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Outline partl

Objectives of control

Our paradigm

Planwide control procedure based on economics
Active constraints

Example: Runner

Selection of primary controlled variables (CV,=H y)
— Optimal 1s gradient, CV,=J, with setpoint=0
— General CV,=Hy. Nullspace and exact local method

Throughput manipulator (TPM) location
Example: Distillation

— Active constraints regions

Example: Recycle plants




How we design a control system for a
complete chemical plant?

Where do we start?
What should we control? and why?
etc.

etc.




In theory: Optimal control and operation

Objectives

.
P

Present state

A 4

Model of syst¢

\U

CENTRALIZED
OPTIMIZER

muin J(x, u, d)

s.t. X = f(x, u,d),
h(x,u,d) =0,
g(x,u.d) <0.

Approach:
*Model of overall system
Estimate present state
*Optimize all degrees of
freedom

Process control:
* Excellent candidate for
centralized control

Problems:
* Model not available
» Objectives = ?
» Optimization complex
* Not robust (difficult to
handle uncertainty)
» Slow response time

K (Physical) Degrees of freedom
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Practice: Engineering systems

Most (all?) large-scale engineering systems are controlled using
hierarchies of quite simple controllers

— Large-scale chemical plant (refinery)

— Commercial aircraft
100’s of loops
Simple components:

PI-control + selectors + cascade + nonlinear fixes + some
feedforward

Same 1n biological systems

But: Not well understood




Alan Foss (“Critique of chemical process control theory”, AIChE
Journal,1973):

The central issue to be resolved ... is the determination of control system
structure. Which variables should be measured, which inputs should be
manipulated and which links should be made between the two sets?
There is more than a suspicion that the work of a genius is needed here,
for without it the control configuration problem will likely remain in a
primitive, hazily stated and wholly unmanageable form. The gap is
present indeed, but contrary to the views of many, it is the theoretician
who must close it.

Previous work on plantwide control:

*Page Buckley (1964) - Chapter on “Overall process control” (still industrial practice)

*Greg Shinskey (1967) — process control systems

*Alan Foss (1973) - control system structure

*Bill Luyben et al. (1975- ) — case studies ; “snowball effect”

*George Stephanopoulos and Manfred Morari (1980) — synthesis of control structures for chemical processes
*Ruel Shinnar (1981- ) - “dominant variables”

«Jim Downs (1991) - Tennessee Eastman challenge problem

sLarsson and Skogestad (2000): Review of plantwide control




Main objectives control system

1. Economics: Implementation of acceptable (near-optimal) operation
2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

e Usually NOT

— Different time scales
Stabilization fast time scale

— Stabilization doesn’t “use up” any degrees of freedom
Reference value (setpoint) available for layer above
But it “uses up” part of the time window (frequency range)




Planning —

Control

Our Paradigm
Practical operation: Hierarchical structure

Scheduling
(weeks)

Manager

+ constraints, prices

Site-wide optimization

(day)

Process engineer

\

N constraints, prices

Local optimization| Ope rator/RTO

DUPET VISOTY
control

E minutes '
setpoints

control

nds )

setpoirits

Operator/’Advanced control’/MPC

PID-control




Dealing with complexity

Plantwide control: Objectives

Control
layer

Scheduling
(weeks)

L J

Site-wide optimization

(day)

| N
\

Local optimization|

i L

SUPETVISOTY
control
(minutes)

CV,.

l‘{ﬂg'lllat ory| !
control
(seconds)

OBJECTIVE

Min J (economics)

Follow path (+ look after

other variables)

Stabilize + avoid drift

. The controlled variables (CVs)
" interconnect the layers




Optimizer
(RTO)

Optimally constant valves

Supervisory
controller

Regulatory
controller

—p

Physical
Zinputs (valves)

PROCESS

Stabilized process

ny

Degrees of freedom for optimization (usually steady-state DOFs), MVopt = CV1s
Degrees of freedom for supervisory control, MV1=CV2s + unused valves
Physical degrees of freedom for stabilizing control, MV2 = valves (dynamic process inputs)




Control structure design procedure

[ Top Down (mainly steady-state economics, y,) _

» Step 1: Define operational objectives (optimal operation) (wecks)

|

— Cost function J (to be minimized) Sitewide optimization
(day)

— Operational constraints

cal optimization|

(hour)

» Step 2: Identify degrees of freedom (MVs) and optimize for _leVI_‘

expected disturbances

« Identify Active constraints [y

visory ]t

» Step 3: Select primary “economic” controlled variables c=y, (CV1s)

Control

- Self-optimizing variables (find H) oy %ﬂ Yo
» Step 4: Where locate the throughput manipulator (TPM)? | :

II Bottom Up (dynamics, y,)
« Step 5: Regulatory / stabilizing control (PID layer)
— What more to control (y,; local CV2s)? Find H,
— Pairing of inputs and outputs
* Step 6: Supervisory control (MPC layer)

* Step 7: Real-time optimization (Do we need it?)

S. Skogestad, "*Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).




Step 1. Define optimal operation (economics)

* What are we going to use our degrees of freedom u (MVs) for?

» Define scalar cost function J(u,x,d)
— u: degrees of freedom (usually steady-state)
— d: disturbances
— X: states (internal variables)
Typical cost function:

J = cost feed + cost energy — value products
* Optimize operation with respect to u for given d (usually steady-state):
min, J(u,x,d)
subject to:

Model equations: f(u,x,d)=0
Operational constraints: g(u,x,d) <0




Step S2. Optimize

(a) Identify degrees of freedom
(b) Optimize for expected disturbances

Need good model, usually steady-state
Optimization is time consuming! But it is offline
Main goal: Identify ACTIVE CONSTRAINTS

A good engineer can often guess the active constraints




Step S3: Implementation of optimal operation

* Have found the optimal way of operation.
How should 1t be implemented?

* What to control ? (primary CV’s).

1.Active constraints

2.Self-optimizing variables (for
unconstrained degrees of freedom)
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Optimal operation - Runner

Optimal operation of runner

— Cost to be minimized, J=T
— One degree of freedom (u=power)
— What should we control?
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Optimal operation - Runner

1. Optimal operation of Sprinter

— 100m. J=T

— Active constraint control:
¢ Maximum speed (“’no thinking required”)

« CV =power (at max)




Optimal operation - Runner

2. Optimal operation of Marathon runner

e
Z
—
Z
-
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e 40 km. J=T
 What should we control? CV=?

e Unconstrained optimum

A
- u

. > -y
uopt u=power % %




Optimal operation - Runner

Self-optimizing control: Marathon (40 km)

e
Z
—
Z
-
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* Any self-optimizing variable (to control at
constant setpoint)?

* c, = distance to leader of race
* c,=speed
* c;= heart rate

* ¢, = level of lactate in muscles
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Optimal operation - Runner

Conclusion Marathon runner

f‘_&—‘\ £

F 1 e = S

A, el 3 LB . ~ . . -

( : }_"‘ -, “Optimizer
i ~_~

\ H_%A / //LRTQ'L
Feedhack
Controller

-

c = heart rate

Copt

select one measurement

e

———

Measu remenk/
combination

(H)

-
n?

* CV = heart rate is good “self-optimizing” variable
» Simple and robust implementation
* Disturbances are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (c,)

>

c=heart rated




Step 3. What should we control (¢)?

Selection of primary controlled variables y,=c

1. Control active constraints!
2. Unconstrained variables: Control self-optimizing
variables!
e Old idea (Morari et al., 1980):

“We want to find a function c of the process variables which when
held constant, leads automatically to the optimal adjustments of the
manipulated variables, and with it, the optimal operating conditions.”




Unconstrained degrees of freedom

The 1deal “self-optimizing™ variable 1s
the gradient, J

[ININ @

c=0J/ou=1
— Keep gradient at zero for all disturbances (c = J =0)

— Problem: Usually no measurement of gradient

cost J




Never try to control the cost function J

(or any other variable that reaches a maximum or minimum at the optimum)

> Infeasible
u

» Better: control its gradient, Ju, or an associated “self-optimizing” variable.




General: What variable c=Hy should we control?
(for self-optimizing control)

The optimal value of ¢ should be insensitive to disturbances
*  Small F =dc,,/dd
¢ should be easy to measure and control

Want “flat” optimum -> The value of ¢ should be sensitive to changes in the

degrees of freedom (“large gain”™)
« Large G=dc/du=HGY
Good \/BAD

(b) Flat optimum: Imple- (¢) Sharp optimum: Sensi-
mentation easy tive to implementation erros

Note: Must also find optimal setpoint for c=CV,



Nullspace method

Ju(u,d) = :]’lL(qut(d)a d)/‘|‘<]uu - (u — Uopt)
=0

U — Uopt — (HGy)_l(C - Copt)

Here: ¢ — copr = Qe — Dcypt

where we have introduced deviation variables
around a nominal optimal point (¢*,d*) (where
ct = Copt(d*))

Assume perfect control of ¢ (no noise): Ac =0
Optimal change: Acop = HAYspr = HFAd
Gives:| Jy = —Juu(HGY) 1 HFAd
= HF = 0 gives J, = 0 for any disturbance
Ad

Proof. Appendix B in: Jdschke and Skogestad, "NCO tracking and self-optimizing control in the context of
real-time optimization”, Journal of Process Control, 1407-1416 (2011)




With measurement noise

More general (“exact local method”)

e
Z
—
Z
-
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Average loss = =|| M||%|

Worst-case loss = 252 (M)

M = JU2(HGY) " YHIFW,; W]l

Analytical solution:
H=cY'(yYyD)~1 where Y = [FW; W]
- No measurement error: HF=0 (nullspace method)

- With measuremeng error: Minimize GF°
-  Maximum gain rule




Example. Nullspace Method for
Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, = v [m/s]

F=dy,,/dd=[0.25 -0.2])

H=Th; hy]]

HF=0 ->h,f;+h,£,=025h;-02h,=0
Choose h; =1-> h,=0.25/0.2=1.25

Conclusion: ¢ =hr + 1.25 v
Control ¢ = constant -> hr increases when v decreases (OK uphill!)




Step 4. Where set production rate?

Where locale the TPM (throughput manipulator)?
— The “gas pedal” of the process

Very important!

Determines structure of remaining inventory (level) control system
Set production rate at (dynamic) bottleneck

Link between Top-down and Bottom-up parts

NOTE: TPM location 1s a dynamic issue.

Link to economics 1s to improve control of active constraints (reduce backoff)




Production rate set at inlet :
Inventory control in direction of flow*

* Required to get “local-consistent” inventory control







Production rate set at outlet:
Inventory control opposite flow







Production rate set inside process

Radiating inventory control around TPM (Georgakis et al.)







DY - . . e . . .
.S Operation of Distillation columns 1n series

K
N
?
Z

—
Z

-

Cost (J) = - Profit = pg F + py(V+V;) = ppsDy — Pp2D, — Pe2B;

Prices: pr=pp1=Pg,=1 $/mol, pp,=2 $/mol, Energy p,,= 0-0.2 $/mol (varies)
With given feed and pressures: 4 steady-state DOFs.

Here: 5 constraints (3 products > 95% + 2 capacity constraints on V)

L1 D1, XA L2 S
{ ! } ( )
N=41 > 95% A N=41 = 959%
Column 1 Column 2
F, zF . ’

F ~1.2mol/s
p=1 $/mol < V1Z 4 mol/ _\ 2<2.4 mol/s
\
\/ % i Y %- B2, >95% C

Pg,=1 $/mol

34 QUIZ: What are the expected active constraints?
DOF = Degree Of Freedom

Ref.: M.G. Jacobsen and S. Skogestad (2011) 1. AlwayS. 2. For low energy priceS.




SOLUTION QUIZ1 + new QUIZ2
oll Control of Distillation columns in series
Z _ _
-~ TNl <L
L1 D1, x : 2 —
Quiz2:
UNCONSTRAINED
- X Column 1 CV:,) Column 2
Given
o MAX V1 _ MAXV2
\/ 5 Y =
35
Red: Basic regulatory loops




Solution.

ol Control of Distillation columns. Cheap energy
%\ 59 % 3 @a\ :
é?' Xas=2.1%

e Y

[ANLLN

W

36




Distillation example: Not so simple

Active constraint regions for two
distillation columns 1n series

0T8T X xg XoXg L 3f) 1
o016l and X X and V |
' Mode 1 (expenswe energy)
0.14 i
XA, XB and V1 Infeasible
012l regiq1
Epergy PV 4| 1 Mode 2: operate at
rice 0.1 X, and X p
p [$/mol] 2 BOTTLENECK. F=1,49
0.08f Higher F infeasible because
.06 Xgand V, all 5 con;traints reached

0.04p 0 —/
X 3 X0 X,
0027 1 / 1 | 1 | 1 | 1 | 1 IXB, \/\1 an%l V2 \I/1 anb‘Z/
1,35 1,4 1. ) 1.5
Foca[MOl/S] "\

Mode 1, Cheap energy: 3 active constraints -> 1 remaining unconstrained
DOF (L) -> Need to find 1 additional CVs (“self-optimizing”)

More expensive energy: Only 1 active constraint (xB) ->3 remaining
unconstrained DOFs -> Need to find 3 additional CVs (“self-optimizing”)

CV = Controlled Variable




How many active constraints regions?

e  Maximum: 2 Nc Distillation
n,=5
25=32

n, = number of constraints

Xg always active
BUT there are usually fewer in practice 274 =16

i : : . -1=15
Certain constraints are always active (reduces effective n_)

* Only n, can be active at a given time
n, = number of MVs (inputs)
Certain constraints combinations are not possibe
— For example, max and min on the same variable (e.g. flow)

. . In practice = 8
Certain regions are not reached by the assumed

disturbance set




CV = Active constraint

Example back-off. e
Xg = purity product > 95% (min.)

e
Z
—
Z
-

41

* D, directly to customer (hard constraint)
— Measurement error (bias): 1%
— Control error (variation due to poor control): 2%
— Backoff=1% + 2% = 3%
— Setpoint xg = 95 + 3% = 98% (to be safe)
— Can reduce backoff with better control (“squeeze and shift”)

Xg

.. ] | XB,product
* D, to large mixing tank (soft constraint) +2%_{| J W[l 7| ~rr
— Measurement error (bias): 1%

— Backoff=1%
— Setpoint xg= 95 + 1% = 96% (to be safe)

— Do not need to include control error because it averages out in tank




Q

Column

Case study: Recycle plant Jgf

CSTR

1st order kinetics

A —->B
A — 2C (undesired)

30 stages
LV - configuration

Assumptions:
Constant relative volatilities
Constant molar overflows

Constant pressure

Based on Luyben.
Details can be found in Jacobsen et. al, [2011]

w X

XD,




Step l: Define operational objectives and degrees of freedom

Cost function:/steam cost

-/

value products

J = pFRF;) +pVV_pPP:pBB
cost feed

[PrsPysPp P5]1=[1,0.01,0.5,2]

prices in $/kmol

Operational constraints™:

xg 5 <09 7,<390 K o
M, <11000 mol V" <30 mol/s
R >0 mol/s g

Degrees of freedom (DOF):

With given F: 4 steady state DOFs:
Ugs = [La V,R,S]

Disturbances

Main disturbances:
 Feed flow
* Energy price




Step 2: Optimize (by gridding)

o Active Constraints regions
Always active: ‘

BBR

o TMV
xB,B9TR9MR 08

XTMVR

BB "R R

4 active constraints regions ' | Infeasible
(with additional constraints):

D R

(1)

(III) Vv

Iv) V,R

(V) Infeasible

\

Bottleneck

Operational constraints:

Xg 5 <09 T,<390 K
M, <11000 mol ¥V <30 mol/s
R >0 mol/s




Summary so far:
Systematic procedure for plantwide control

Start “top-down” with economics:

Scheduling

(weeks)

|

—  Step 1: Define operational objectives and identify degrees of freeedom
—  Step 2: Optimize steady-state operation.

Site-wide optimization

(day)

—  Step 3A: Identify active constraints = primary CVs c.

—  Step 3B: Remaining unconstrained DOFs: Self-optimizing CVs c. ‘ - ]

—  Step 4: Where to set the throughput (usually: feed)

yeal optimization
(hour)

Regulatory control I: Decide on how to move mass through the plan
*  Step 5A: Propose “local-consistent” inventory (level) control structure.

Regulatory control I1: “Bottom-up” stabilization of the plant Conte!

*  Step 5B: Control variables to stop “drift” (sensitive temperatures, pressures, ....) :
—  Pair variables to avoid interaction and saturation
Finally: make link between “top-down” and “bottom up”.
*  Step 6: “Advanced/supervisory control” system (MPC):

*  CVs: Active constraints and self-optimizing economic variables +
. look after variables in layer below (e.g., avoid saturation)
*  MVs: Setpoints to regulatory control layer.
*  Coordinates within units and possibly between units

http://www.nt.ntnu.no/users/skoge/plantwide

DUPET VISOTY
control
minutes

[Regulatory] .
control :
(seconds) |




Summary and references

The following paper summarizes the procedure:

— S. Skogestad, ""Control structure design for complete chemical plants",
Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).
There are many approaches to plantwide control as discussed in the
following review paper:
— T. Larsson and S. Skogestad, Plantwide control: A review and a new

design procedure" Modeling, Identification and Control, 21, 209-240
(2000).

The following paper updates the procedure:

— S. Skogestad, ""Economic plantwide control’’, Book chapter in V.
Kariwala and V.P. Rangaiah (Eds), Plant-Wide Control: Recent

Developments and Applications”, Wiley (2012).
Another paper:

— S. Skogestad “Plantwide control: the search for the self-optimizing
control structure*”, J. Proc. Control, 10, 487-507 (2000).

More information:

http://www.nt.ntnu.no/users/skoge/plantwide



http://www.nt.ntnu.no/users/skoge/publications/2000/plantwide_review3/

Part 2. Challenges and open problems
(at least to me)

e Ohyes ©




Challenge: Effective plantwide
optimization using detailed models

Status

A. Offline: Optimization to find constraint regions etc. 1s much more
difficult than I expected
—  Hopeless with standard flowsheeting software (Hysys, Aspen, Unisim, etc.)
—  Very difficult also with Matlab, gProms, etc

B. Online: Even more difficult. RTO based on detailed physical has

generally failed. Only used on ethylene plants according to Honeywell
(Joseph Lu, IFAC WC 2014, Cape Town)

Challenges:
1. Effective off-line optimization and generation of active constraints
regions
2. Models that are suited for optimization

* «Surrogate» models

RTO = Real-time optimization (steady state)




Challenge 1: Find active constraint regions

Phase diagram = Active contraint region map
Fe-Cr-V-C System

T=850°C, w.% C=0.3, P_ =1atm
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Same topology as for «our» active constraint regions
Phase «active»: Corresponding phase equilibrium equations are active, f=0




Challenge 1: Find active constraint regions

CO2-stripper case study
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—_ 0.9 001t
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(a) Effect of disturbances on cost function [$ /h]. (b) Active constraints regions

Fieure 3: Optimization results for C O, -stripper.

Table 1: Active constraints regions for
CO;-stripper

Active Constraints

W lhin. Fnax

W lhins Fnax. XB max
XB.max» Fonaxs Ormax
Wilnax. Bmax

XB max> Wi max s Qr_,max
XB.max» SPax, Qr,max

Regi

0
5)
S

MmN W e

51




o
&

Fi ﬂ[mulfrac]
o
oo
(i}

z ﬂz[mulfrac]

| ' | 2E
38 39 40 41 42 43 a4 38 39 40 41 42 43 44 45
F__ [kmol/min] F__ [kmol/min]

Case 3 le 4.3: Active constraints for regions in fig

- - . - Region Active constrains
\ 3 B ] ]- A XBma:z: 3 “r:[m'iﬂ ¥ Fmﬂ.E

1B XBmaIe WIminm Bmu:r

1C XBmcl:r: “rImaszRmaz

1D XBmﬂ-IE SPmam:QRmuI

1E XBmEI? QRmaIuquz

2A XBmazr “?Imin:Fmaz

2B BmmszmaI

2C Bmaa:a WImuz

2D XBmaz:WImaz: QRmaIm
* y * - - * 2E XBma:ﬂe QRmam:SPmaI

38 29 40 Fmi.l[k;nn?,rfnin] IF meam: QRmame chr,:c

3A Wlazs Fruax

3B WImam: Bma::

3C T\'M]:ma:r: Bmaz; QRTT!{II

3D “?Ima;ru XBma:rf QRma:r

3E Wlazs XBinaz,SPmax

3F “?Imaz; SPma:’

3G Wliaz: QRmax

o
w

i cz[ malfrac)
=
o
(4 +]




Challenge 2: Surrogate models suited for optimization

2. Surrogate steady-state models for efficient
and accurate flowsheet optimization

[ININ @

— hysys/Aspen + standard optimization (build-in,
Matlab/fmincon, Excel) 1s not working

53




2. Surrogate steady-state models for efficient
and accurate flowsheet optimization

Unit by unit

Connections are linear, Outl =1In 2

Main problem: Dimension too high
— Independent variables: F; + p,T for each feed stream + u’s (e.g. Q) + d’s
— Dependent variables: F; + p,T for each product stream

— But: Need max. 4-6 independent variables for most surrogate models (table look-up, splines),
(maybe may allow more for polynmials and neural nets ?? But I doubt it)

Suggested approach
— First introduce material balances (linear) with extent of reaction as independent variable
— Use PLS to find additional linear relationships
— Remaining (including extent of reaction) nonlinear surrogate models
Must also reduce required range of variables (for gridding)
— No need to generate data/samples in regions where the system will never operate.
— To avoid this: Introduce change in independent variables, e.g. Q->T
— Can base this in existing control structure (or more generally: self-optimizing control ideas)




Alternative approaches

* Additional sampling during optimization




Ammonia synthesis optimization

» Works reasonable with simplified Matlab model
* Hopeless with Hysys model

Note: Ammonia reactor section only



Ammonia plant optimization

' o

¥ ‘{?EF—E LD_

N
- Lo,

submodel 1




* Integrated flowsheet in commercial Flowsheeting software

Group 1 Group 2 Group 3

of UOs of UOs of UOs

—>

Group 4 Group 5 Group 6
. p ofUOs ;. of UOs ijiry. of UOs

>

minJ(x,u,d)
s.t. f(x,u,d)=




Separation of flowsheets into submodels

e Idea:

1.  Separate flowsheet into #» independent submodels
2. Define surrogate models for submodels

3. Optimize new optimization problem
minJ(x,u,d)
su.t. f(x.,u.,d)=10 (2)
g,(x;,u;,d; )£ 0

Requirement:

— Introduction of new connection equality constraints:




Example: Flowsheet separation —
Ammonia

y \0h Ul Vo
Feed | X1 Separation NH;
| X241 Refrigeration

—

7
S

\




Example: Variable reduction —
Reactor section

* Overall 10 independent variables:

[ V4
d= in

| Tin nHz,in nNz,in nNH3,in nAr,in nCH4 Jin g%

u
e Variable transformation:

Ngy

! T
—Uu= [ns1 Ng, ]

Reduce no. of variables:

1. Linear Relationships:

e Mass balances Moy = N;jn ¥ NX

2. Active constraints + relationshi

* Non, limited feed ratios.

e Only 3 surrogate model outputs:

— Variables %P Tou




More “focused” surrogate models by proper
selection of independent variables.

* Surrogate model depends on independent variable
selection
1. Existing control structure
2. Introduction of self-optimizing control variables

« Approaches for independent variable reduction:

Linear relationships do not need surrogate models
Active constraints as constants or disturbances

Relationships between connected variables e.g. coming from
reaction section shall be exploited. (Extent of reaction &)

Dimensionless numbers based on physics or dimensions
(Buckingham-Pi-theorem)




3. Planning challenges

 Sigurd on thin ice.... ©




Our Paradigm
Decision hierarchy

Scheduling

(weeks) Manager

Planning —

L 4

Site-wide optimization Process engineer
(day)

y \ |
|

Local optimization| Ope rator/RTO

setpoir:its
| .

STPEVEOT ] | Operator/’Advanced control’/MPC

control

i 1 tesg '
Control ! =N 5
setpoints

e PID-control

control
nds )




3. Planning challenges

e Control: one hour time scale

 Control active constraints + self-optimizing variables

— Must have detailed model of overall plant to identify optimal
active constraints

* Planning: One day-week time scale
— Usually have simplified models of units

— Use: Max. Capacity of each unit and simple models for
energy usage




Planning

* Production optimization (day)

Stop/start of units / trains
Production rates (feeds to units, production rates)
Adjusted specifications = constraint values (purities)

Expected active constraints (max. flows, etc.)

« Scheduling (weeks)
Buying of raw material (feed amounts and feed specs)
Shipment of products
Planned maintenance
Uncertainty may be important -> Stochastic optimization

Question: How detailed models do we need for planning?
» To be truly optimal need full nonlinear model
» Refinery planning: Linear programming (LP) models used
« Each unit: Lnear yield model + constraints (?)




Distillation columns 1n series: Planning
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Distillation columns 1n series: Planning

_u @r‘uﬁng}So/o A L2 d%}r m‘r; >95% B

pps=1 $/mol Ppo=2 $/mol

>

»< 4 mol/s v < 2.4 mol/s

% _ >95%C

Pgo=1 $/mol

2. Longer term optimization
to decide on: which feed to
buy, product quality, etc

Infeasible

gl Could be uncertainty in
future prices, shipping
X, andV, | delays, etc.

Il X, and KE

VIl xﬁ. XB'
V,andV,

BOTTLENECK
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Fig. 3. Optimization of the ammonia plant with variable gas feed rate Fg;s.

“Control structure design for the ammonia synthesis process”

Antonio Araujo, Sigurd Skogestad *Computers and Chemical Engineering 32 (2008) 2920-2932




Ty (ambient)
1 &

Incorrect |
. CO .eC 1 (c EH ' % (compressor)
simplification. .- .

ATmin (ch‘;ﬂ

al
v vc]T3 Q¢ (evaporator)

Ty (ambient)
Q]uss

Figure 2. Ammonia refrigeration system.
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