Exercise 1 in: Process control, advanced course 
Self-optimizing control of Blending process
Problem 1. Optimization 

The main point in this exercise is to understand the importance of selecting good controlled variables (CVs, c) to get good economic performance when there are disturbances

Case I
You want to make 1 kg/s gasoline with at least 98 octane and not more than 1% benzene (everything in weight-%), by mixing four available feed streams. The streams have different prices, different octane level and different benzene level. For octane assume “linear mixing” on weight basis.

Data:

Stream 1: 99 octane, 0% benzene with price 0.1 $/kg

Stream 2: 105 octane, 0% benzene with price 0.2 $/kg

Stream 3: 95 octane, 0% benzene with price 0.12 $/kg

Stream 4: 99 octane, 2% benzene with price 0.185 $/kg 

Stream 1: maximum weight fraction in product is 0.4  

a) Use Quadprog inn Matlab to find the optimal mixture (in terms of minimum cost) of the four feed streams that satisfies the above requirements. 
· What it the value of the cost function (= cost of the feed streams)?

· What are the active constraints? 
· How many degrees of freedom are left (unconstrained)?  
· Control: How do you propose to control the process (which outputs do you want to control and how should these be paired with the inputs?)

(Note. Inputs = flow rates of the four feed streams)

b)
Stream
 1 changes the price to 0.15. Every thing else is the same as in a)

c)
At what price (stream 1) do we switch between active constraints?

d)         Prices: 0.15, 0.2, 0.12, 0.1. (same questions as in a)

e)
Propose another change in the data that gives another set of active constraints.
Case II

As (a) but price of Stream 1 increases linearly with amount by the function f(m1)= c(1+1*m1); where c=0.1 and m1 is the mass faction of stream 1. Redo the calculations from (a)
The implementation of this case is considered in more detail in Problem 2.
Problem 2. Optimal operation (implementation of case II)

You are responsible for operating this blending facility with minimum cost. All the prices and specifications remain constant (case II). However, it turns out that the octane contents of stream 3 may vary, and we assume in this part that it has changed from 95 to 97 (this is the “disturbance” d).
Additional information: Implementation error for the flows mi: +- 0.01 kg/s. We neglect the implementation error on the active constraints

Hint: The problem has four degrees of freedom (m1,m2,m3,m4).

Optimally, you should find that three constraints (including the total flow constraint) are active, so these three variables should be controlled at their constraints (we are assuming that we have an on-line measurement of the octane number of the product). There is one unconstrained degree of freedom and the question  is: “What more should we control”?

(i) Compute the cost for the (theoretically) reoptimized operation (using Quadprog) with d=97.

(ii) The effect of the disturbance on the operation will depend on the control structure. As mentioned, we will control the three active constraints (mtot=1, m4=0, Octane=98), and the remaining unconstrained degree of freedom is used to control a fourth selected variable  (which we will keep constant at the nominally optimal value found in a).

Hint: We need to find a controlled variable c for the remaining unconstrained degree of freedom. In general we can write


c = Hy

where y are all the candidate measurements, including inputs, and H is the selection or combination matrix (NOTE: It is not the same H as in quadprog). Note that active constraints should not be included in y (since they are already controlled!), so there is no point in including Octane. Benzene could be a candidate measurement, but since m4=0 is active, there will be no benzene so it will not provide any information. Therefore, in our case the candidate measurements are


y = (m1, m2, m3)’
The idea is to keep c=Hy at a constant (at its nominal optimal value) value using the available degree of freedom.

Consider the following alternative choices for the fourth controlled variable c:
The most obvious choice is to keep one of the flows constant:

1. m1 = constant; corresponds to H = (1 0 0), that is, c=1*m1+0*m2+0*m3 = m1
2. m2 = constant

3. m3 = constant
NOT REQUIRED: We may also try keeping ratios or other combinations of variables constant

4. m1/m2= constant

Finally, consider the linear combination of two flows according to the nullspace method (with zero disturbance loss)
5. m1 and m2
6. m2 and m3 (NOT REQUIRED)
7. m1 and m2 (NOT REQUIRED)
8. m3 and m4  (NOT REQUIRED, since m4=0 it would be the same as controlling m3)
Nullspace method: Make a change (should preferably be small to stay in the linear range) in the disturbance and reoptimize. This will give new values for m1, m2, m3, m4 etc. From this, find the sensitivity matrix
              F = dyopt/dd = (dm1opt/dd dm2opt/dd dm3opt/dd)’ = (f1 f2 f3)

The nullspace method is to select the “combination matrix” H =(h1 h2 h3) such that

HF = 0


h1*f1 + h2*f2 + h3*f3 =0

This gives one equation with three unknowns (h1, h2, h3), but only the ratio between the h’s matter so we may as well divide the equation by h1 (provided y1=m1 is actually included in the combination) to get one equation in two unknowns

f1 + (h2/h1)*f2 + (h3/h1)*f3 = 0

This has infinitely many solutions, so to simplify we can get zero disturbance loss with two variables, for example m1 and m2, m1 and m3, or m2 and m3.  The nullspace method does not consider noise, and to minimize the effect of noise one should avoid measurements (y = (m1 m2 m3)) with a small gain. You will find that this means that m1 should be included, whereas m2 and m3 are almost the same. 

For case 5, we get h3=0 and the nullspace method gives the following combination


f1 + (h2/h1)*f2 = 0

or c = Hy = 1*m1 + (h2/h1)*m2 and your task is to find (h2/h1).
Comment: This agrees with the theory that you need to combine at least nu+nd measurements to get dcopt=0 and in our case nu=1 and nd=1, so we need 2 measurements
A. What is the rank of the choices according to the maximum gain (minimum singular value) rule?

Hint: We have one degree of freedom (u) and for our analysis it does not actually matter what we choose u to be (!). So, when using the max. gain rule, you may assume that u=m2 is the independent variable. The scaled gain is Gs=G/span(c) where G = dc/du where u=m2. To find the unscaled gain G, you must find how c changes when m2 changes, given that the active constraints must be fulfilled, so m1 and m3 will change. Note that for the case c=m2, you will find the unscaled gain G = dm2/du = 1.

B. “Brute-force evaluation”- Compute the loss with d=97 and the worst-case implementation error with the alternative choices.

Hint: Outline of “brute-force” solution for choice 1:
The optimal value from a) is to have 

m1=0.26 

so we will keep it constant at this value. Furthermore, we are keeping the following constant (at their constraints) 


m4=0


m1*99 + m2*105 + m3*97  + m4*99 = 98 


m1 + m2 + m3 + m4 = 1

(Note that the control system keeps the product octane number constant at 98 in spite of the change in octane number for stream 3 has changed from 95 to 97). Solving these equations give


m4=0, m2=0.06, m3=0.68, m1=0.26

and the corresponding cost is


J = 0.26*0.126  + 0.06*0.12 + 0.68*0.2 + 0*0.185 = 0.12636

To get the worst-case cost with implementation error, you need to find J with m1=0.27 and m1=0.25 kg/s, and take the highest J.

NOTE THAT THE ACTUAL IMPLEMENTATION (“pairing”) OF THE CONTROL SYSTEM DOES NOT MATTER FOR THIS ECONOMIC LOSS ANALYSIS.

(iii) Would your results change if we included the implementation error on the active constraints?

Changes in active constraints, for example due to implementation error or changes in their setpoints, has the effect of a disturbance on the remaining problem. So it will change the results. One could in theory get zero effect for a given active constraint error by including it as a second disturbance, but then one would need to combine all three measurements, c =h1*m1 + h2*m2 + h3*m3. F would then be a matrix with two rows and we would need to solve two equations to find (h2/h1) and (h3/h1).
How to use Quadprog:
X=QUADPROG(H,f,A,b) solves the quadratic programming problem:

             min 0.5*x'*H*x + f'*x   subject to:  A*x <= b 

              x    

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while additionally

    satisfying the equality constraints Aeq*x = beq.

Inequality constraints in our case:

1. min oktan (98)

2. max benzen (1%)

3. m1 ≥ 0 
4. m2 ≥ 0 

5. m3 ≥ 0 

6. m4 ≥ 0 

7. m1 ≤ m1max = 0.4
Equality constraint: Sum of flows is 1; m1+m2+m3+m4=1.

Translated into Matlab (Quadprog):

Cost function:

Case I. H = 0  (so we have a linear programming problem where the optimal solution is always at constraints, so it will be obvious what to control!)
Case II. H = [0.2 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]
The vector f is the prices (f =[prices])

Inequality constraints (need to multiply Ax ≥b  by (-1) on both sides to get -Ax ≤ -b):

A = [-99 -105 -95 -99; 0 0 0 2; % octane and benzene contents

  -1 0 0 0; 0 –1 0 0; 0 0 -1 0; 0 0 0 –1; 1 0 0 0])

 b = [-98; 1;  % min octane and max benzene

 0; 0; 0; 0; 0.4]  % zeros because steam 1,2,3,4 (0  
Equality constraints:
Aeq = [1 1 1 1] % sum of flows is 1
beq = 1

In summary, the required Matlab code for the base case a) is:

H = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]

f = [0.1  0.2 0.12 0.185]   % prices
A = [-99 -105 -95 -99; 0 0 0 2 ; -1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 -1; 1 0 0 0] 
b = [-98 1 0 0 0 0 0.4 ]'

Aeq = [1 1 1 1  ]

beq = 1

   [X,FVAL]=QUADPROG(H,f,A,b,Aeq,beq)

The answer X is the optimal mass fractions of the four streams. The cost is 
FVAL =  0.5*X'*H*X + f'*X ($/kg)
To find active constraints compute: b-A*X. (The active constraints will correspond to zero values) 

