Fig.
8.3
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Figure 8.3: Hägglund’s method for manual oscillation diagnosis.

The main problem with this procedure is the assumption that if the oscillation
(in the controlled variable) stops when the controller in a particular loop is put in
manual, then the oscillation is caused by that loop. Often, oscillations arise from
multivariable interactions between loops, and the oscillation will then stop when any
one of these loops are put in manual. The first loop to be put in manual will then
receive the ”blame” for the oscillations, and will consequently be detuned (made
slower). Therefore, the results of this procedure will depend on the order in which
the loops are examined. If several loops show a similar oscillation pattern, one should
therefore first examine the loop for which slow control is more acceptable.

The procedure is also a little short on examining other instrumentation problems
than valve friction (stiction), e.g., valve hysteresis, measurement problems, etc. Fur-
thermore, the procedure gives no proposals for how to eliminate external disturbances.
Clearly, the solution will be very dependent on the particular process, but typically
it will involve modifying the process or the control in other parts of the process.

Additional flowcharts for oscillation diagnosis are presented in [98]. Some of those
flowcharts do not require putting the controller in manual. They also show how use-
ful diagnostic information can be derived from plotting the controlled variable (pv)
vs. the setpoint (sp). Idealized plots for actuators with deadband, static friction in
actuator, oversized valve as manipulated variable, and a linear loop with phase lag
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are shown. The use of such sp-pv plots is clearly limited to loops with frequent set-
point changes, otherwise setpoint changes have to be introduced purely for diagnostic
purposes (i.e., the plant has to be disturbed).

Thornhill and Hägglund [98] also address nonlinearity detection (without further
classifying the non-linearity) using the regularity index and the power spectrum for
the controlled variable.

8.3.2 Detecting and diagnosing valve stiction

A commonly occuring problem with valves is that they can have a tendency to stick
due to stiction (short for ’static friction’). Once the controller applies sufficient force
to overcome the stiction and move the valve, the friction force drops dramatically
(since the ’dynamic’ friction is much smaller than the static friction). This results
in a large net force acting on the valve stem, causing a sudden move of it. It is well
known that such stiction can cause oscillations.

Using the cross-correlation function to detect valve stiction

Horch [39] have developed a method for detecting stiction, based on measurements
of the controlled variable and the controller output. The method assumes that the
controller has integral action. The integral action will steadly increase the controller
output, until the valve suddenly ”jumps” to a new position. Persistent oscillations
often result when the valve jumps too far, so that the controller has to stop the valve
movement and move it in the opposite direction. Stopping the valve causes it to
stick again, causing the sequence of events to repeat.

When there are problems with valve stiction, the controller output signal typically
has a sawtooth shape. The controlled variable is typically almost like a square wave,
especially if the dominant time constant of the process (in open loop) is much shorter
than the period of oscillation.

Horch found that the cross-correlation function between controller output and
controlled variable typically is an odd function1 for a system oscillating due to stic-
tion. On the other hand, if the oscillation is due to external disturbances, the cross-
correlation function is normally close to an even function. Unstable loops oscillating
with constant amplitude (due to input saturation) also have an even cross-correlation
function.

For a data set with N data points, the cross-correlation function between u and
y for lag ¿ (where ¿ is an integer) is given by

ruy(¿) =

∑k1
k=k0

u(k)y(k + ¿)
∑N

k=1 u(k)y(k)
(8.4)

1Reflecting the 90∘ phase shift due to the interal action in the controller.
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where

k0 = 1 for ¿ ≥ 0

k0 = ¿ + 1 for ¿ < 0

k1 = N − ¿ for ¿ ≥ 0

k1 = N for ¿ < 0

Note that the denominator in Eq. (8.4) is merely a normalization, giving ruy(0) =
1. It is not necessary for the stiction detection method.

Horch’ stiction detection method has been found to work well in most cases.
However, it fails to detect stiction in cases where the dominant time constant of the
(open loop) process is large compared to the observed period of oscillation. In such
cases the cross-correlation function will be approximately even also for cases with
stiction. This problem is most common with integrating processes (e.g., level control
loops), but may also occur for other processes with slow dynamics.

Histograms for detecting valve stiction

Horch [40, 41] has recently proposed an alternative method for stiction detection
for integrating processes. Industrial experience with this alternative method is not
known. This method is patented by ABB. The alternative method works by looking
for abrupt changes in the process output, by twice differentiating the measured process
output. This is illustrated in Fig. (8.4).

stiction

Y

dy

dt

d2y

dt2

no stiction

Figure 8.4: Stiction detection by twice differentiating the process output.

It can be seen from the figure that twise differentiation a sinusoidal signal (without
any abrupt changes), results in a sinusoid. On the left of Fig. (8.4) is the output
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of a pure integrator with a square-wave input, i.e., the typical input shape for a
sticking control valve. Twice differentiating this signal gives an output that is zero
except for periodic spikes of alternating sign. The stiction detection method for
integrating processes is therefore based on a histogram showing the relative frequency
of occurence of the various values for the twice-differentiated measurement signal.
This is illustrated in Fig. 8.5. Although the difference between the two histograms
in Fig. 8.5 become less distinct in the presence of measurement noise, this method
claimed to work well also in the presence of measurement noise.
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22
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Figure 8.5: Histograms for detecting stiction in integrating processes.

The same method of detecting stiction is also proposed also for asymptotically
stable plants [41] (for which the cross-correlation based stiction detection should work
well). In this case, the measurement signal should be more like a square wave if the
oscillations are caused by stiction, and the measurement signal is only differentiated
once prior to obtaining the histograms.

Stiction detection using an x-y plot

The method involves plotting the controller output (manipulated variable) vs. the
controlled variable. If these two variables tend to move in a closed path around an
area where the curve seldom enters, this is a sign of an oscillating control loop, where
there is a phase lag (different from n ⋅180∘) between input and output. If the x-y plot
shows sharp ’corners’, this is considered to be a sign of significant stiction. Without
the sharp corners, there is no cause for suspecting non-linearity (i.e., stiction) to be
the cause of the oscillations, since they may just as well be caused by poor tuning
and random noise or oscillating disturbances. The use of an x-y plot is illustrated in
Fig. 8.6, where the blue curve shows a case with stiction, and the red curve shows the
same system without stiction. The use of this method is apparently widespread in
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industrial practice, although its origin is not known to this author. In the example
illustrated in Fig. 8.6, this method would correctly identify stiction in a case with
some measurement noise.

However, numerical experience and intuition would suggest that this method may
fail in cases with severe measurement noise, especially when there is a phase difference
of close to n ⋅ 180∘ at the dominant frequency of oscillation. Filtering may reduce the
sensitivity to noise, but may also reduce the sharp corners in the x-y curve that are
necessary to distinguish stiction from other causes of oscillation (which may occur
also for linear systems).
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Figure 8.6: Use of xy-plot to detect stiction. The blue curve shows a system with
stiction, the red curve shows the same system without stiction.

Comparison of stiction detection measures

To this authors knowledge, there is no available comparison of the three stiction
detection methods described above in the open literature - although it is known
that the cross-correlation method fails for integrating processes. There is thus a
need for comparing these methods, both on industrial and simulated data. The
cross-correlation and histogram methods are easily formulated in a form suitable for
automatic analysis. Although visual stiction detection is easy using the x-y plot, a
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formulation suitable for automatic analysis is not known. However, this should not
be an insurmountable challenge.

8.3.3 Stiction compensation

There are a number of papers looking at using the controller to compensate for
stiction, not only in process control, but also in other areas like robotics. There are
many models for stiction - that all share the common trait that none of them can be
expected to be a perfect representation of the phenomenon.

The compensation schemes are typically rather complex, finely tuned to the
specifics of the stiction model used, and not very surprisingly they often work well
for the same stiction model. What is lacking is the demonstration of any sort of
robustness for the compensation scheme. In a simulation study one could at least use
a different model for the ’system’ than the stiction model used in designing the con-
troller. The practical usefulness of such stiction compensation schemes are therefore
at best not proven.

Industrial practitioners report that use of derivative action often has some positive
effect on stiction. However, derivative control action may not be suitable for all control
loops, and there is also the question whether it should be placed in the main controller
or in the valve positioner. Some further work in this area may therefore be warranted.

Other practical approaches to managing control problems due to stiction, include
changing the controller to a pure P controller, or introducing a deadband in the
integrating term (only integrate when the offset is larger than the deadband). This
may reduce or remove the oscillations, but have their own detrimental effects on
control performance. These approaches are therefore mainly short-term modifications
until valve maintenance can be performed.

8.3.4 Detection of backlash

Backlash is a particular type of hysteresis that occurs when the direction of movement
changes for the input. The input then has to travel through the deadband before any
change is detected at the output2.

In a recent paper, Hägglund[30] proposes a method for on-line estimation of the
deadband. Using describing function analysis, it is shown that an integrating system
controlled with an integrating controller will exhibit oscillations in the presence of
backlash. These oscillations are typically quite fast and of significant amplitude, and
will therefore be detected by an appropriate oscillation detection method.

Asymptotically stable processes with integrating controllers, on the other hand,
will typically not show pronounced oscillations, but rather drift relatively slowly
around the setpoint. This results in slow, low amplitude oscillations that often will
not be detected by oscillation detection methods. Hägglund’s deadband estimation
method is developed for this kind of systems. It uses the control loop measurement,

2Sometimes the words backlash and deadband are used as synonyms. Here the deadband refers to
the width of the backlash.
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Figure 8.7: Illustration of backlash with deadband of width d.

filtered by a second order low pass filter to reduce the effect of measurement noise.
The filtered loop measurement is denoted yf . The slow oscillations are typically at a
frequency lower than the plant dynamics, and hence the plant model is represented
by the steady state gain Kp. The controller is assumed to be a PI controller with
proportional gain K and integral time Ti. The plant gain Kp and the controller gain
K are assumed to be given in compatible units (such that their product is 1 and
dimensionless).

The filtered control error is given as e = ysp − yf , where ysp is the setpoint (or
reference) for the control loop. Let ti be the times when the filtered control error e
changes sign. Correspondingly, Δt = ti+1 − ti denotes the time between successive
zero crossings of the filtered control error. The deadband estimation is executed only
when the time between these zero crossings is large, i.e., when Δt ≥ 5Ti. We also
define

Δy =

∫ ti+1

ti

∣e∣dt/Δt (8.5)

Deltay may thus be seen as the ’average’ control error between the zero crossings.
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The deadband is then estimated as

d̂ = K

(
Δt

Ti

− 1

KKp

)
Δy (8.6)

This deadband estimation suffers from the fact that the steady state gain needs
to be known. In many cases this will be available (although not necessarily easily
available) from steady state plant simulations - even if dynamic simulation models
are not available. Instead, Hägglund takes a more practical approach and argue that
the deadband estimate is relatively insensitive to the value of Kp for the majority of
plants. This stems from the fact that the estimation is performed only when Δt ≥ 5Ti,
and the observation that the product KKp is normally larger than 0.5 (assuming a
reasonable controller tuning in the absence of backlash, and that the controller tuning
is not dominated by pure time delay).

For more details of implementation of the deadband estimation, the reader is
referred to the original publication by Hägglund[30].

8.3.5 Backlash compensation

8.3.6 Simultaneous stiction and backlash detection

8.3.7 Discriminating between external and internally gener-
ated oscillations

8.3.8 Detecting and diagnosing other non-linearities

In his thesis, Horch [40] found no systematic method for diagnosing oscillations due to
other typical non-linearities than stiction. In particular, he considered dead-band and
quantization effects, but found that they had similar effects on the cross-correlation
function as external disturbances. However, the observation that non-linear effects
are frequent causes for poor control performance in general, and oscillations in par-
ticular, leads to the conclusion that it is valuable to detect non-linear behaviour, even
if one is not able to diagnose the type or cause of the non-linearity. This is the ap-
proach taken by Thornhill and coworkers [100, 15]. In [100], two measures are used
to quantify non-linearity, a distortion factor D and a measure N based on non-linear
time series analysis.

The distortion factor D compares the total power in the fundamental oscillation
frequency and the harmonics to the power in the fundamental frequency alone. The
calculation of D requires manual inspection of the power spectrum to determine the
appropriate frequency range for the fundamental oscillation. Note that if several
variables in a plant oscillate due to a common cause, the fundamental oscillating
frequency will be the same for all these variables. The selection of an appropriate
frequency range for evaluating D is therefore not an onerous task. D cannot be
determined in cases with no well-defined oscillation and no spectral peak.
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The measureN based on non-linear time-series analysis is based on the observation
that the statistical description of the output of a linear system affected by normally
distributed input signals is fully defined by its first and second order statistics (i.e.,
mean, variance, autocorrelation function). The idea is therefore to generate time
series that could be the output of a linear system, but with the same first and second
order statistics as the signal in question. Such time series are called surrogate time
series, see the paper by Schreiber and Schmitz [84] for details. Next, one has to
select a measure of non-linearity and calculate this measure for both the signal in
question and the surrogates. Finally, hypothesis testing is used to assess whether the
signal in question is significantly different from the surrogates (which would be an
indication of non-linearity). Thornhill et al. [100] measured non-linearity in terms
of the ’r.m.s. value of the error from zero-order non-linear prediction using matching
of nearest neighbors in an m-dimensional phase space’. This error is expected to be
lower for a non-linear signal than for an arbitrary linear signal with the same first
and second order statistics. A ’zero-order non-linear prediction using matching of
nearest neighbors in an m-dimensional phase space’ essentially means the following:

1. A m−dimensional ’phase space’ for the signal is established, where each point
in that space are defined by the most recent and (m − 1) earlier observations
of the signal. These m observations should be evenly spaced in time, but they
do not necessarily have to be consequtive.

2. The time series is searched for neighboring points in this phase space.

3. The zero-order prediction of the next signal value is simply the mean of the
next signal value for the neighboring points.

Tuning variables in for this non-linearity measure will be the dimension m of the
phase space and the number of nearest neighbors to use (or, alternatively, the distacne
from the present point within which the neighbors must lie).

In [100], it is shown that both D and N can be used successfully to detect non-
linearity. N appears to be more reliable than D, but is also significanlty more
computationally expensive.

In [15], the bispectrum is used to detect non-linearity. The bispectrum measures
interaction between two frequencies, and is expected to be flat for a linear signal. Sig-
nificant peaks and troughs in the bispectrum is therefore an indication of non-linearity.
Whether commonly occuring non-linearities have easily identifiable bispecral shapes
has apparently not been addressed, and would be of interest to analyze further.

8.4 Root-cause analysis for distributed oscillations

Thornhill et al. [100] demonstrate how detection of non-linearity can be used to locate
the origin of an oscillation that affects multiple variables in a process plant, without
necessarily diagnosing the cause or nature of the non-linearity. The basic idea is that
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most units in a process plant has a low-pass characteristic, and will therefore tend to
filter higher harmonics more than the fundamental oscillation frequency. Variables
that are located far from the origin of the oscillations are therefore likely to appear
’more linear’ than variables close to the origin of the oscillations. Root-cause analysis
(or, rather, ’locating’) then consists of first identifying groups of signals that oscillate
with similar patterns, and then assessing the degree of non-linearity for the various
signals within each group. Oscillations are then thought to arise at the location of
the most non-linear signal.

Thornhill et al. [100] used Principal Component Analysis of the signal spectra
to establish groups of signals with similar oscillation patterns. The measures D and
N described in the previous section were then used as measures of the degree of
non-linearity.

Whereas the ideas presented in [100] are very interesting, there seems to me lit-
tle industrial experience on which to base the choice of the non-linearity measure.
Although the use of surrogate data seems to be a popular (and statistically well-
founded) method for detecting non-linearity, there are alternatives to the measures
N and D (which does not require surrogate data) used by Thornhill et al. to quantify
non-linearity. Schreiber and Schmitz [84] describe the measure

Árev(¿) =
1

N − ¿

N∑
n=¿+1

(sn − sn−¿ )
3 (8.7)

as particularly useful (where N is here the number of observations in the time
series, and sn is the measurement at time n), whereas Kantz and Schreiber [55]
mention

Á =
1

N − 1

N−1∑
n=1

(sns
2
n+1 − s2nsn+1) (8.8)

Each of these measures would be less computationally intensive than the zero-
order nonlinear prediction described above. In [100], the selection of the particular
non-linearity measure for use with the surrogate data is not motivated, and there
seems to be limited industrial experience justifying the selection of a particular non-
linearity measure. There should be room for further research here, and in particular
the higher order autocorrelations in Eqs. (8.5) and (8.6) should be compared to the
measure N proposed by Thornhill et al.

One should also keep in mind that even linear systems can be unacceptably oscil-
latory, and therefore looking for non-linearity need not be a successful approach for
locating the origin of oscillations in a plant. This problem is particularly difficult in
multivariable systems, since the individual loops may function fine, while the oscil-
lations are caused by interactions between the loops. This issue is also discussed in
8.3.1 above.
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8.5 Control loop performance monitoring

Traditionally control loop monitoring has not received much attention, often being
limited to logging whether a control loop is in automatic of manual, and logging
alarms for the controlled variable in the loop. Although logging such variables and
events can give valuable information about the control system, they hardly provide
any diagnostic information or any ’standard’ against which the actual behaviour of
the control system can be measured. Autocorrelation functions and signal power
spectra can also give valuable information. However, their evaluation require sig-
nificant process understanding, and they therefore are not applicable for automatic
performance monitoring.

8.5.1 The Harris Index

The most popular index for monitoring controller performance has been named af-
ter T. J. Harris. Control loop performance monitoring has received much attention
since his publication of an influential paper on the subject [34], although similar ideas
have been proposed earlier, by e.g., Fjeld [22]. The Harris’ index simply compares
the observed variance in the controlled variable with that theoretically could be ob-
tained with a minimum variance controller (MVC)3. The observed variance is easily
calculated from on-line data. The beauty of the method lies in that only mod-
estly restrictive assumptions about the process are necessary in order to estimate the
achievable variance under MVC control from available on-line data.

The necessary assumptions are:

1. The deadtime from manipulated variable u to controlled variable y must be
known or estimated.

2. The process is asymptotically stable.

3. The process does not have any inverse response4.

Assumptions 2 and 3 above may be relaxed, if a sufficiently accurate process model
is available, see Tyler and Morari [101].

When assumptions 1-3 are fulfilled, a minimum variance controller may be used,
and as the name says, this controller would achieve the minimum variance in the
output. The minimum variance controller will not be derived here, but it is de-
scribed in many textbooks on stochastic control theory. All we need is the following
observations:

∙ No control action can influence the controlled variable before at least one dead-
time has passed.

3As implied by its name, the minimum variance controller minimizes the variance in the controlled
variable for a linear system, and hence gives a lower bound on the variance in the controlled variable.

4In terms of systems theory, the (discrete time) process should not have any zeros on or outside
the unit disk. This corresponds to zeros in the right half plane for continuous-time systems.
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∙ The minimum variance controller will remove all autocorrelation in the con-
trolled variable for time lags greater than the deadtime.

Thus, if we have an impulse response model for the effect of the (unknown) dis-
turbance on the controlled variable with the existing controller

yk =
∑
i≥0

ℎidk−i

we know that ℎi is unaffected by feedback for i < ±, where ± is the deadtime (in
number of sample intervals), whereas the minimum variance controller would achieve
ℎi = 0 for i ≥ ±. Thus, the minimum achievable variance in y is

¾2
y,mv = (1 + ℎ2

1 + ℎ2
2 + ⋅ ⋅ ⋅+ ℎ2

±−1)¾
2
d (8.9)

where we have selected ℎ0 = 1, since this is equivalent to scaling the disturbance
variance ¾2

d.
The Harris index provides a quantitative measure of control performance, relative

to a well-defined idealized performance, while requireing a minimum of process infor-
mation. The analysis is easily automated, and may be claimed to capture a significant
part of the information a competent engineer could derive from the autocorrelation
function. All commercial tools for control performance analysis therefore use the Har-
ris index (or one simple modification thereof) as one of the main indicators of control
performance.

8.5.2 Obtaining the impulse response model

In order to identify a model for the effect of the unknown disturbance on the controlled
variable, we must first select a model structure. We will use an autoregressive (AR)
model, where we assume that the disturbance d is a zero mean white noise:

yk + a1yk−1 + a2yk−2 + ⋅ ⋅ ⋅ = dk

or, in terms of the backwards shift operator z−1:

(1 + a1z
−1 + a2z

−2 + a3z
−3 + ⋅ ⋅ ⋅ )yk = A(z−1)yk = dk

Now, the AR model is very simple, and one may therefore need a high order for the
polynomial A(z−1)in order to obtain a reasonably good model. One therefore runs
the risk of ”fitting the noise” instead of modelling system dynamics. It is therefore
necessary to use a data set that is much longer than the order of the polynomial
A(z−1). However, if a sufficiently large data set is used (in which there is significant
variations in the controlled variable y), industrial experience indicate that acceptable
models for the purpose of control loop performance monitoring is often obtained
when the order of the polynomial A(z−1) is 15-20. The AR model has the advantage
that a simple least squares calculation is all that is required for finding the model,
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and this calculation may even be performed recursively, i.e., it is applicable for on-
line implementation. We will here only consider off-line model identification. The
expected value of the disturbance d is zero, and thus we have for a polynomial A(z−1)
of order p and a data set of length N with index k denoting the most recent sample

⎡
⎢⎢⎢⎢⎢⎣

yk−1 yk−2 ⋅ ⋅ ⋅ yk−p+1 yk−p

yk−2 yk−3 ⋅ ⋅ ⋅ yk−p yk−p−1
...

...
. . .

...
...

yk−N+p yk−N−1+p ⋅ ⋅ ⋅ yk−N+2 yk−N+1

yk−N−1+p yk−N−2+p ⋅ ⋅ ⋅ yk−N+1 yk−N

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

a1
...
ap

⎤
⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

yk
yk−1
...

yk−N+p+1

yk−N+p

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

dk
dk−1
...

dk−N+p+1

dk−N+p

⎤
⎥⎥⎥⎥⎥⎦

⇕
Y a = −y + d

where the underbars are used to distinguish vector-valued variables from scalar
elements. The expected value of the disturbance d is zero, and thus the model is
found from a least squares solution after setting d= 0:

a = −(Y TY )−1Y Ty

After finding a, an estimate of the noise sequence is simply found from d= Y a+y,
from which an estimate of the disturbance variance ¾2

d can be found. Having found
the polynomial A(z−1), the impulse response coefficients ℎi are found from

yk =
1

A(z−1)
dk = H(z−1)dk

using polynomial long division. Here H(z−1) = 1 + ℎ1z
−1 + ℎ2z

−2 + ℎ3z
−3 + ⋅ ⋅ ⋅ .

8.5.3 Calculating the Harris index

The Harris index is the ratio of the observed variance to the variance that would
be obtained by MVC. The minimum achievable variance can be calculated from
Eq. (8.7) above, using the identified impulse response coefficients and the estimated
disturbance variance

¾2
d =

1

N − 1

N∑
i=1

(
di − d

)2
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where d is the mean value of the estimated disturbance, which is zero by construc-
tion.

The observed variance of the controlled variable can be computed similarly. How-
ever, if there is a persistent offset in the control loop, i.e., if the mean value of the
controlled variable deviates from the reference, this should also be reflected in a mea-
sure of control quality. Hence, a modified variance should be used which accounts
for this persistent offset

¾2
y,o =

1

N − 1

N∑
i=1

(yi − yref )
2

If there is a persistent offset from the reference, the modified variance ¾2
y,o will

always be larger than the true variance ¾2
y, and the Harris index becomes

HI =
¾2
y,o

¾2
y,mv

8.5.4 Estimating the deadtime

A reasonably accurate estimate of the process deadtime is clearly a prerequisite for
obtaining meaningful information from the Harris index. Sometimes such estimates
may be available a priori, based on physical understanding of the process. In other
cases, the deadtime must be extracted from process data. Clearly, the deadtime can
be obtained from identification experiments. However, with the exception of quite
small plants, the number of identification experiments required would be prohibitive,
due both to an unacceptable workload and excessive process excitation. Instead,
Isaksson et al. [53] propose to estimate the deadtime from closed loop data, based on
data collected around the time of significant setpoint changes. Their method consists
of:

1. First detect whether the control loop is close to a steady state (for details, see
[53] and references therein).

2. If the loop is approximately at steady state, and a setpoint change significantly
larger than the noise level of the output occurs, start collecting input-output
data until the loop reaches a new steady state.

3. Fit a Laguerre filter model to the collected data.

4. Factorize the resulting model into a minimum phase and an all-pass part, where
the all-pass part will contain all non-invertible zeros of the model, i.e. G(z) =
Gmp(z)Gap(z).

5. The deadtime is estimated from
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Td = lim!→0

(
− ∕ Gap(!)

!

)
(8.10)

8.5.5 Modifications to the Harris index

Despite the theoretical elegance of the derivation of the minimum variance controller,
the minimum variance controller is generally not a realistic choice for a controller in a
real application. This is because it is sensitive to model errors, and may use excessive
moves in the manipulated variable. It does provide an absolute lower bound on the
theoretically achievable variance, but it is nevertheless of interest to have a control
quality measure which compares the actual performance to something (hopefully)
more realistic.

A simple modification to the Harris index is to simply use a too high value for the
time delay, thus increasing the ’minimum’ variance. This is discussed in Thornhill
et al. [99] The resulting performance index will then no longer compare actual
performance with a theoretically optimal performance. In [99], typical choices for
the ’prediction horizons’ are discussed for common control loop types in refineries
(e.g., pressure control, flow control, etc.)

Another modification is to assume that the ’ideal’ controller does not totally re-
move the effect of disturbances after one deadtime has passed, but rather that the
effect of the disturbance decays as a first order function after the deadtime has passed.
If we assume that this decay is described by the parameter ¹ (0 < ¹ < 1), so that
the ideal response to disturbances against which performance is measured would be

yk,mod =
±−1∑
i=0

ℎidk−i +
∞∑

i=±

ℎ±−1¹
i−±+1dk−i

which results in a modified ’benchmark variance’

¾2
y,mod = ¾2

y,mv +
¹2

1− ¹2
¾2
d

The modified control performance index then simply becomes

HI,mod =
¾2
y,o

¾2
y,mod

This modified Harris index is proposed by Horch and Isaksson [42] and Kozub
[63]. Horch and Isaksson also provide some guidelines for how to specify the tuning
factor ¹. They find that if one wishes to account for a possible error in the estimated
deadtime of ±1 sample interval, and still require a gain margin of 2 for the ’ideal
closed loop’, this corresponds to choosing ¹ > 0.5. It is also recommended to have a
realistic attitude to how much the dynamics of the closed loop system can be speeded
up, compared to the dynamics of the open loop process. Horch and Isaksson argue
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that it is unrealistic to speed up the system by a factor of more than 2-45. If we
denote the open loop dominant time constant ¿ol, and the desired closed loop time
constant is ¿ol/v, then the parameter ¹ should be chosen as

¹ = exp

(
−vTs

¿ol

)

where Ts is the sampling interval for the control system.

8.5.6 Assessing feedforward control

The time series analysis behind the Harris index can also be extended to cases with
feedforward control from measured disturbances. In cases where disturbances are
measurable, but not used for feedforward control, the analysis can be used to quantify
the potential benefit (in terms of variance reduction) from implementing a feedforward
controller. This is described by Desborough and Harris in [18] The analysis requires
knowledge of the deadtimes from measured disturbances to controlled variable in
addition to the deadtime from the manipulated variable to the controlled variable6.
Their analysis results in an Analysis of Variance table, which shows how much of the
observed variance is due to the unavoidable minimum variance, and what fractions
of the excess variance is affected by feedback control alone, how much is affected by
feedforward control alone, and how much is affected by both feedback and feedforward
control.

In a related paper, Stanfelj et al. [96] address the analysis of the cause for poor
performance, and show how to determine whether it is due to poor feedforward or
feedback control. If the cause is poor feedback control, it is sometimes possible to
determine whether it is due to poor tuning, or due to errors in the process model. This
obvioulsy requires that a (nominal) process model is available, in contrast with the
analysis of Desborough and Harris which only requires the knowledge of deadtimes.
Reliable model quality assessment also requires some external excitation of the control
loop, typically via controller setpoint changes.

8.5.7 Comments on the use of the Harris index

5While this argument is reasonable for many control loops, it is obviously incorrect for integrating
processes (e.g., levle control), where the open loop time constant is infinite. Ideally, one should base
an estimate of the achievable bandwidth on more fundamental system properties like time delays,
inverse response, or limitations in the manipulated variables.

6The deadtime from measured disturbances to the controlled variables should be possible to
identify from closed loop data, given a data segment with significant variations in the measured
disturbance. If the identified deadtime is equal to or higher than the time delay from manipulated
to controlled variable, the measured disturbance does not contribute to variance in the controlled
variable under minimum variance control.
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Before screening for poorly performing loops using the Harris index (or preferably
the modified version presented above), one should first remove any persistently oscil-
lationg loops, as these will certainly require attention.

It is important to understand that an underlying assumption when using the Harris
index is that small variance of the controlled variable is actually desired. Whereas
this is normally the case, it is not always so. For example, for buffer tanks used to
filter liquid flowrate disturbances, one actually desires the control to be as slow as
possible. This means that the control should stabilize the liquid level and keep the
tank from overflowing or emptying, but otherwise change the outlet flowrate as slowly
as possible. Perfect level control would require the outlet flowrate to equal the inlet
flowrate, and thus no flowrate filtering would be obtained.

Furthermore, onse should realize that the Harris index is a relative measure of
control quality. Thus, if a process is modified to improve controllability, e.g., by
installing a new measurement with less deadtime, the Harris index may well get
worse even if the actual performance improves significantly. This is of course because
the observed variances before and after the process modifications are not compared
against the same minimum variance.

The Harris index is applicable to systems where the deadtime is the main factor
limiting bandwidth and control performance. It was mentioned earlier that there
are available modifications which allow consistent assessment of loops controlling an
unstable process, or processes with inverse response (zero outside the unit disc).
However, these modifications require much more detailed process knowledge than the
basic Harris index. Similarly, the Harris index is not appliccable to control loops
where the manipulated variable is in saturation much of the time, since no controller
could then reduce variance in the controlled variable (i.e., comparison with a MVC
controller becomes meaningless). Consistently saturating inputs would have to be
resolved by other means, e.g.

∙ Resolving conflicts between control loops by changing control structures.

∙ Modifying the process to reduce the size of disturbances.

∙ Installing manipulated variables with a larger operating range.

Despite these limitations, the Harris index is applicable to many control loops in
most chemical processes. Deterministic performance indeces may in some cases be
desireable alternatives to the Harris index for performance assessment. In particu-
lar, measures like rise time or settling time may be easier to discuss with operators
than a more complicated concept like variance. Some such measures may easily be
derived from the autocorrelation function or the cross-correlation between reference
and control error7. However, although actual performance may be assessed, it seems
harder to assess how to correct for unacceptable performance, and to define an ideal

7To calculate this cross-correlation, it is of course a requirement that the there are significant
changes in the reference in the period under investigation, i.e., the process has to be excited. The
Harris index, on then other hand, can be evaluated from data obtained from passively observing
process operation.
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performance benchmark when using deterministic performance measures. Many con-
trol loops in the processing industries are used for regulatory purposes. Their main
objective is to attenuate disturbances rather than quickly follow setpoints. For such
loops a stochastic performance measure may be more relevant than a measure like
rise time, which focuses on response to setpoint changes.

It appears that the Harris index, or some modification thereof, is an important
part of any industrial CPM application, whereas deterministic measures play a much
smaller part in industrial practice.

8.5.8 Performance monitoring for PI controllers

The minimum variance controller gives an absolute lower bound on the achievable
performance. However, this performance may not be achievable with a particular
controller type. In particular, most controllers in industry are of the PI or PID type.
Ko and Edgar [59] has investigated the achievable performance (in terms of variance
in the controlled variable) for PI controllers.

First, time series analysis of the closed loop is used to obtain the first few im-
pulse response coefficients from (unmeasured) disturbance to the controlled variable,
since the impulse response coefficients for times shorter than the process time delay
will be invariant to feedback control. A low order ARIMA model is then fitted to
these impulse response coefficients. Finally, the variance of the controlled variable
is minimized with respect to the PI controller gain and integral time by solving an
optimization problem.

Their method suffers from the fact that not only the process time delay is required
to be known, but the entire plant transfer function. Furthermore, little is known
about the properties of the optimization problem that is solved to find the minimum
variance under PI control. Thus, there is no guarantee that the optimization problem
is (quasi-)convex, or that a global minimum is found.

8.5.9 Performance monitoring for cascaded control loops

Ko and Edgar have developed a method for assessing performance of cascaded con-
trol loops. In [60] they develop expressions for minimum variance cascaded controller,
considering the variance in the primary controlled variable (i.e., the outer loop) only.
However, their development appears to be flawed. In example 1 in [60], they design
minimum variance cascaded controllers. That design preserves input-output stabil-
ity, but the control scheme is not internally stable; The system is unstable from the
reference (or output disturbance) to the controller output of the primary controller.
Although the proposed control may be feasible with a centralized implementation
of the cascaded controller as a single 2-input 1-output controller, it is certainly not
feasible with the conventional implementation as two stand-alone SISO controllers
connected in cascade. In a CPM application, it is therefore not clear whether the
minimum variance cascade controller derived by Ko and Edgar, and hence the bench-
mark variance used for performance assessment, will be realizable using a conventional
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implementation of cascaded controllers. The resulting performance assessment may
therefore be flawed, and performance assessment for cascaded control loops therefore
does not appear to be completely solved.

8.6 Multivariable control performance monitoring

The concept of comparing the observed variance to the minimum variance can be
extended to multivariable systems, see e.g., [33]. A complicating factor is that the
minimum variance in general can not be determined based only on knowledge of the
time delays in all transfer function elements, even in the absence of poles outside
the unit disk or (finite) zeros outside the unit disk. Instead, the knowledge of the
so-called ’interactor matrix ’ is required, which contains all plant zeros at infinity (i.e.,
complete knowledge of the delay structure of the plant). Thus, the transfer function
matrix G(z−1) has to be factorized as

E(z)G(z−1) = G̃(z−1)

where G̃(z−1) is a delay-free matrix, containing only finite zeros, such that

lim
z−1→0

G̃ = K

where K is a full rank, constant matrix. The interactor matrix E(z) is a polyno-
mial matrix such that det(E) = zr, where r is the number of infinite zeros of G(z−1).
The interactor matrix is not uniquely defined, and Huang et al. [51] observe that
the optimal form of the interactor matrix depend on the application. A common
form is a lower triangular interactor matrix. The use of such an interactor matrix for
designing a minimum variance controller, would lead to minimum variance in the first
output, whereas the variance in the second output is minimzed subject to minimizing
the variance in the first output, etc. For multivariate performance assessment, such
an ordering of the outputs according to priority appear misplaced, and Huang et al.
instead proposes the use of a unitary interactor matrix. Filtering by a unitary inter-
actor matrix leaves the spectrum of the original signal unchanged, i.e., no particular
order of priority is imposed on the outputs. A weighted unitary interactor matrix
can be used to give different weight to different outputs.

The determination of the interactor matrix has traditionally required the knowl-
edge of the entire transfer function matrix. Huang et al. describe how it can be
found from knowledge of the first few Markov parameter matrices of the plant. Since
the delay structure is invariant under feedback control, closed loop identification can
be used to determine the interactor matrix. However, even in closed loop the system
has to be excited to perform the identification.

In cases where the plant has other non-invertible zeros (i.e., finite zeros outside
the unit disk), Huang [49] has shown how a generalized interactor matrix can be
defined and used for multivariable performance assessment. In the same way as for
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monovariable performance monitoring, such non-invertible zeros need to be known a
priori.

8.6.1 Assessing feedforward control in multivariable control

In a development similar to that in [18] for SISO systems, Huang et al. [52] have ex-
tended multivariable performance assessment to also account for feedforward control,
or to assess the potential benefit of feedforward control when measurable disturbaces
are not used for feedforward control.

8.6.2 Performance monitoring for MPC controllers

Ko and Edgar [61] try to address performance assessment for constrained model pre-
dictive control systems. However, their results are relatively trivial, since they assume
that the model update in MPC is simply a conventional ’bias update’. The authors
compare this to the improvement that can be obtained by using an optimal prediction
of the model prediction error. Naturally, this optimal prediction will depend on the
dynamics of any unmeasured disturbances. It is well known that the bias update is
poorly suited for processes with slow disturbance dynamics, and the results in [61]
are in this respect rather trivial - modern MPC algorithms will anyway have the
capability of using more advanced model updating schemes than the ’bias update’
(admittedly, many commercial MPC algorithmes use rather crude model updating
techniques).

MPC controllers minimize a performance criterion online. The relative success at
minimizing this criterion is therefore probably the best possible measure of MPC per-
formance. This is actually a more complex problem to analyze than to assess whether
a (multivariable) controller is close to minimzing some weighted variance in the out-
puts. Many MPC controllers place little importance on controlling variables that are
within an acceptable operating range. Only variables that are at or outside their op-
erational limits are actively controlled. This means that the ’weight’ of the different
variables are in a sense time-varying (or state dependent). This feature is quite easily
captured in the formulation of the optimization problem in an MPC controller, but
would vastly complicate any minimum variance based controller assessment.

Apart from the well-known problems of inappropriate model updating, which in
an obscure way is re-visited in [61], a key issue is the accuracy of the model used by
the MPC controller. This is essentially the issue of ’model (in)validation’. There is
a substantial literature on model (in)validation, and no attempt have been made at
reviewing this literature systematically. In a control performance monitoring frame-
work, we would like to assess model quality in a passive sense, without exciting the
system. This could appear to contradict the assumptions of most model (in)validation
techniques, which require that the process is excited (in essence, that either an open
loop or closed loop experiment is carried out).

Kammer et al. [54] propose a model invalidation technique based on the spec-
trum of the model prediction error. This method only requires the controller to be
temporarily switched off, but beyond that no upset to the process is required. If the



8.7. SOME ISSUES IN THE IMPLEMENTATIONOF CONTROL PERFORMANCEMONITORING197

process model is perfect, the spectrum of the prediction error should not change as
the MPC controller is switched off (put in manual). Their approach is interesting,
and require modest effort and process excitation. However, the issue of on-line model
updating is not addressed in their paper, and hoping that the disturbances are well
described as a stationary stochastic process both when collecting closed-loop and
open loop data may be much to ask for.

Many MPC controllers have a separate ’optimization’ layer, which optimizes the
target values (setpoints for controlled variables, and/or ’ideal resting values for the
manipulated variables) for the MPC controller. Often this optimization layer is exe-
cuted at the same sampling frequency as the control layer. A reasonable conjecture
is that when the model is poor, the optimization layer will send significant changes
in target values to the control layer. Whether these target changes could function
as ’external excitations’ is an issue which should be studied further. Clearly, one
cannot expect the target changes to be completely independent from the (measured
or unmeasured) disturbances, but if the model is poor there may be a significant
component of the target changes that is independent from the disturbances.

8.7 Some issues in the implementation of Control

Performance Monitoring

There are several issues that need to be addressed when designing and/or implement-
ing a control performance monitoring system. These include:

∙ Structural issues. For example, should the system be implemented centrally or
in a decentralized manner? Some aspects of control performance monitoring,
like oscillation/stiction detection, calculating the Harris index, etc., can be per-
formed locally. While this will put higher demands on local computing power
and data storage, it will reduce the requirement for transferring data over the
network. On the other hand, inherently multivariable aspects like root cause
analysis of distributed oscillations can only be performed centrally. Software up-
dates are also simpler to handle with a centralized implementation. It appears
that a centralized implementation is common in industrial practice. Honeywell
has taken this position ’to the extreme’, data is only collected locally, and is
then encrypted before being trasnsmitted over the Internet to a central server
for analysis.

∙ Data quality. From what source is process data obtained, and how often is it
logged? Some guidelines can be found in e.g. [67] and [99]. Many process data
historians use infrequent sampling and/or use irreversible data compression al-
gorithms. This will permanently alter the statistical properties of the data, and
can be very detrimental to control performance monitoring. The above refer-
ences also contain recommendations for typical logging frequencies for various
control loops (pressure control, flow control, etc.). On the one hand one would
like frequent logging to be certain to capture all relevant process dynamics -
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and possibly also allow some filtering of high-frequency noise without affecting
the process dynamics. On the other hand, frequent logging - in particular when
applied to hundreds or thousands of control loops - will cause high loads on the
data communication network.

∙ Integration into normal operating practice. A control performance monitoring
system can only succeed if it clearly contributes to making normal operation
and maintenance of the plant simpler. If system configuration is complex, or
significant effort is required to extract information from the CPM system, it is
bound to fail in practice. Reports from the CPM system should be prepared
regularly (e.g., once every day or week) and automatically, contain a prioritized
list of problem areas and recommended corrective actions, and the report should
automatically be sent to the responsible plant engineer.

8.8 Discussion

Common sense and reports from industry seem to agree that Control Performance
Monitoring can make maintenance and optimization of process control systems much
more effective. However, there are many aspects within this area for which there
are few reports in the open literature of comparisons between alternative methods
using real industrial data. This is the case for both stiction detection and measures
of non-linearity used to locate the origin of distributed oscillations.

A relevant measure of control performance for surge-attenuating controllers (e.g.,
level controllers in buffer tanks) is not available. For such controllers a minimum
variance based benchmark will be absurd, and there is a need for an alternative
measure.

The research on root cause detection for distributed oscillations have focused on
non-linearity as a cause for oscillations. There is certainly more work to be done in
this area. It would be of interest to be able to diagnose other types of commonly occur-
ing (and un-intended) non-linearities than stiction from operational data. Detecting
and diagnosing valve hysteresis would appear to be of particular interest. However,
inappropriate control structures, leading to severe interactions between control loops,
can also cause oscillations - even if each loop works fine in on its own. Many inappro-
priate control structures can be identified from physical understanding of the process,
if such understanding is backed up by a proper understanding of control. Automated
detection and diagnosis of conflicting controls has received little attention, and it is
not clear what can be found from operational data, and what requires other types of
process information.

The minimum variance benchmark is often criticized, since it may not be achiev-
able with a particular controller type, e.g., a PI controller. However, it seems un-
avoidable that any exact analysis based on a particular controller type (other than the
minimum variance controller) will require a much more detailed process model. The
modification of the Harris index described above should also make the index much
more realistic. Whether process deadtime is the only factor which limits achievable
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variance is another issue. Therefore, it is of interest to investigate whether event-
triggered identification can be used to identify open-loop poles or zeros outside the
unit disk from closed loop data, in addition to identifying the deadtime.

For multivariable systems, a minimum variance benchmark seems most appro-
priate for multi-loop control (i.e., decentralized control, using multiple single-loop
controllers). In such a setting, the minimum variance benchmark may serve to illus-
trate the tradeoffs between control quality for different outputs, although the issue of
restrictions in controller type becomes even more acute in such a setting.

Most multivariable controllers in the process industries are of the MPC type, for
which the minimum variance benchmark will often be inappropriate, as discussed
above. Model quality and model (in)validation, preferably based on closed loop data,
appear to be of more relevance.
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Chapter 9

Linear regression techniques
applied in process control

Linear regression techniques are often applied in process control, to infer the value
of an unmeasured variable from a number of available measurements. This is often
termed inferential control. Most often this occurs when compositions are inferred
from a spectrum of light absorbance data at different wavelengths (IR or NIR spec-
troscopy). Other examples include photo-spectroscopic measurement of quality pa-
rameters in the food industry. In such applications, there is a direct and immediate
relationship between the measurements and the variable of interest, and there is no
need for accounting for system dynamics, using, e.g., a Kalman filter.

In some other cases, the available measurements have dynamics that are closely
linked to the dynamics of the variable of primary interest. Also in such a case it
may be acceptable to ignore dynamic effects. For example, the use of temperature
measurements to infer product compositions has been shown to be effective for high
purity binary distillation columns. (ref. Mejdell)

However, in general one should exercise some care when using the linear regression
techniques below for inferential control of dynamical systems. When it is necessary
to account for dynamics, and no dynamical model is available, more conventional
dynamical system identification (outside the scope of this note) would seem preferable
to someone with a control background. The identified model would subsequently be
used for control, typically involving state and/or parameter estimation.

Nevertheless, the cases mentioned above should illustrate that these techniques
do have a natural place in process control, and a brief introduction is given here.
The reader should be aware that there are numerous books devoted to this area,
and the following treatment is therefore lacking both in depth and coverage. More
information can be found in, e.g., ref MartensNaes, ref Braatz.

9.1 Data pre-treatment and organization

In a typical case, we wish to estimate a (difficult to measure) primary variable ŷ using
a linear combination of easily measurable secondary variables ŵ. That is, we want to

201



202CHAPTER 9. LINEAR REGRESSION TECHNIQUES APPLIED IN PROCESS CONTROL

determine the terms k and k0 in the relationship

ŷ = kT ŵT + k0 (9.1)

Here k and ŵ are transposed, because it is customary in the chemometrics literature
to arrange the data from the same sample time in a row vector, and the parameter
vector (here denoted k) in a column vector.

First, calibration data has to be obtained. Thus, a series of experiments are
performed, and values for the secondary variables ŵ and the primary variable ŷ are
obtained. In a process plant setting, the primary variable may be obtained from some
laboratory measurement. In other cases, samples of known composition may be used
to correlate absorbance spectra with composition. Experimental design should also
be given some consideration, it is important that the variability in the experimental
data cover the variability that can be expected in actual operation. Experimental
design is another topic that is not covered by this note, there many books covering
this topic (e.g., ...citation...)

The results of the experiments are arranged in a column vector for the primary
variable1, and in a matrix for the secondary variables, with one row per experiment.
Thus, we end up with the data matrices

Ŷ =

⎡
⎢⎢⎢⎣

ŷ1
ŷ2
...
ŷn

⎤
⎥⎥⎥⎦ ; Ŵ =

⎡
⎢⎢⎢⎢⎢⎣

ŵ1,1 ŵ1,2 ⋅ ⋅ ⋅ ŵ1,m

ŵ2,1 ŵ2,2 ⋅ ⋅ ⋅ ŵ2,m
...

...
...

...

ŵn,1 ŵn,2 ⋅ ⋅ ⋅ ŵn,m

⎤
⎥⎥⎥⎥⎥⎦

where the first subscript for ŵ identifies the experiment, and the second index iden-
tifies the variable in question.

Next, the data is centered, by subtracting the mean value of a column from all
elements in that column. The mean of ŷ is denoted ȳ, and the mean values for ŵ is
denoted w̄. The columns ŵ may also be scaled, e.g., by the inverse of the standard
deviation of the column, or to reflect different levels of measurement noise in different
measurements. The resulting (centered and scaled) data matrices are denoted Y and
W .

9.2 Ordinary Multivariable Linear Regression

We want to determine the vector k in

ŷ − ȳ = kT (ŵT − w̄T ) (9.2)

allowing us to predict the value of ŷ from available on-line measurements ŵ. Note
that when the means are subtracted in (9.2), determination of k also allows us to
calculate k0 in (9.1) - if this is desired.

1Assuming that only a single variable is to be inferred, if several variables are to be inferred, the
primary variables are arranged in a matrix, with one row per experiment.
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Using the data matrices from the previous section, we want to find the vector k
from

Y = Wk (9.3)

It is well known that in order for (9.3) to be solvable, W must be invertible, and thus
the number of samples must equal the number of measurements in w (i.e., n = m
above). In any case, the solution to (9.3) may be expressed as

k = W †Y (9.4)

where the † symbol represents the pseudo-inverse - which is equal to the inverse of
the matrix if the matrix is invertible. If n < m the problem is under-determined, and
the pseudo-inverse minimizes the size of k. The more common case is that n > m,
and in this case the pseudo-inverse minimizes the error ∥Y −Wk∥2 2. For W of full
column rank, the pseudo-inverse is given by

V † = (W TW )−1W T

Multivariable Linear Regression does minimize the norm of the error for the data set
used in the regression, as noted above. However, for that very same reason - it uses
all the information available in the calibration data - it is also rather sensitive to noise
in the calibration data. If there are combinations of inputs x are poorly excited in
the data set, this problem may be particularly severe. The result may therefore be
that the predictions obtained when using MLR are quite poor when applied to new
data. In such cases, Principal Component Regression or Partial Least Squares may
be good alternatives.

9.3 Principal Component Regression

The basic idea behind Principal Component Regression is to invert only the ’strong’
data directions of W in (9.3), since inverting in the ’weak’ directions is particularly
sensitive to noise or errors in the data.

Here, the PCR will be presented using the Singular Value Decomposition (SVD),
although alternative approaches exist which allow extracting individual factors one
at the time.

Thus, the principal component regression is obtained by defining a ’pseudo-inverse’
which uses only the p larger singular values of W . Let W have the SVD W =
UΣV H , and let Up and Vp consist of the p leading columns of U and V , respectively.
Similarly, Σp is the p×p leading principal submatrix of Σ. This results in the following
(approximate) solution to (9.3)

k = VpΣ
−1
p UH

p Y (9.5)

Naturally, the result from PCR depends on the number of factors p. This should be
chosen to include all strong directions in the data set W , but ignore weak directions

2Provided W has full column rank.
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(identified by small singular values) which are dominated by noise and measurement
error. It may be prudent to use an independent data set to test how prediction quality
depends on the value of p.

In PCR or PCA (Principal Component Analysis), the columns of T = UpΣp are
frequently referred to as score vectors, whereas the columns of P = V H are termed
loading vectors.

9.4 Partial Least Squares

Although PCR overcomes the problem of co-linearity in the input data W , the se-
lection of the directions used for the regression (the leading columns of U and V )
does not consider whether variations in the input data W affects the output data Y .
Partial Least Squares (PLS) tries to rectify this, and account for covariance between
W and Y when selecting the directions used for regression. This requires a more
complex procedure, and more involved notation.

There are several ways to calculate the PLS parameters. Here, the NIPALS (non-
iterative partial least squares) algorithm will be briefly described. It repeatedly ex-
tracts regression vectors from the data set, and thereafter the data explained/used
by these regression vectors are subtracted from the data set. Hence we will use a
subscript to indicate the number of regression vectors that have already been found.

The NIPALS PLS algorithm.

1. Initialize with Y0 = Y and W0 = W .

2. Select a vector in the output range (left range space) of Yi−1 to initialize the
calculation of factors i. Often the column of Yi−1 with the larger variance is
chosen. For a problem with a single output this gives zi = Yi−1.

3. Iterate until convergence:

m̂i =
W T

i−1zi
∥W T

i−1zi∥
(9.6)

t̂i = Wi−1m̂i (9.7)

q̂i =
Y T
i−1t̂i

∥Y T
i−1t̂i∥

(9.8)

zi = Yi−1qi (9.9)

The iteration has converged when t̂i does not change significantly between iter-
ations. If Y contains only a single variable, qi = 1, and no iteration is necessary.
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4. Calculate loadings, and rescale to get orthonormal loading vectors

p̂i =
W T

i−1t̂i

∥t̂Ti t̂i∥
(9.10)

pi =
p̂i
∥p̂i∥ (9.11)

ti = t̂i ⋅ ∥p̂i∥ (9.12)

mi = m̂i ⋅ ∥p̂i∥ (9.13)

(9.14)

5. Find the regression coefficient bi for the relationship between zi and ti:

bi =
zTi ti
tTi ti

(9.15)

6. Before proceeding to the calculations for the next factor (or ’latent variable’),
the data sets must be adjusted for the correlations in the data that are explained
by the current factor:

Wi = Wi−1 − tip
T
i (9.16)

Yi = Yi−1 − bitiqi (9.17)

7. Repeat from Step 2 if an additional factor needs to be calculated.

The approximate inverse formed by the PLS algorithm can be expressed as

W † = M(P TM)−1BQ (9.18)

where the columns of M , P , and Q are calculated as explained above, and B =
diag{bi}.

A point to note is that although the PLS also calculates loadings and scores, these
are different from the PCR loadings and scores.

The calculations for PLS are more involved than those for PCR, but since the
regression directions are based on the directions in W for which there is covariance
with Y , a PLS model will often give improved predictions for the same number of
factors.

9.5 Detecting anomalies using Principal Compo-

nent Analysis

In addition to their use in regression, for the purpose of predicting hard-to-measure
variables, principal components are also used to detect anomalies. In the context of
this note, we are primarily interested in anomalies in process plant behaviour.
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The PCR essentially splits the data matrix W into two parts

W = W̃ + E (9.19)

where W̃ = UpΣpV
H
p is believed to to contain the dominant and reliable information

in the data, whereas E is more unreliable and possibly dominated by noise (and is
hopefully small).

In Principal Component Analysis, the analysis is performed by projecting new
sample data onto the loading vectors ti of the principal components. In this case,
predicting the hard-to-measure output is not the focus, and the score vectors are
therefore not used.

The PCA method can give two different indications indications of anomalous
behaviour:

1. The variation within the subspace covered by the principal components may be
abnormally large, i.e., the projections onto the loading vectors show large values.
This is measured by Hotelling’s T 2 statistic.

2. The variation outside the subspace covered by the principal components may be
abnormally large, i.e., much of the data in the new sample is not covered by
the principal component model. This is measured using what is known as the
Q statistic.

Confidence limits can be calculated for both the T 2 and Q statistics, and these can be
used to define threshold values for indicating anomalous behaviour. The interested
reader should consult more specialized literature, e.g., ....cite Braatz?, PLS Toolbox.
One should bear in mind, however, that the standard confidence limit calculations as-
sume the samples to be independent. When the measurements that make up a sample
are actually process plant measurements, the samples may be strongly correlated due
to the plant dynamics. This should be considered when collecting data to construct
the PCA model. In addition to detecting anomalous behaviour, inspection of the
loadings may also assist in diagnosis of the anomaly, if understanding of the plant is
combined with the knowledge of how the individual measurements contribute to the
different loading vectors. Again, more specialized literature should be consulted.
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Appendices

A1 Fourier-Motzkin elimination

Fourier-Motzkin elimination is a method for eliminating variables from sets of lin-
ear inequalities, or, equivalently, to project polyhedra described by linear inequalities
onto lower dimensional subspaces. It has been described as ’Gauss-Jordan elimina-
tion applied to inequalities’, and although less well known is equally simple. For
illustration consider the two inequalities

a11x1 + a12x2 ≤ b1 (A1.1)

a21x1 + a22x2 ≤ b2 (A1.2)

Multiplying (A1.1) and (A1.2) with non-negative constants ¸1 and ¸2, respectively,
and adding the resulting inequalities, results in the inequality

(¸1a11 + ¸2a21)x1 + (¸1a12 + ¸2a22)x2 ≤ ¸1b1 + ¸2b2 (A1.3)

Clearly, (A1.3) is also a valid inequality. If, a11 and a21 have opposite signs, ¸1 and
¸2 can be chosen to eliminate x1 from (A1.3). Next, the procedure above will be
generalized to arbitrary dimensions.

Problem A1.1. Consider the set Ξ1 described by the linear inequalities

A1x1 + A2x2 ≤ b (A1.4)

where x1 ∈ R, x2 ∈ Rr, b ∈ Rq, and A1 and A2 are of consistent dimensions. Find
the corresponding set

Ξ2 = {A»x2 ≤ b»}
such that ∀x2 ∈ Ξ2∃x1 ∈ R for which (A1.4) is fulfilled.

Algorithm A1.2. Solution to Problem A1.1: The Fourier-Motzkin elimination
procedure.

1. Group the inequalities in (A1.4) in three subsets

s0: Inequalities for which the corresponding element of A1 in (A1.4) is zero.

s1: Inequalities for which the corresponding element of A1 in (A1.4) is positive.

s2: Inequalities for which the corresponding element of A1 in (A1.4) is negative.

2. Form the set of inequalities s12 as follows:

i) Take one inequality from s1 and one inequality from s2.

ii) Multiply the two inequalities by appropriate positive constants, and add
the results to form a new inequality in which x1 does not appear.
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iii) Include this new inequality in the set s12.

iv) Repeat i - iii above for all possible pairs of inequalities from s1 and s2.

3. The set Ξ2 is then described by the inequalities in s0 and s12.

Eliminating more than one variable from the inequalities is done by repeated appli-
cation of Algorithm A.1.2. Note that many of the resulting inequalities describing
the set Ξ2 may be redundant. If a minimal set of inequalities is desired, removing
redundant constraints will therefore be necessary.

Example A1.1.
Consider the set of linear inequalities

x1 ≤ 2 (A1.5)

−x1 ≤ 2 (A1.6)

x2 ≤ 2 (A1.7)

−x2 ≤ 2 (A1.8)

x1 − x2 ≤ 3

4
(A1.9)

−1

3
x1 + x2 ≤ 2 (A1.10)

−3x1− x2 ≤ 3 (A1.11)

what are the values of x1 for which there exists a feasible x2? These inequalities
are illustrated in Fig. A1, from which it is simple to identify the range of values
for x1 for which a feasible value of x2 can be found. Clearly, s0 ∈ {(A1.5), (A1.6)},
s1 ∈ {(A1.7), (A1.10)}, and s2 ∈ {(A1.8), (A1.9), (A1.11)}. Forming the set s12 as
described above, we get the following set of inequalities:

Combining (A1.7) and (A1.9): x1 ≤ 11
3

Combining (A1.7) and (A1.11): −3x1 ≤ 5

Combining (A1.10) and (A1.8): −1
3
x1 ≤ 4

Combining (A1.10) and (A1.9): 2
3
x1 ≤ 11

3

Combining (A1.10) and (A1.11): −10
3
x1 ≤ 5

The combination of inequalities (A1.7) and (A1.8) resiults in 0 ≤ 0, which is trivially
always fulfilled. Forming the set Ξ2 from s0 and s12, and removing redundant con-
straints, we find that the feasible region for x1 is given by −3

2
≤ x1 ≤ 2, which agrees

with what we find from Fig. A1.
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Figure A1: Feasible region for x1 for Example 1.

A2 Removal of redundant constraints

The Fourier-Motzkin elimination described above results in many redundant con-
straints, which are superfluous in any application. Likewise, calculation of the maxi-
mal output admissible set also requires checking whether constraints are redundant.

We will here use an adaptation of the procedure proposed in [72], due to its
conceptual and mathematical simplicity. No claims are made about the computational
efficiency of the procedure. However, in an MPC setting, checking for constraint
redundancy is generally done at the design stage, i.e., offline, when there is typically
no strict limitations on available computation time.

We start from a bounded convex polyhedron described by q linear inequalities

Ξ = {xk∣Axk ≤ b} (A2.1)

A new constraint Acxk ≤ bc is redundant if it can be added to the original set of
constraints without altering the set, that is

Axk ≤ b ⇒ Acxk ≤ bc (A2.2)

This is checked with a simple LP:

m = max
xk

Acxk (A2.3)

s.t. Axk ≤ b (A2.4)
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If m ≤ bc then the constraint Acxk ≤ bc is redundant.
Applying the above method for redundancy checking does not necessarily guaran-

tee that the final set of constraints is minimal (i.e., does not contain any redundant
constraints), since adding new constraints may make some of the original constraints
redundant. However, in applications where it is important to minimize the number
of constraints in the optimization formulation, it is trivial to modify the redundancy
checking method above to identify any redundant constraints.

A3 The Singular Value Decomposition

The SVD allows any matrix A of dimension r×c to be decomposed into three matrices

A = UΣV H (A2.5)

where U has dimension r × r, Σ is of dimension r × c, V is of dimension c × c, and
the superscript H denotes the complex conjugate transpose (which is the same as the
transpose for real valued matrices).

The matrices U and V are orthonormal, i.e., UHU = UUH = I, V HV = V V H = I,
whereas Σ is real valued with non-zero elements only on the main diagonal. By
convention, the elements on the diagonal of Σ are arranged in descending order.
These diagonal elements of Σ are termed singular values, singular value number i is
commonly denoted ¾i, and the largest and smallest singular value are denoted ¾̄ and
¾, respectively.

The fact that U and V are orthonormal, have a few immediate consequences:

∙ The determinant and singular values of a matrix are related through

∣ det(A)∣ =
∏
i

¾i(A) (A2.6)

∙ The SVD provides an expression for any matrix as a sum of rank-one matrices

A =
∑
i

ui¾iv
H
i (A2.7)

where ui and vi are column vectors equal to column i of U and V , respectively.

∙ An expression for the inverse for the matrix (and the SVD of the inverse) is
easily obtained

A−1 = V Σ−1UH (A2.8)

For rank defect matrices, the pseudo-inverse is similarly obtained by inverting
only the non-zero singular values in Σ.
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