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Optimal economic operation

Minimize cost J = J(u,x,d)

Or: Maximize profit P=-J ]
* u=degrees of freedom
e X = states (internal variables)
Jopt
* d = disturbances ;
5 >
uopt u

J = cost feed + cost energy — value of products




Optimal economic operation

constraint

Minimize cost J = J(u,x,d) i
Subject to satisfying constraints

 u=degrees of freedom
e X = states (internal variables) Jopt
 d =disturbances

J = cost feed + cost energy — value of products

; ®@NTNU




Active constraints

 Active constraints:

— variables that should optimally be kept at their limiting value.
* Active constraint region:
— region in the disturbance space with fixed active constraints

Optimal operation:
Region 2 How switch between regions?

Disturbance 1

: @ NTNU

Region 3

Region 1

Disturbance 2




Control is about implementing optimal operation
In practice

 Many cases: Solution is fully constrained, but constraints change
—>Key is to control the active constraints

Region 3

* In practice: Don’t need to know regions

) . Region 2
if we can measure and control the constraints 8

Disturbance 2

Disturbance 1

@ NTNU



2. Control hierarchy in a process plant

Key idea: Time scale separation
e Optimization layer (RTO) (hour)
— Minimize economic cost J, satisfying constraints
e Supervisory layer (APC or MPC) (minutes)
— Follow set points (CV1) from optimization layer
— Switch between active constraints (CV1 change)
— Look after regulatory layer
* Regulatory control (PID) (seconds)
— Follow setpoints (CV2) from layers above
— Stabilize: Control drifting variables

* Key decisions: Select CV1 and CV2

CV = Controlled variable

MV = Manipulated variable (process input)
RTO = Real-time optimization

APC = Conventional Advanced process control
MPC = Model predictive control

PID = Propertional-Integral-Derivative

10
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Optimal operation of process plants

Most people think
— You need a detailed nonlinear model and an on-line optimizer (RTO) if you want to optimize the process
— You need a dynamic model and model predictive control (MPC) if you want to handle constraints
— The alternative is Machine Learning

No! In many cases you just need to measure the constraints and use PID control
— «Coventional advanced process control (APC)»

How can this be possible?
— Because optimal operation is usually at constraints
— PID-controllers can be used to identify and control the active constraints
— For unconstrained degrees of freedom, one often have «self-optimizing» variables

This fact is not well known, even to control professors
— Because most APC-applications are ad hoc
— Few systematic design methods exists




Example: Optimal operation of runner

— Cost to be minimized, J=T
— One degree of freedom (u=power)
— What should we control?

A

Sigurd Skogestad. «Near-optimal operation by self-optimizing control: From process control to marathon running and business systems», Comp.Chem.Engng. (2004)
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Constrained optimum: Control active constraints

A. Optimal operation of Sprinter

—100m. J=T

— Active constraint control:
* Run as fast as you can ("no thinking required”)
« CV = power (at max)

®@NTNU



Unconstrained optimum: Not obvious what to control

B. Optimal operation of Marathon runner

40 km. J=T
« What should we control? CV="?
Unconstrained optimum

A
B u




Unconstrained optimum: Control self-optimizing variables @& NTNU

Marathon runner (40 km)

* Any self-optimizing variable (to control at

constant setpoint)?

* c, = distance to leader of race
* C,= Speed

* C3= heart rate

* c, = level of lactate in muscles




Control self-optimizing variables

Conclusion Marathon runner

=, £
f'/:_f.l.' ] -~

b “Optimjzet” |

//{/l%ftl}\

ke b
icc\

' >
C c=heart rate
opt

select one measurement

e

Meauurenmlw/

Feedbhack CV1 = heart rate combination

1 . "" —— . \

Controller [xH j

u
}rm
d =

— - 23) -l
ﬁ” y n

« CV = heart rate is good “self-optimizing” variable
« Simple and robust implementation
* Disturbances (d) are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (c.)

16
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3. Unconstrained optimization

 Have unconstrained degree of freedom (u)
* Available measurements:y

A
 What should we control (c=CV1=Hy)? J
— Not at all obvious

>
u




Self-optimizing control

Self-optimizing control is when we can achieve an acceptable economic loss

(between re-optimizations) with constant setpoint values for the controlled
variables (c=CV1)

Self-optimizing control is an old idea (Morari et al., 1980):

“We want to find a function c of the process variables which when held constant, leads

automatically to the optimal adjustments of the manipulated variables, and with it, the
optimal operating conditions.”

S. Skogestad ~ Plantwide control: the search for the self-optimizing control structure”, J. Proc. Control, 2000.

®@NTNU



The ideal “self-optimizing” variable is the gradient, J
c=0Jdlou=J,

— Keep gradient at zero for all disturbances (c = J =0)

Problem: Usually no measurement of gradient

®@NTNU



ldeal: ¢ = J,
In practise, use available measurements: c = Hy. Task: Select H!

cszconstant )
i e Single measurements:
Controller |- e | - . . 1 0 O 0
c=Hy H‘[o 10 0]
i : e Combinations of measurements:

| Process [——W=| Meaurement | | ¢ = Hy Hzlhﬁ hiz  hi3 h14]

haot hop haz  hog




Self-optimizing variables: Model-based methods for c=Hy

Nullspace method for H
HF=0 where F=dy,/dd

Proof: Want ¢, independent of disturbance d
Have.y,,=Fd,so c,,=Hy,,=HFd ->HF=0

Exact local method for H
Analytical solution:
H=ac'(yYYD)-1 where Y = [FW; W]

V. Alstad and S. Skogestad, " Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables", Ind.Eng.Chem.Res, 46 (3), 846-853 (2007)

V. Alstad, S. Skogestad and E.S. Hori, __Optimal measurement combinations as controlled variables", Journal of Process Control, Vol.19, 128-148 (2009).

2t @ NTNU



https://folk.ntnu.no/skoge/publications/2007/alstad_iecr_nullspace
https://folk.ntnu.no/skoge/publications/2009/alstad_extended_nullspace_jpc

Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees], J=Time

y, = hr [beat/min], y, = v [m/s] ’Fﬁ
cC= Hy: hl y.t h2 Y> Még
From model or data: F = dy,,,/dd = [0.25 -0.2]’

HF=0 ->h,f,+h,f,=0.25h,—0.2h,=0
Choose h;=1-> h,=0.25/0.2 =1.25

Conclusion:c=hr+1.25v

Control c = constant -> hr increases when v decreases (OK uphill!)




Self-optimizing variables: What should we control?

Engineering insight may be used if we don’t have model

1. The optimal value of ¢ should be insensitive to disturbances
e Small F*= HF =dc,,/dd
2. The value of c should be sensitive to the inputs (“maximum gain rule”)

e Llarge gain, G° = HGY =dc/du
. Equivalent: Want flat optimum | Good J BAD
(b) Flat optimum: Imple- (¢) Sharp optimum: Sensi-

mentation easy tive to implementation erros

NEVER try to control a variable that reaches max or min at the optimum
In particular, never try to control directly the cost J

L.J. Halvorsen, S. Skogestad, J.C. Morud and V. Alstad, “Optimal selection of controlled variables", Ind. Eng. Chem. Res., 42 (14), 3273-3284 (2003)

25 ®@NTNU



https://folk.ntnu.no/skoge/publications/2003/self2
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Example: Maximize growth of salmon fish (RAS)

Recirculating Aquaculture System:

One unconstrained degree of freedom:
Buffer/base addition

Ma keup water

Fish Feed
What should we control? .
Self-optimizing variable (CV1): pH in Fish tank | T
— Large gain (sensitive to changes in buffer/base) =

— Small variations in optimal setpoint (7-7.5)

Buffer
@ Base Stripper _
B R Air + CO,
| )

b=

,c-j@ Air

— Optimize with simple pH-controller

Regulatory layer: pH-control also provides stabilization
. so we have CV2=CV!=pH, which is ideal

Makeup oxygen

Allyne M. dos Santos et al., Soft sensor of key components in recirculation aquaculture systems, using feedforward networks, ESCAPE-32 Toulouse, 2022 (Poster today)

®@NTNU




4. Constrained optimization

e (Obvious what we should control: Active constraints

— Can be measured in most cases and controlled with PID-controller

* Reason for change in active constraints are

— Disturbances (including changes in parameters and prices)

* Challenge control: Switch between active constraints A\, constraint




Conventional advanced control structures (ACS)

* Used when single-loop PID is not sufficient.

 Examples:
— Cascade control
— Feedforward control / Ratio control
— Decoupling

— Selectors
Can handle

— Split range control (SRC) " constraint changes

— Input resetting or valve positioning control (VPC)




Conventional APC for changing active constraints

* Four cases:

— MV-MV switching -> Split Range Control + 2 more options DV
— CV-CV switching -> Selectors l
. e . MV cv
— Simple CV-MV switching -> Do nothing
P —
— Complex CV-MV switching mayl T L

MV = Manipulated Variable = Input (u)
CV = Controlled Variable = Output (y)
DV = Disturbance Variable (d)

Adriana Reyes-Lua and Sigurd Skogestad, Systematic Design of Active Constraint Switching Using Classical Advanced Control Structures, Ind.Eng.Chem.Res, 2020

®@NTNU
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This is simple CV-MV switching

Optimization with Pl-controller

Example: Minimize heating cost (Norway)
min u
s.t. y=>ymn
uzumn=0
(u=heating, y=temperature, ym"=22 °C)

e Disturbance (d): Outdoor temperature

* Optimal solution has two active constraint regions: d
1. CV=y=y™" 2> minimum temperature (winter) l
2. MV=u =umn - heating off (summer) gd

No unconstrained region ysP = ymin P L y
* Solved with Pl-controller («thermostat») . ‘ 17 7 —
— YSP = ymin

We satisfy the input saturation rule: U = input = manipulated variable (MV)
«When the MV (u) saturates (at 0), control of the CV (y) can be given up» y = output = controlled variable (CV)

28 @ NTNU




This is MV-MV switching

Temeperature control with 4 inputs (MVs)

/\ MVs:

— 1. AC (expensive cooling)
3588 2. CW (cooling water; cheap)
y=T 3. HW (hot water, quite cheap)

222 4. Electric heat, EH (expensive)
BT 220 222

d=Temb

Objective: Minimize cost
* Use cheap MVs first and use only one MV at the time (difficult with MPC)

Solution: Split range control (SRC):

amb
—————_S_F{_(:i _____ Tl ('\'\'IJJALX
1
' 1 UAC
I T
1 1
I EH
Trcf : : il T
ravel T 1 v oo
\\E:} i Cpr SR ' umw Room |0'Hw OEH
_ ! !
— " .
1 : UEH )
' i g 0 — = - == -
! ' ~ ~ ~
-------------- Avac Avew Avw Avpng

L min=>0

1 jmax=1

1

Internal signal to split range block (v)

Cp, — same controller for all inputs (one integral time)
But get different gains by adjusting slopes a.in SR-block




This is MV-MV switching

Split-range control (SRC): Simulation of disturbances in ambient temperature.

640 1 I I I
i s ' _Tref_Tamh‘
~
)
220 [ =
y(t), d(t) £
o,
g
= 0 '
0 50 100 150 200 250

AC
Vew

u(t)

1 1 |

0 50 100 150 200 250
Time (min)

Valve opening, u; (-)
=
m-!"..
I

* MPC: Similar output responses (y), BUT different inputs (u). Uses both heating and cooling in some cases
* MPC: Needs dynamic model + more difficult to implement and tune

A. Reyes-LUa and S. Skogestad. “Multi-input single-output control for extending the operating range: Generalized split range control using the baton strategy”. Journal of Process Control 91 (2020)

30 ®@NTNU




This is simple CV-MV switching

Optimization with Pl-controller

Example: Drive as fast as possible to airport with small car G
max y

s.t. y<symox

u S umax

(u=power, y=speed)

L O

Disturbance (d): Slope of road d

Optimal solution has two active constraint regions:
1. CV=y=ym* =120 km/h -> speed limit

P

2. MV=u=um>* -> max power (steep hill) ysP = ymax ., l. y
o ° - g —
* Solved with Pl-controller («cruise controller») . ’ ¥
_ SPp — ymax
— Anti-windup: I-action is off when u=um*
We satisfy the input saturation rule: U = input = manipulated variable (MV)
«When the MV (u) saturates, control of the CV (y) can be given up» y = output = controlled variable (CV)

3 ®@NTNU




Selector: This is CV-CV switching

Optimization with safety constraint

Example: Drive as fast as possible but safely
max y
s.t. y, sy,
u s umax
Y, > yzmin
(u=power, y=speed, y,=distance to car in front)

Disturbances (d): Slope of road, othercars ~ meemeeeeeeeeeeees .

Optimal solution has three active constraint regions: Yy E u |
1. CV=y,=y,m* =120 km/h - speed limit —'9 ¢ — MIN u=min(u,,u,
2. MV=u=um* -> max power (steep hill) Y, u, —>
3. CV=y,=y,"" -> minimum distance (busy road) | © |
' Pl :

e Solved with two Pl-controllers and min-selector («adaptive cruise control») "7 7777
— C;: Cruise controller with y*F = y,m%
— C,: Distance controller with y,*=y,min All three constraints are satisfied with a small u
— Both controllers need anti-windup (turn off when inactive)

2 ®@NTNU




Anti-windup

* All the controllers shown need anti-windup to «stop integration» during periods
when the control action (v,) is not affecting the process:
— Controller is disconnected (because of selector)
— Physical MV u;is saturated

Selector or
saturation
sp uMAax
e=y*r—uy 3 U;
| Kc.i »| Process
ul_'nin
1
1
- I{C: TI.i8

~
_|
4

Anti-windup using back-calculation. Typical choice for tracking constant, K;=1




Design of selector structure

Rule 1 (max or min selector)
* Use max-selector for constraints that are satisfied with a large input
* Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors):

* If need both max and min selector: Potential infeasibility
* Order does not matter if problem is feasible

* If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.” Dinesh Krishnamoorthy , Sigurd Skogestad. Computers & Chemical Engineering, 2020

a4 ®@NTNU



https://www.sciencedirect.com/science/journal/00981354

Valves have “built-in” selectors

A min-flow (z=0) gives a “built-in” max-selector (to avoid negative flow)
* A max-flow (z=1) gives a “built-in” min-selector

* Soit’s not necessary to add these as selector blocks (but it will not be wrong).

— Both will always be satisfied because physical input constraints can never be violated.

— There is no danger of infeasibility /inconsistency here because we cannot have both z=0 and z=1 at the
same time.




This is simple CV-MV switching

Anti-surge control ooy +

Minimize compression cost but keep safe operation (F>F™in)

min u
s.t. y=>y™n (safety constraint)
u2umn=0 Fo

v

(u= Fr=recycle flow, y=F=flow in compressor) T

Disturbance (d): Feed flow F,

Optimal solution has two active constraint regions:
1. CV=y=ymin (for small Fy)
2. MV=u=umn =0 (forlargeF,)

Solved with Pl-controller («anti-surge control»)
— Sp = ymm

— Anti-windup: l-action is off when u=u™"=0

MAX-block to avoid negative flow.
Not needed because the input (valve) has «built-in» u > 0.
We satisfy the input saturation rule:

«When the MV (u) saturates, control of the CV (y) can be given up»

36 ®@NTNU




Selector: This is CV-CV switching

Furnace control with safety constraint

U, _
T,.=500C
Input (MV) \TC «— I
u = Fuel gas flowrate Up T5max=700C ‘._
y, = process temperature T, HP steam
(with desired setpoint) u=min(u,,uy)
Yy, = furnace temperature T, ~ /\/‘ R
(max constraint) ¥2=12 Flue gas
Rule: Use min-selector for constraints that '
are satisfied with a small input Process fluid (water)
Ny A1 > 0 u = input = manipulated variable (MV)
N A y = output = controlled variable (CV)
u=Fuel gas
Air

“Systematic design of active constraint switching using selectors.” Dinesh Krishnamoorthy, Sigurd Skogestad. Computers & Chemical Engineering, 2020

®@NTNU
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https://www.sciencedirect.com/science/journal/00981354

Furnace control :
What to do?

Inputs (MV)
u = Fuel gas flowrate
u, = Process flowrate
Output (CV)
y, = process temperature T,
(with desired setpoint)

Cannot give up control of y,=T,.

Up \TC T,.=500C
Ug T2max=7ooc 7y
L
u=min(u,,ug)
S
Flue gas

N =0
A

I\
u=Fuel gas

Air

P4

U,

Process fluid




[his is complex CV-MV switching

Cannot give up controlling T,
Solution: Cut back on process feed (u,) when T, drops too low

=495C
Up : :
Using Input-input
switchin
U T,,..=700C | 5
MIN )« Y1i=
Inputs (MV) j \TC L >
u = Fuel gas flowrate
u2 = Process flowrate u=min{u,,u;)
Output (CV) Y,=T, /\/‘ >
y, = process temperature Flue gas u,
(with desired setpoint)
Note: Standard Split Range Control is not good here. I%
Could be two reasons for too little fuel Process fluid
Fuel is cut back by override (safety)
Fuel at max, N
So don’t know limit for MV1 to use in SRC-block. P >
A
u=Fuel gas
Air u = input = manipulated variable (MV)

y = output = controlled variable (CV)

3 ®@NTNU




This is complex CV-MV switching

Cannot give up controlling T,

Solution: Cut back on process feed (u,) when T, drops too low
T,.=500C T,,=T,-5C=495C

1s
Up
¢ |
T, =700C

max 2

< =
Inputs (MV) MINJ \TC Y17

u = Fuel gas flowrate
u2 = Process flowrate u=min(u,,ug)
Output (CV) Y,=T, /\/‘ >
y, = process temperature Flue gas u,
(with desired setpoint)
. >
e Solution: Two controllers with Process fluid
different setpoints NP 0
7 i R
u=Fuel gas

Air u = input = manipulated variable (MV)
y = output = controlled variable (CV)

40 ®@NTNU




Summary constraint switching:

Only three different cases (or maybe four)
1. MV-MV switching

— Need many MVs to cover whole steady-state range | Process

— Use only one MV at a time

— Three options: 1. Split range control, 2. Different setpoints, 3. Valve position control (VPC)
2. CV-CV switching («override»)

—  Must select between CVs —> Process 3

— Only one option: Many controllers with Max-or min-selector _>

3. CV-MV switching (because MV saturates)
3A. Simple: CV can be given up (follow «input saturation rule»)
— Don’t need to do anything (except anti-windup in controller)

3B. Complex: CV cannot be given up
— Combine MV-MC switching (three options) with CV-CV switching (selector) ~_.| Process

Process




Oops...out of time

* Because the timr for the plenary was reduced from 60 to 40 minutes because of
delays, | only got to this point during my presentation in Toulouse

 But | think it was enough to give the audience the message:

— Put optimization into the control layer whenever feasible

— It's a complement and not alternative to online model-based optimization




5. Systematic procedure for designing control system
that achieves optimal operation

Site-wide optimiza tio
(day)
r A\ |
N |
Local optimizatio
(hour)




Use of models and data

Scheduling
(weeks)

L J

Site-wide optimization
(day)

RTO layer:
* Nonlinear model of whole
process

* usually physical and static

¥ N\ |
y

P
<«

Local optimization|

(hour)

MPC layer:

*  Multivariable dynamic
linear model for each unit

e usually from data

PID-layer:
e Dynamic linear model for
each loop

e usually from data.

AR

DUPETVISOTY
control
minutes

Control i
layer Yas

&

<«

Hegulatory]
control
(seconds)

u-=-valves--=g -

5 PROCESS

................................................................................................. d, x

Data reconciliation (static)
Or
Estimator (e.g. EKF)

Nonlinear model



Systematic procedure for designing plantwide control system

Start “top-down” with economics: (WTS)

* Step 1: Define operational objectives and constraints Sto-wde optimzaton

e Step 2: Optimize steady-state operation

e Step 3: Decide what to control (CV1 and CV2) = m—
* Step 4: Choose TPM location J S

r-—--- o T T
|
MPC or |

Then design control system bottom-up: Advarced _[ —
Supervisory control
(minutes)

|

|

Control I

 Step 5: Regulatory control —— |
4‘4?. :

|

|

|

Control

|”

Structures
* Step 6: “Advanced/supervisory control” system
PID
* Step 7: Real-time optimization (Do we need it?) contrel Reguitory contol

* MVs

S. Skogestad, “"Control structure design for complete chemical plants”’, Computers and Chemical Engineering, 28 (1-2), 219-234 (2004).




Hierarchical decomposition Scheduling
(weeks)

Example: Bicycle riding B

(day)

Note: Design starts from the bottom e

cal optimization|
(hour)

* Reqgulatory control (step 5):

— First need to learn to stabilize the bicycle
* CV2 =y, = tilt of bike
MV = body position

e Supervisory control (step 6):
— Then need to follow the road.
* CV1 =y, =distance from right hand side
« MV=CV2, - o oy
— Usually a constant setpoint policy is OK, e.g.y,.=0.5 F,
m -

 Optimization layer (step 7):
— Which road to follow?
— RTO = GPS



Systematic design of simple advanced controllers (APC)

—_—

. . . . . Process
First design simple control system for nominal operation -

—
— -

— With single-loop PID control we need to make pairing between inputs (MVs) and outputs (CVs):

— Should try to follow two rules
1. «Pair close rule» (for dynamics). Pair such that we have small effective delay and large gain

— This is to get fast control and avoid instability

2. «Input saturation rule»: «Pair MV that may saturate with CV that can be given up (at least when the

MV constraint is reached)”.
— This avoids loss of control

— Gives simple CV-MV switching




Systematic design of simple advanced controllers (APC)

First design simple control system for nominal operation

—  With single-loop PID control we need to make pairing between inputs and outputs:
— Should try to follow two rules

1. «Pair close rule». Pair such that we have fast reponse and large gain

—  This s to get fast control and avoid instability

«Input saturation rule»: «Pair MV that may saturate with CV that can be given up”.
—  This avoids loss of control
—  Gives simple CV-MV switching

2.

Then make a list of possible new contraints that may be encountered (because of disturbances, parameter changes,
price changes)

Reach constraint on new CV

— Simplest: Find an unused input (simple CV-MV switching)
— Otherwise: CV-CV switching using selector

Reach constraint on MV (which is used to control CV)
— Simplest (If we followed input saturation rule):
* Can give ip controlling CV (Simple CV-MV switching)
* Don’t ned to do anything
Otherwise (if we cannot give up controlling CV)
* Simplest: Find an unused input
— MV-MV switching

Otherwise: Pair with a MV that already controls another CV
— Complex CV-MV switching

— Must combine MV-MV and CV-CV switching

Is this always possible? No, pairing inputs and outputs may be impossible with many constraints.
« May then use MPC instead




Example : Level control

ul =z1 (inflow valve position) N

u2 = z2 (outflow valve position) (likely to saturate) S— Process —
y1 = F1 (inflow): Should be controlled at setpoint F,  (if possible)

y2 = level: must always be controlled (at some SP)

Nomimal design with “pair-close” rule

I:1,5 R
F, [m3/s] Fim
4] :
Disturbance / FZ [m3/s]
7 >
z2

Problem: outflow-valve may saturate at fully open (z2=1) and then we lose level control
Note: We did not following the “input saturation rule” which says:
Pair MV that may saturate (z2) with CV that can be given up (F1)




This gives simple CV-MV switching (if z2 saturates at fully open)

Nominal design with Reverse pairing (follows “input saturation rule”):

SP

l

|:2,5
|:1,m
Fy [m3/s] A «long loop»
A\
Disturbance ] FZ [m3/s]
Z8\ g

BUT with Reverse pairing: Get “long loop” for flow control
In addition: loose control of y2=level if z1 (F1-valve) saturates

«Long loop» = Works through other loops
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This is complex CV-MV switching

Alternative solution: Follow “Pair close’-rule and use Complex CV-MV switching.
When z2 saturates at max, use the other MV (z1) for level control and give up controlling F1
Get: “Bidirectional inventory control”

Fl,s ) MV-MV
MINj< switching
F, [m3/s] Fim
A\
Disturbance ] /] FZ [m3/s]

* Avoid long loop for control of F1
* Works both when F1-valve or F2-valve saturate at open
Overall: seems to be the best solution




This is complex CV-MV switching

Alternative solution: Follow “Pair close’-rule and use Complex CV-MV switching.
When z2 saturates at max, use the other MV (z1) for level control and give up controlling F1
Get: “Bidirectional inventory control”

SP-H SP-L
L
MIN )«
F, [m3/s] Fim
A\
Disturbance ] /] FZ [m3/s]

Recommended: Two controllers
SP-L = low level setpoint
SP-H = high level setpoint

Use of two setpoints is good for using buffer dynamically!!




Generalization of bidirectional inventory control




TPM = F*

Radiation rule for :
e (@ ; @ .............. S () ;
Inventory control ’ @

(Georgakis) i 5 _@_. 5 _@_‘ 5 ;Q

«Inventory loops are
radiating around given flow

(TPM)» e @_ .............. @ ..................

* Follows «pair-close» rule : ; i : ; :
« Avoids «long loops» for i i ; i i
inventory control 5 oo~ 5 b R
Tank 1 Tank 2 Tank 3

(b) TPM at Fp. Inventory control radiating around the TPM.

@ ______________ @ @

s e el

Tank 1 Tank 2 Tank 3

(d) TPM at F;. Inventory control in direction opposite of flow.

TPM = throughput manipulator
(located at bottleneck = flow constraint)




Very smart selector strategy: Bidirectional inventory control
Reconfigures automatically with optimal buffer management!!

A e moL r moLr

Max flow: Y Y Y A
Fs:oo m].]]_ . I R TR TEEIE m].]]. S LEEEEEER R BN N N B N R - m]n S CEEEEEEEEREEEE I N e e e N R R = ml]]_
: ) : Iy 5 :

-----------------------------------

Unit 1 Unit 2 Unit 3

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981




Example: Optimal control of a cooler

Main control objective: Cooling water

Y=Ty=T,P

Secondary objective (can be given up)

y,= Fy=F*f e @
Manipulated Variables: )

Uy=2¢, Uy=2y V,
Both valves may saturate at max /\ )

Disturbance:
Tcin




Optimization of Cooler

max yz (thl’OUghpUt) OU 28t Region @ Infeasible Operation
g egion
st.y;=y,” < temperature )
U, < Ulmax o) Region ()
2 gt
u, < uzmax é max. throughput g May set F, freely
Y, SY,P < desired throughput 2 2f N
= Region (@—> AN
i H H 20t : : ! . . ]
Active constraint regions: 0 05 1 15 2 25 3 35

. . Hot st ss flow, F__ (kg/s
1. y,=Y,%Y,=y,» € Nomimal = unconstrained ot stream mass flow, Fyy (ke/s)

2. Y,=Y,°,u,=u,m
3. Y;=Y,°,u; =u,m

Input saturation pairing rule: It’s not possible to follow this rule since both MVs may saturate...
* Will pair y, with u; for dynamic reasons («pair close rule»)

* And use «complex» CV-MV switching logic when u, saturates




Pairings at nominal «unconstrained» operating point

F. may saturate for a

Use F. to control T ﬁ
- " large disturbance (T




Complex CV-MV switching

Alt.1: Split range control with min-selector

______

g g —

Tuning of TC using SIMC rule:
T, =20=88s
Kc =-0.55
T =74s

split value

control action (u)



Complex CV-MV switching

Alt.2 . Two controllers/setpoints and min-selector

TSP S S
Ty'=26C iT,*. &TH*‘*P:27C

(c) Two controllers with different setpoints.




Complex CV-MV switching

Alt. 3 VPC with min-selector

U N o e S e e e e e o e e o o G o G i

(b) Valve position control (VPC).




Complex CV-MV switching

Mass flow (kg/s)

Temperature (°C)

—t
=

Alt. 1 Split range control

f_/ —Fo——Fy—-—--FY}

N
0 1000 2000 3000 4000 5000 6000
Time (s)
—Ty---Ty
0 1000 2000 3000 4000 5000 6000
Time (s)

(a) Split Range Control (SRC).

Alt. 2 Two controllers/setpoints

r_/ —Fg——Fy——-FP

p—
=

Mass flow (kg/s)
on

S—
U I 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time (s)
) . .
< — L ry--l1y
L
5 98}
E
- o
g
Q) | | | Il L
B 1000 2000 3000 4000 5000 6000
Time (s)

(¢) Two controllers with different setpoints.

Disturbances: Tcin +2°C at t = 200 s, Tcin additional +4 oC at t = 2000 s.

Alt. 3 Valve position control

f——/-\/:‘%—FH———F};”

[—
—_
—

Mass flow (kg/s)
o

0 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time (s)
6 T T T T T -
~ — Ty - =T}
&
3 28 +
o
3
L2677 -
=
Q) | | 1 1 1
B 1000 2000 3000 4000 5000 6000
Time (s)

(b) Valve position control (VPC).



MPC for cooler

Tuning < trial and error

N - .
min )’ D — Fiy,) Hz) & Obijective fur\ct|on
k=1 (CV constraints)
S.L
Model - Tii=f(Th isTu, i1.Tc,i-Tc,iv1.Fu,  Fo,)

0 < Fp < Fg™ Vke{l,....N}
MV constraints 2 < Fp, < Fo

0 < AFy, < 0.1F§W}

. Vke{l,....N—1}
0 < AFg, <0.1F

AFj, :F,;;;—F,;F_h\?/!'( c {I,N— ]}

For k = 1. F,_ represents the flow at the nominal point.




MPC vs Split range Control (Pl)

10 30 :
Disturbance
29.5¢ - (T
8t o
29 t=10s; +2°C
0 &)
e °Z 985 t=1000s; + 4°C
2 6 5 "
z g ’g Red: Split Range
= .l 9 Control (PI)
4 £ 275
= =
277
2 L
26.5 ¢
0 ' ' ' 26 ' ' '
0 500 1000 1500 2000 0 500 1000 1500 2000

Time (s) Time (s)




Many people think they need to use MPC if they encounter
constraints

* True only for more complicated multivariable cases
* In most cases PI(D)-control is simpler and equallly good

— Need anti-windup on the controller

=26C




6. Conclusion

e Put optimization into the control layer

— It’s much faster and more effective

 Conventional APC works very well in many cases
— Optimization by feedback
 Self-optimizing control
e Active constraint switching
— Need to pair input and output.
* Advantage: The engineer can specify directly the solution
* Problem: May not be possible for complex cases

— Need model only for parts of the process (for tuning)
— Challenge: Need better teaching and design methods
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