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MPC Definition

Model Predictive Control (MPC) refers to a class of algorithms that
utilize an explicit process model to compute a manipulated variable
profile that will optimize an open-loop performance objective over a
future time interval. The performance objective typically penalizes
predicted future errors and manipulated variable movement subject to

constraints.
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A Brief History of MPC

Algorithm Model  Objective Pred. Horiz  Constraints Feedback
LQG (1960) LSS minISEIO infinity - KF
IDCOM (1976) L conv minISE O p 10 output bias
DMC (1979) Lconv minISEIOM p 10 output bias
QDMC (1983) Lconv. minISEIOM p 10 output bias
GPC (1987) L ARMAmMIinISEIO p - output bias
IDCOM-M Lconv. minISEO p 10 output bias
(1988) min ISE |
SMOC (1988) L SS minISEIO p 10 KF
Rawlings and L SS min ISE IOM infinity 10 KF
Scokaert (1996)
Process
Perfecter (1997) NNN minISEIO  p 10 output bias
NOVA-NLC
(1997) NFP minISEIO  p 10 output bias
Allgower
et al. (1998) N SS min ISE10 infinity 10 MHE
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Genealogy of linear MPC algorithms
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MPC Industry Consolidation

CPC-v Update
(Late 2000)
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Survey of MPC Technology Products

We surveyed eight major MPC vendorsto determinethe

current state of industrial M PC technology

* Fivelinear MPC products

* Fivenonlinear MPC products

* Information provided by vendors beginning in mid-
1999

Most established vendorswere asked to participate. Thelist

of vendorsisrepresentative, not exhaustive

Vendorswere asked to fill out awritten survey, reporting

only non-proprietary information

Our goal isto determinethe state of the art; not to judge

therelative merits of one vendor’ stechnology versus

another
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Linear MPC Vendorsand Products

¢+ Wesurveyed five MPC vendorsto determinethe current
state of industrial linear M PC applications:

— Adersa PFC (Predictive Functional Control)
HIECON (Hierarchical Congraint Control)
GLIDE (ldentification)

— Aspentech DM Cplus (Dynamic Matrix Control plus)
DM Cplus-Model (Identification)
— Honeywell RMPCT (Robust MPC Technol ogy)
- PCL Connoisseur (Control and ID)
— Shell Global SMOC (Shell Multivariable Optimizing Control)
Solutions AlIDA (ldentification)

¢ Yokogawa and MDC have licensed versions of SMOC
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Nonlinear MPC Vendorsand Products

¢+ Wesurveyed five NM PC vendorsto determine the current
state of industrial NM PC technology:

— Adersa PFC (Predictive Functional Contral)
— Aspen Technology Aspen Tar get

— Continental Controls MVC (Multivariable Control)

— DOT Products NLC (NOVA Nonlinear Controller)

— Pavilion Technologies Pr ocess Per fecter

¢ A product must use a nonlinear dynamic model to be
included in the survey
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Process Modd Types
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Linear Models: Identified from process data

¢+ Most products use PRBS-like or multiple stepstest signals. Glide uses
non-PRBS signals
¢ Most productsuse FIR, ARX or Step response models
— Glide uses Transfer function G(s)
— RMPCT usesBox-Jenkins
— SMOC usesstate space models
¢+ Most products use least squar estype:
— equation error or output error methods
— RMPCT uses prediction error method
— Glide usesa global method to estimate uncertainty
Connoisseur has adaptive capability usng RLS
A few products (DM Cplus, SMOC) have subspace identification
methods available

¢+ Most products have uncertainty estimate, but most products do not
make use of the uncertainty bound in control design
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Nonlinear Models. Process data or first principles

+ Nonlinear Identification

— Most products use nonlinear identification for nonlinear model
development

— Process Perfecter uses pulse testsfor dynamics and historical
data for static nonlinearity

— Aspen Target identifiesa core linear sate-space model with an
additive nonlinear neural net

— Most products provide confidence limitsor safeguar ds against
extrapolation

— Linear modelsare used as back-up
¢ First Principles M odeling

— NOVA-NLC usesfirg principles models (mass and ener gy
balances)
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Nonlinear State-Space Models
¢ Agpen Target uses a state space model form:

X1 = AX + B U +B vy
Y =9(Xy) = Cx + NN(x,)

— Linear dynamicsisbuilt by aseries of first order filtersor
Laguerre models

— Theoutput C matrix isbuilt using PLSand NN isa neural
networ k nonlinear mapping

— Model reduction is performed between the state and output
equations

— A model confidenceindex isderived from identification. The
NN portion isturned off during extrapolation
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Nonlinear Input-Output Models

¢ MVC and Process Perfecter use input-ouput model with
static nonlinearity and linear dynamics.

¢ Alinear ARX model isbuilt around a steady state using
deviation variables (using plant test data)

¢ A static nonlinear model isbuilt over a wide operating
region (using historical data)

¢ At each control calculation,

— the static nonlinear model islinearized around theinitial and
final steady state to obtain the gains; then alinear interpolation
is used between the two gains asa function of inputs

— thelinear dynamic model isre-scaled to match thisgain
+ Effectively a quadratic model isused at each step
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A General MPC Calculation

Read MV, CV, DV, and other process measurements
Output feedbaclk (state estimation)
Determine conltrolled process subset
Remove iIIl-conditioni ng
Steady stateltarget optimization
Dynam?c optimization
Output Ml\/’sto process
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Control: Output Feedback

* For stable processes, all of the algorithms surveyed here use the same
form of feedback, based on comparing the current measured output to
the predicted output:
by, =y -V«
The biasterm isthen added to the model for subsequent predictions:

yk+j = g(xk+j)+ bk

 Thisform of feedback is only optimal for an output disturbance that
remains constant for all futuretime; it does, however, remove steady state
offset (Rawlings, et al. 1994).

 Variations of thisapproach are used for integrating dynamics, usually by
combining biasterms from the output and therate of change of the output
in some way.

 Output feedback via Kalman filtersisan option for a few vendors
(SMOC, Aspen Target, DOT)
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Control: Controlled Sub-Process

* At each control execution the controller must determine which MV's
can be manipulated and which CV'sshould be controlled

» These decisons ar e made based on operator input, measurement status,
and status of the underlying MV control loops

* The shape of the controlled sub-process can ther efor e change at each
control execution:

MV’s
MV’s
Thin MV’s
, lant

cv'sl P Square Fal
-~ plant -~ lant

CV's CV’'s plan

over -determined unique solution under-deter mined
DOF <0 DOF =0 DOF >0
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Control: Removal of IlI-Conditioning

 Asthe contralled sub-process changesin real-time, the controller must
detect and remove ill-conditioning beforeit resultsin erratic MV movement

 Because ill-conditioning is a process problem it can be addressed only by
modifying theinternal model or by giving up on control specifications

» Three strategiesare currently used to addressill-conditioning: Singular
Value Thresholding, Controlled Variable Ranking, and M ove Suppression

 Singular Value Thresholding involves decomposing the process using
SVD; singular values below a given threshold are discarded

 Controlled Variable Ranking involves discarding low priority CVs
until the condition number isreasonable

* Input Move Suppression can also be used; input move suppr ession will
impr ove the condition number similar toridge regression
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Control: Local Steady-State Optimization

* Most controllersuse a separ ate steady-state optimization to determine
steady-statetargetsfor the inputs and outputs

* Most controllers provide aLinear Program (L P) option for SS
optimization; the LPisused to enforceinput and output constraints and
determine optimal input and output targetsfor thethin and fat plant cases

* Most controllersalso provide a Quadratic Program (QP) option to
compute the steady-state targets

« All controllersenforce hard MV constraints at steady-state; CV constraint
formulationsvary

» The DM Cplus contraller solves a sequence of separate QPs to determine
optimal input and output targets, CV'sareranked in priority sothat SS
contral performance of agiven CV will never be sacrificed to improve
performance of lower priority CV's, MV'sarealsoranked in priority order
to determine how extra degr ees of freedom is used.
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Control: Dynamic Optimization

A vector of inputs uM isfound which minimizes J subject to
constraints on the inputs and outputs:
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Control: Dynamic Optimization

» Most control algorithms use a single quadr atic objective

» The HIECON algorithm uses a sequence of separate dynamic
optimizationsto resolve conflicting control objectives, CV errorsare
minimized first, followed by MV errors

e Connoisseur allowsfor a multi-model and adaptive approaches

» The Process Perfecter uses variable trajectory weights QJ. toincreasethe
output error penalty over the prediction horizon

* The RMPCT algorithm defines a funnel and finds the optimal trajectory
y" and input uM which minimize the following obj ective:
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Control: Constraint Formulations

e Therearetwo basic types of constraints: hard and soft Hard constraintsare
never violated; soft constraints may beviolated but the violation is minimized
« Soft constraints ar e sometimes approximated using a setpoint

Hard constraint

e —

past | future

quadratic penalty

s Soft congtraint

past | future TN o

~————— quadratic penalty

T Setpoint approximation of soft constraint

past ' future
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Control: Constraint Formulations

* All of the algorithms allow hard MV maximum, minimum and rate of
change congtraints; the PFC algorithm also enforceshard MV
acceleration constraints

» Mot algorithms enfor ce soft CV constraints

 Enforcing hard CV constraints may lead to an infeasible program or to
afeasble solution that isclosed loop unstable; for thisreason the hard CV
constraint formulations differ considerably

» The DM Cplusand RMPCT algorithms consider har d output constraints
only in the steady-state optimization

» TheHIECON, PFC, and NOVA-NL C algorithms consider hard output
constraintsin the dynamic optimization; in HIECON and PFC theseare
ranked so that low priority constraints can be dropped to recover
feasibility
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Control: Output Traectories

» Therearefour waysto specify future output behavior: setpoint, zone,
reference trajectory and funnel
» Move suppression is necessary when referencetrajectory isnot used

“ ~ = — =

~€—— quadratic penalty ~€—— quadratic penalty
e Setpoint e Referencetrajectory
past future past future

quadratic penalty
-«——— (quadratic penalty
- Zone - Funnel
past future past' future
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Control: Output Horizon

There aretwo ways to parameterize the output horizon; finite horizon

and coincidence points

vﬁ

past Qture

prediction horizon P

Y

Coinci

dence points
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Control: Input Parameterization

Therearethree optionsfor parameterizing theinput signal; mult
move, single move, and basis functions

u |_‘ Multiple moves (with blocking)

control horizon |

-
- ot

u Single move (extreme blocking)

iple

u
— Basis function (parametrized)
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Linear MPC Control Technology
Company | Aspen Tech | Honeywell | Adersa Adersa PCL SGS
Hi-spec
Product DMCplus | RMPCT | HIECON PFC Connois. | SMOC
M odel FSR A H FIR LSS TFARX | ARX,FIR S
forms L,SI,U L,S| L,SI1,U L,SI,U
Feedback CD,ID CD,ID CD,ID CD,ID CD H
SS L/Q[1.0]....R] [¥le/{Ke] - Q[l.0] L[1.O] JQIL.OR
Opt.
pyn. [ Quomis | Qo [EEkedl] <rols [Qrnom| Qo)
Opt.
Output SZ S,Z,H SZRT SZRT SZ SZRT
Traj.
Output FH FH FH CP FH FH
Horiz.
Input MMB MM SM BH MMB MMB
Param.
Other Adaptive
features
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Nonlinear MPC Control Technology

Company | Adersa | Aspen Tech Continental DOT Pavilion
Controls Products
Product PFC Aspen MVC NOVANLC | Process
Target Per fecter
Model | NSS-FP| NNN-NSP SNP-ARX mﬁ: W
forms Sl|,U Sl|,U S,I,U
Feedback | CD,ID CD,ID CD,ID cD
Ss Q[1,0] Q[l,0] Ql1,O] Qll,0] Q[l,0]
Opt.
Dyn.Opt. | Q[1,01,s] Q1,01 Q[I,0M] (Q.A)[1,0M] Q[1,0]
output | SzRT SZ,FT SZRT SZTW
Traj.
Output cpP cpP FH FH FH
Horiz.
Input BH MM SM MM MM
Param.
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Control: Design and Tuning

» The MPC control design and tuning procedureis decribed asfollows:

1. From the stated control objectives, definethe size of the problem, and
determinetherelevant CV's, MV'sand DV’s

2. Test the plant systematically by varyingMV’sand DV's; capture and
stor e the real-time data showing how the CV’'srespond

3. Derive adynamic model from the plant tes data using an
identification package, or estimate parametersfor afirst-principles
model

4. Configurethe MPC controller and enter initial tuning parameters

5. Test the controller off-lineusing closed loop simulation to verify the
controller performance

6. Download the configured contraller to the destination machine and
test the model predictionsin open-loop model

7. Commission the controller and refine the tuning as needed

* Tuning knobs are available to trade-off between per for mance and
robustness
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MPC Applications Summary

» Total number of reported applicationsis 4600*, up from
2200in late 1995

* Magjority of applications (67%) arein refining and

petrochemicals

e Chemical and pulp & paper comein 2'd and 3

» Applicationsreported in awide range of other areas,

including food, automotive, and aerospace industries

« Caution: different vendors may count applications

differently

* Thisnumber does not include in-house implementations by operating
companies

UT/ TWMCC/AspenTech 32 ©S. JeQinand T. A. Badgwell

Linear MPC Applications

Area Aspen || Honeywell | Adersa || PCL | SGS| Total
Tech Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 20 550
Chemicals 100 20 3 21 144
Pulp and Paper 18 50 68
Air and Gas 10 10
Utility 10 4 14
Mining/M etallurgy 8 6 7 16 37
Food Processing 41 10 51
Polymer 17 17
Furnaces 42 3 45
Aer ospace/Defense 13 13
Automotive 7 7
Unclassified 40 40 1045 26 | 450 || 1601
Total 1833 696 1438 | 125 | 450 | 4542
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Nonlinear MPC Applications

Area Adersa || Aspen || Continental | DOT | Pavilion | Total
Tech Controls | Prodcuts
Air and Gas 18 18
Chemicals 2 15 5 22
Food Processing 9 9
Polymer 1 5 15 21
Pulp and Paper 1 1
Refining 13 13
Utilities 5 2 7
Unclassified 1 1 2
Total 3 6 36 5 43 93
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Next-Generation MPC Technology

L4

Models: nonlinear models from firgt principles, linear state-space
models, adaptive capabilities

Output feedback: state estimation using unmeasured disturbance
models, Kalman filters, moving horizon estimation

Dynamic optimization: multiple objective functions, infinite prediction
horizon, incorporation of model uncertainty, input parameterization by
basis functions

Numerical solution: highly structured methods that exploit recent
developments (interior point methods)

User interface: simplified interfaces that hide complexity, sensble
default tuning

Platforms: tight integration into DCS, tight integration into supply-
chain systems

Markets: further extension into non-traditional markets such as
microel ectronics, automotive, pul p& paper

UT/ TWMCC/AspenTech 36 ©S. JeQinand T. A. Badgwell

17



Future Needsfor MPC Technology

+ Model Development: Need tools that allow seamless integration of first
principles with process data

¢ Output feedback: need to further devel op state estimation and
disturbance modeling technol ogies

+ Dynamic optimization: Need nominally stabilizing infinite-horizon
formulations

+ Numerical solution: Need to exploit recent devel opments (interior
point methods)

+ Robustness: Need to incorporate model uncertainty from identification
into the control calculation

+ Judtification of NMPC: Need systematic methods to determine when
MPC can be justified, and when nonlinear MPC isrequired.
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Conclusions

MPC technology has been applied to a wide variety of control problems
with over 4600 repor ted applications, up from 2200 in 1995

Major recent trends ar e consolidation of vendorsand development of
nonlinear M PC technology

Nonlinear M PC technology has been applied to small problemsin areas
wherethelinear technology has fared poorly, such asin polymer
processing

Each MPC product has specific plusses and minuses; the most important
consderation in choosing a vendor istheir experience with the specific
process and control problem under consideration

The most significant challengestoday for MPC technology are:
— nonlinear model development
— state estimation and disturbance modeling
— rapid and reliable real-time optimization
— judtification criteria
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