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@ About me - CV - Powerpoint presentations - How to reach me - Email: skoge@ntnu.no

@ Research: My Group - Research - Ph.D. students - Academic tree

"The overall goal of my research is to develop simple vet ri

"We want to find a self-opti g control structure where close-to-optimalo operation undsr varving conditions is achieved with constant (or
slowly varving) setpoints for the controlled variables (CVs). The aim is to move more of the burden of economic optimization from the slower

l l M time scale of the real-time optimization (RTO) laver to the faster seipoint contrel laver. More generally, the idea is to use the model (or sometimes data) off-line to find
e g O a O I I l y re S e a r‘ I S O properties of the optimal solution suited for (simple) on-line feedback implementation”

"News'...

@ 27 Nov. 2023: Welcome to the SUBPRO Symposium at the Britannia Hotel in Trondheim

[ ] [ ]
@ Aug 2023 Tutorial review paper on "Advanced control vsing decomposition and sunple elements”. Published i Annual reviews
in Control (2023). [paper] [tutorial workshop] [slides from Advanced process control course at NTNU]

@ (5 Jan. 2023 Tutorial paper on "Transformed inputs for linearization, decoupling and feedforward control” published in JPC.

[paper]

@ 13 June 2022: Plenary talk on "Putting optimization into the control layer using the magic of feedback control”, at ESCAPE-32 conference,

Toulouse, France [slides
@ 08 Dec. 2021: Plenary talk on "Nonlinear input transformations for disturbance rejection, decoupling and linearization" at Control Conference of Africa (CCA 2021),

Magaliesburg, South Africa (virtual) [video and slides
@ 27 Oct. 2021: Plenary talk on "Advanced process control - A newe look at the old” at the Brazilian Chemical Engineering Conference, COBEQ 2021, Gramado. Brazil

(virtnal) [slides

[ ] [ ] [ ] [ ] (]
" @ 13 Oct. 2021: Plenary talk on "Advanced process control” at the Mexican Control Conference, CNCA 2021 (virtual) [video and slides
e n g I I I e e rI I I g S I g n I I ‘ a I I ‘ e @ Nov. 2019: Sigurd receives the "Computing in chemical engineering award from the American Institute of Chemical Engineering (Orlando. 12 Nov. 2019)

@ June 2019 Best paper award at ESCAPE 2019 conference in Eindhoven, The Netherlands

@ July 2018: PID-paper in JPC that verifies SIMC Pl-rules and gives "Improved"” SIMC PID-rules for processes with time delay (tand=theta’3)

@ June 2018: Video of Sigurd giving lecture at ESCAPE-2018 in Graz on how to use classical advanced control for switching between active constraints
® Feb. 2017: Youtube vidoes of Sigurd giving lectures on PID control and Plantwide control (at University of Salamanca, Spain)

»  Videos and proceedings from DYCOPS-2016

@ Aug 2014: Sigurd recieves [FAC Fellow Award in Cape Town

® 2014 Overview papers on "control structure design and "economic plantwide control”
® OLD NEWS

Books...

@ Bock: §. Skogestad and [. Postlethwaite: MULTIVARIABLE FEEDBACK CONTROL-Analysis and design. Wiley (1996; 2003)
@ Book: S, Skogestad: CHEMICAT AND ENERGY PROCESS ENGINEERING CRC Press (Tavlor&Francis Group) (Aug. 2008)
@ Bok: 5. Skogestad: PROSESSTEENIKE - Masse- og energibalanser Tapir (2000; 2003; 2009).

More information ...

@ Publications from my Google scholar site

@ Download publications from my official publication list ... or look HERE if vou want to download our most recent and upublished work
@ Proceedings from conferences - some of these may be difficult to obtain elsewhere

@ Process control library - We have an extensive library for which Ivar has made a nice on-line search

@ Photographs that I have collected from various events (maybe you are included...)

@ International conferences - updated with irregular intervals

@ SUBPRO (NTNU center on subsea production and processing) [ Annual reports ] [ Internal |

@ Nordic Process Control working group - in which we participate




Robust control

Sigurd Skogestad
[an Postlethwaite

Analysis and Design 4 Multiva riable
‘ S Feedback

Sigurd Skogestad
lan Postlethwaite

SECOND EDITION

Berkeley, Dec. 1994
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Distillation

At home doing moonshine
distillation (1979)

Chemical Engineering
Research and Design

Trans IChemE,
Part A, January 2007

THE DOS AND DON'TS OF DISTILLATION
COLUMN CONTROL

S. Skogestad*

Department of Chemical Engineering, Norwegian University of Science and Technology,
Trondheim, Norway.

Abstract: The paper discusses distillation column control within the general framework of plant-
wide control. In addition, it aims at providing simple recommendations to assist the engineer in
designing control systems for distillation columns. The standard LV-configuration for level control
combined with a fast temperature loop is recommended for most columns.




SIMC* PID tuning rule (2001,2003)
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world. AIChE Annual Meeting, Reno, Nevada, November 2001

PR CONTROL
ELSEVIER Journal of Process Control 13 (2003) 291-309
www.elsevier.com/locate/jprocont
Simple analytic rules for model reduction and PID
: PAd
controller tuning
Sigurd Skogestad*
Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Received 18 December 2001; received in revised form 25 June 2002; accepted 11 July 2002
Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple and still result in good closed-loop behavior.
The starting point has been the IMC-PID tuning rules that have achieved widespread industrial acceptance. The rule for the integral
term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for
each transfer function model, there is a just a single tuning rule for a first-order or second-order time delay model. Simple analytic rules
for model reduction are presented to obtain a model in this form, including the “half rule” for obtaining the effective time delay.
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Sigurd at Caltech (1984)

How we design a control system for a complete
chemical plant?

* Where do we start?

« What should we control? and why?
* efc.

* efc.

& NTNU



AIChE

Al: Benzene

A2: Ethylene
Economic Plantwide Control of the Ethyl Benzene Process B: Ethylbenzene (product) o
C: Diethylbenzene (undersired, recycled to extinction)
Rahul Jagtap, Ashok S Pathak, and Nitin Kaistha Al+A2 —B
Dept. of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016,Uttar Pradesh, India
B+A2—->C
DOI 10.1002/aic.13964 C+Al1- 2B

Published online December 10, 2012 in Wiley Online Library (wileyonlinelibrary.com).
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Figure 7. CS2 with overrides for handling equipment capacity constraints.




Control system structure®

Alan Foss (“Critique of chemical process control theory”,
AIChE Journal,1973):

The central issue to be resolved ... is the determination of control system structure”.
Which variables should be measured, which inputs should be manipulated
and which links should be made between the two sets?

*Current terminology: Control system architecture

& NTNU



Main objectives of a control system

1. Economics: Implementation of acceptable (near-optimal) operation
2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

e Usually NOT

— Different time scales
e Stabilization - fast time scale
— Stabilization doesn’t “use up” any degrees of freedom
e Reference value (setpoint) available for layer above
e Butit “uses up” part of the time window (frequency range)




Two fundamental ways of decomposing the controller

Scheduling
(weeks)

i

Site-wide optimization
(weeks)

e Vertical (hierarchical; cascade . :
( : _ ) '/\ | e Horizontal (decentralized)
* Based on time scale separation —L VI

. , Local optimization e Usually based on distance
e Decision: Selection of CVs that (hour)
connect layers

LT, * Decision: Pairing of MVs
and CVs within layers

MPC or
Advanced
Control
Structures

4 |

Supervisory control
L] {minutes)

Conftrol
layer

¥ I

Regulatory control
(seconds)

______ Fo

L iy . PROCESS
In addition: Decomposition of controller into smaller elements (blocks):
Feedforward element, nonlinear element, estimators (soft sensors), switching elements

PID

|

|

|

|

|

o2 '

|

|

control :
|

CV = controlled variable MV = manipulated variable



QUIZ
What are the three most important inventions of process control?

 Hint 1: According to Sigurd Skogestad
 Hint 2: All were in use around 1940

SOLUTION

1. PID controller, in particular, I-action
2. Cascade control

3. Ratio control




o Each element links a subset of inputs with a subset of
ARC- Sta n da rd Adva nCEd CO nt rOI e | e me nts outputs. Results in simple local design and tuning
First, there are some elements that are used to improve control for

In addition, the following more general model-based elements are in
cases where simple feedback control is not sufficient:

common use:

E1*. Cascade control’

E2*. Ratio control

E3*. Valve (input)® position control (VPC) on extra MV to improve
dynamic response.

E11*. Feedforward control
E12*. Decoupling elements (usually designed using feedforward think-
ing)
E13. Linearization elements

Next, there are some control elements used for cases when we reach E14*. Calculation blocks (including nonlinear feedforward and decou-
constraints: ling)

ping
E4*. Selective (limit, override) control (for output switching) E15. Simple static estimators (also known as inferential elements or
E5*. Split range control (for input switching) soft sensors)

E6”. Separate controllers (with different setpoints) as an alternative to
split range control (E5)
E7*. VPC as an alternative to split range control (E5)

Finally, there are a number of simpler standard elements that may
be used independently or as part of other elements, such as

All the above seven elements have feedback control as a main feature E16. Simple nonlinear static elements (like multiplication, division,

and are usually based on PID controllers. Ratio control seems to be square root, dead zone, dead band, limiter (saturation element),
an exception, but the desired ratio setpoint is usually set by an outer on/off)
E17*. Simple linear dynamic elements (like lead-lag filter, time delay,

feedback controller. There are also several features that may be added

to the standard PID controller, including etc.)

E18. Standard logic elements
E8". Anti-windup scheme for the integral mode
E9*. Two-degrees of freedom features (e.g., no derivative action on
setpoint, setpoint filter) 2 The control elements with an asterisk * are discussed in more detail in
E10. Gain scheduling (Controller tunings change as a given function of this paper.
the scheduling variable, e.g., a disturbance, process input, process
output, setpoint or control error)

. " . ope . o0 B\
ARC = advanced reguklatory control Sigurd Skogestad, '"Advanced control using decomposition and simple elements''. B NT J.q U

Annual Reviews in Control, vol. 56 (2023), Article 100903 (44 pages).


https://www.sciencedirect.com/science/article/pii/S1367578823000676

How design standard ARC elements?

* Industrial literature (e.g., Shinskey).

Many nice ideas. But not systematic. Difficult to understand reasoning

 Academia: Very little work

—_— Annual Reviews in Control 56 (2023) 100903
| feel alone

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

Review article

=

Advanced control using decomposition and simple elements
Sigurd Skogestad

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway




Most basic element: Single-loop PID control (EO)

PID |

CVs =y e | | MV =u Y
>0 l C I Process —
Measure-
| ~e—
CV = Ym % ment
n

MV-CV Pairing. Two main pairing rules:
1. “Pair-close rule” : The MV should have a large, fast, and direct effect on the CV.

2. “Input saturation rule”: Pair a MV that may saturate with a CV that can be

.given up (when the MV saturates).
— Exception: Have extra MV so we use MV-MV switching (e.g., split range control)

Additional rule for interactive systems:
3. “RGA-rule”. Avoid pairing on negative steady-state RGA-element.

39 ® NTNU



U — Y,
— Process

E 1 . Ca Sca d e CO nt ro I yl=primary output (given :tp:)i»r/\i)

y2=secondary output (adjustable setpoint)

Idea: make use of extra “local” output measurement (y,)
Implementation: Controller (“master”) gives setpoint to another controller (“slave”)

 Example: Flow controller on valve (very common!)

WITHOUT CASCADE WITH CASCADE
flow in H, flow in 'H
uis ! S
__ 1_._._._._ ‘Y_T@ N 1“=_ I
MV=z - | MV=y,.=q,
|| i valve position | V,=q
e e—— e A Ve 27
! \ iu:z ;lr:)ev\ellsured
flow out




What are the benefits of adding a flow controller (inner cascade)?

1
ds |,
v
Extra measurementy, = q \
P'u' ﬂ
P[>
#U?«Zﬂ
Flow rate: ¢ = €, f(2),/ 52> [m? /s]
: o 4 f(2)
1. Counteracts nonlinearity in valve, f(z)  E— =
High gain in inner loop eliminates nonlinearity inside inner loop . e@@\“
With fast flow control we can assume q = g, ©
0O % >
2. Eliminates effect of disturbances in p1 and p2 (valve opening)

(FC reacts faster than outer level loop)

@ NTNU
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47

Tuning cascade control

T, v
1
¥ r!-_i- I"'|||.
‘Ill. _ ~ - + + - + .'I:|I|.
= .E‘.;| j'l..j t * {-.r-_a- J {-.r| ———
iF i3
Figure 11h11: Common case of cascade control where the primary output g, depends directly on the

exira measurement gz

First tune fast inner controller K, (“slave”)
Design K, based on model G,
Select 1, based on effective delay in G,
Nonlinearity: Gain variations (in G,) translate into variations in actual time constant .,

Then with slave closed, tune slower outer controller K, (“master”):
Transfer function for inner loop (from y,  to y,): T, = G, K,/(1+G, K,)
Design K; based on model G,'=T,*G,

Can often if inner loop is fast!
« Alternatively, T, = €%/(t_,s+1) = e (®2+w2)s
Typical choice: 1, = 0 T, Where time scale separation o = 4 to 10.

@ NTNU



Linearization of valve using cascade control

* Benefits: 1. Local distrurbance rejection, 2. Linearization
* Does nonlinearity disappear?

WITHOUT CASCADE WITH CASCADE (2 controllers)
flow in measured . . m red
ovel | Hs flow In evel L H
-- b ._v_?@ 1 h y:s
' MV=z T MV=q
— valve position B S _
| @ ------------- Y220
%_’ \ : 5 |V|V2=Z ][lr:)evssured
flow out !

[N
flow out |




No, it moves to the time constant for slave loop
— OK if we we have time scale separation between master and slave

Nonlinear valve with varying gain k,: G,(s)= k,(z) / (z,s+1) r )
— Slave (flow) controller K,: Pl-controller with gainK ,and ' —7
integral time 7= 7, (SIMC-rule). Get
L, = Ky (s)G,(s) = X2z 0 T

T2S

— With slave controller: Transfer function T, from vy, to y, (as
seen from master loop): )

T, =L,/(1+L,) = 1/(t, s + 1), where T, = T, /(k, K_,) gﬁ—k

* Linearization: Gain for T, is always 1 (independent of k,) because 6.7 «Proceses for tuning master controller K
of intergal action in the inner (slave) loop

* But: Gain variation in k, (inner loop) translates into variation in
closed-loop time constant 7,. This may effect the master loop

49 ® NTNU




Time scale separation is needed for cascade control to work well

* Inner loop (slave) should be at least 4 times™ faster than the outer loop (master)
— This is to make the two loops (and tuning) independent.
— Otherwise, the slave and master loops may start interacting

* The fast slave loop is able to correct for local disturbances, but the outer loop does not
«know» this and if it’s too fast it may start «fighting» with the slave loop.

e Often recommend 10 times faster, 0 = zﬂ = 10.
c2

— A high o 1s robust to gain variations (in both inner and outer loop)

— The reason for the upper value (o =10) is to avoid that control gets too slow, especially if we have many layers

* Shinskey (Controlling multivariable processes, ISA, 1981, p.12)




Cascade control distillation

3 layers of cascade

With flow loop +
T-loop in top

S S,

N

1.=1500s=25 min

1.=150s

T.=135s

Problem with many layers:
Eats up the time window

® NTNU



Cascade control block diagram

e Which disturbances motivate the use of cascade
control?

d; d, d,

r u Y2
n—> C G Py g\ Py R

Answer: d,




Quiz: How can we add feedforward?

N -t




Solution: How can we add feedforward?

F1 (measured flow disturbance)

l CV=H |
-y L Example of input transformation.
v=F2-F1=u-d

d=F1




Ratio control
Special case of to feedforward, but don’t need model, just process insight.
Always use for mixing streams

* Note: Disturbance needs to be a flow (or more generally an extensive variable)

Use multiplication block (x):

(FZ/F1)S

(desired flow ratio)

(measured (Input, manipulated variable)

flow disturbance)

“Measure disturbance (d=F,) and adjust input (u=F,) such that
ratio is at given value (F,/F,)’




Usually: Combine ratio (feedforward) with feedback

Example cake baking: Use recipe (ratio control = feedforward),
but a good cook adjusts the ratio to get desired result (feedback)

5 6

ﬁ))

=




EXAMPLE: CAKE BAKING MIXING PROCESS

RATIO CONTROLwith outer feedback (to adjust ratio setpoint)

= e e e e e = —— = >

: R=(F,/F1)s
1 d=F1,m U= F2,S
. X
|
: Flour
| (solid) Fz’mll Water
‘ | |
|
i
| y
l Product
Ys >

Want to control: Viscosity y [cP]
(or any intensive quality variable, like c, p or T)

Feedback correction («trim»)




Constraint switching
(because it is optimal at steady state)

* CV-CV switching CVs
— Control one CV at a time m—yy s oS
e MV-MV switching MVs
— Use one MV at a time — Process [

* MV-CV switching

— MV saturates so must give up CV MV Ccv
1. Simple («do nothing») = Process [
2. Complex (repairing of loops)

::. Process [T~

MV = manipulated variable

CV = controlled variable



y

MV-MV switching — Process [

* One CV, many MVs (to cover whole steady-state range because primary MV may saturate)*

e Use one MV at atime

Three alternatives:

Alt.1 Split-range control (SRC)
* Plus Generalized SRC (baton strategy)

Alt.2 Several controllers (one for each MV) with different setpoints for the single CV
Alt.3 Valve position control (VPC)

Which is best? It depends on the case!

*Optimal Operation with Changing Active Constraint Regions using Classical Advanced Control, Adriana Reyes-Lua Cristina Zotica, Sigurd
Skogestad, Adchem Conference, Shenyang, China. July 2018,




MV-MV switching

Example MV-MV switching

* Break and gas pedal in a car
 Use only one at a time,

* «manual split range control»




MV-MV switching

Example split range control: Room temperature with 4 MVs

_ MVs (two for summer and two for winter):
1 ‘m‘ 1. AC (expensive cooling)
y=T 2. CW (cooling water, cheap)
A 222 3. HW (hot water, quite cheap)
RRERER, 4. Electric heat, EH (expensive
= = - EH {expensive)
3 2
_____S_R_Ci _____ Tamb SR-block:
' | UAC ‘]'
i i ucw
ref I T »
—»—(E)F—:» Cpr 2> SR |, UHW Room LR EH
o | upn
—
.AE%C Avew Avpw AUEIP% 1
C,, — same controller for all inputs (one integral time) G ~

But get different gains by adjusting slopes a in SR-block

Internal signal to split range block (v)




E6: MV-MV switching

Alternative 2: Multipliple Controllers with different setpoints

/\ T, + 2A = 23°C

-y

1= T, +A=22°C
y=T T,=21°C :
4 22 -
an o
=== TA- - 1
3 2 L

T:nnh
UpC J’
C1 >
Uow
G, »
S Room
C3 v
UEH
C4

Disadvantage (comfort):
» Different setpoints

Advantage (economics) :
» Different setpoints (energy savings)




d = Tamo

Simulation Room temperature —

* Dashed lines: SRC (E5) ?20- ———————————————————————————— :
«  Solid lines: Multiple controllers (E6) '

T ap

Tam b

0 5 10 15

—Tamb
d_-rd/\ y=1

= e __L\i}_ 2 —_
5555 O 9t B i e
— LG_I m g
y—T — —— Different setpoints

2 - - =SRC

U; = i
Table 1. Ranges for available inputs (). ';‘4 I _f.!'; S SN - ey
= | ._ ——
Input (u;) Description Nominal Min Max Units .i. 2 I g"“' \"-‘-_ ..... &%
N | HW == .
11 = Qac  air conditioning 0 0 4.5 kW o | —fIJf-:u :
Uy = Qugw heating water 0 0 3.0 kW 0 : = =B 0 : _
uz = Qpy  electrical heating 0 0 4.0 kW 0 S 10 15

SRC = split range control

A Reyes-Lua, S Skogestad. Multiple-Input Single-Output Control for Extending the Steady-State Operating Range - Use of Controllers with Different Setpoints. Processes 7 (12), 941 (2019)




Process

L 4

Summary MV-MV switching

* Need several MVs to cover whole steady-state range (because
primary MV may saturate)*

* Note that we only want to use one MV at the time.

Alt.1 Split-range control (one controller) (E5)

Advantage: Easy to understand because SR-block shows clearly sequence of MVs

* Disdvantages: (1) Need same tunings (integral time) for all MVs . (2) May not work well if MV-limits inside SR-
block change with time, so: Not good for MV-CV switching

Alt.2 Several controllers with different setpoints (E6)

* Advantages: 1. Simple to implement, do not need to keep track of MVs. 2. Can have independent tunings. .

* Disadvantages: Temporary loss of control during switching. Setpoint varies (which can be turned into an
advantage in some cases)

Alt.3 Valve position control (E7)

* Advantage: Always use “primary” MV for control of CV (avoids repairing of loops)
* Disadvantages: Gives some loss, because primary MV always must be used (cannot go to zero).

Which is best? It depends on the case!

*Optimal Operation with Changing Active Constraint Regions using Classical Advanced Control, Adriana Reyes-Lua Cristina Zotica, Sigurd
Skogestad, Adchem Conference, Shenyang, China. July 2018,




MV-MV switching

Example MV-MV switching: Pressure control
(Alt. 3 may be the best in this case)

INERT L & 7,

CV=p ' VENT
B 4 '* Normal: Control CV=p using MV1=Q
MVl__heat (Q) * but if Q=0 we must use MV3=vent
MV2=inert « and if Q=max we must use MV2=inert
MV3=vent
——3 Hotter water
Alt.3: VPC (z2 and z3 could here even be on/off valves)
. Always use Q (z1) to control p.
KA. SRC SR bl ys use Q (z1) P

Need two VPC’s:

* Use vent (z3) to avoid Q small (z1=0.1)
* Useinert (z2) to avoid Q large (z1=0.9)
e 22=0and z3=0 when 0.1<z1<0.9

—_—— A s : r
e A—_— \& (o bopt AL VP
Cg ?M( (:)(M Pse =20 bar
ALY Thow colln wilk. diforesd selpoinfy cv=e o 2 (&
Mool B s sl y : e
SPL=ps~op =19 bar
PC 2y Ty ot A >
(? P5=20 bar : “‘_}nw >

L —PO— 44 o
R Dsesp =21 bar : A 4
‘LGC!‘ Z3 Zs= 4oy M2=0T—
i ’f ..

: ]
I <Ol



CV-CV switching WO | e =

* Only one input (MV) controls many outputs (CVs)
— Typically caused by change in active constraint

* Always use MIN- or MAX-selector

— Example: Control car speed (y,) - but give up if too small distance (y,) to car in front.




Example adaptive cruise control:
CV-CV switch followed by MV-MV switch

y1s = 90km/h
aV SR block

f Y up = gas 1 = speed
-

Us (5] Car

v . -

J us = break . Yo = distance

Fig. 31. Adaptive cruise control with selector and split range control.

Note: This is not Complex MV-CV switching, because then the order would be opposite.

®NTNU




CV-CV switching

Selector: One input (u), several outputs (y,,Y,)

yP é ‘. " > | =|max|=| Hs
[ A

melector i

ap [ e S |

o £a ) < = MIN = LS
- % 2 o ] u=min(uyu,) Y,

* Many CVs paired with one MV, but only CV controlled at a time

Process

e This requires output-output (CV-CV) switching: Use selector*
* Note: The selector is usually on the input u, even though the setpoint/constraint is on the output y
 Sometimes called “override”

— OK name for temporary dynamic fix, but otherwise a bit misleading™**

e Selectors work well, but require pairing each constraint with a given input (not always possible)

*Only option for CV-CV switching. Well, not quite true: Selectors may be implemented in other ways, for example, using «if-then»-logic.
** | prefer to use the term «override» for undesirable temporary (dynamic) switches, for example, to avoid overflowing a tank dynamically. Otherwise, it's CV-CV switching




CV-CV switching

Furnace control  with safety constraint

U, _
Input (MV) \TC 115 500C
u = Fuel gas flowrate u, T5max=700C s
Output (CV) Mw’ TC Y1=T R
y, = process temperature T, u HP steam
(desired setpoint or max constraint) ;- in Uy,us)
Yy, = furnace temperature T, ~ / R
(T2max= 700C) ¥2=la /\ Flue gas
Rule: Use min-selector for constraints that
are satisfied with a small input Process fluid (water)
N A > 0 u = input = manipulated variable (MV)
N A y = output = controlled variable (CV)
u=Fuel gas
Air

03 ® NTNU




CV-CV switching

Design of selector structure

Rule 1 (max or min selector)
* Use max-selector for constraints that are satisfied with a large input
* Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors):

* If need both max and min selector: Potential infeasibility (conflict)
* Order does not matter if problem is feasible

* If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.” Dinesh Krishnamoorthy, Sigurd Skogestad. Computers & Chemical Engineering, Volume 143, (2020)
“Advanced control using decomposition and simple elements”. Sigurd Skogestad. Annual Reviews in Control, Volume 56, 100903 (2023)
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https://www.sciencedirect.com/science/journal/00981354
https://www.sciencedirect.com/science/journal/00981354/143/supp/C

CV-CV switching

Valves have “built-in” selectors

Rule 3 (a bit opposite of what you may guess)

* Aclosed valve (u...=0) gives a “built-in” max-selector (to avoid negative flow)

min

 An open valve (u._.=1) gives a “built-in” min-selector

— So: Not necessary to add these as selector blocks (but it will not be wrong).

max

— The “built-in” selectors are never conflicting because cannot have closed and open at the same time

— Another way to see this is to note that a valve works as a saturation element

' T
Umax -
ﬁ- ﬁ-
Umin
\, 7

Saturation element may be implemented in three other ways (equivalent because never conflict)
1. Min-selector followed by max-selector

2. Max-selector followed by min-selector

3. Mid-selector

U = Max(Upmin, MIN(Umaz, ©)) = MIN(Upmar, MAX(Upin, ©)) = Mid(Upin, U, Umaz )

%%vanced control using decomposition and simple elements”. Sigurd Skogestad. Annual Reviews in Control, Volume 56, 100903 (2023)




MV-CV switching (because reach constraint on MV)

* Simple CV-MV switching

— Don’t need to do anything if we followed the Input saturation rule:

— “Pair a MV that may saturate with a CV that can be given up (when the MV saturates)”




Example «simple» MV-CV switching (no selector)
Anti-surge control (= min-constraint on F)

Minimize recycle (MV=z) subject to
Cv=F = Fmin
MV=1z =0

Fs - IFmin

CW

Fig. 32. Flowsheet of anti-surge control of compressor or pump (CW = cooling water).
This is an example of simple MV-CV switching: When MV=z (valve position) reaches
its minimum constraint (z = 0) we can stop controlling CV=F at I, = F_,_, that is, we
do not need to do anything except for adding anti-windup to the controller. Note that
the valve has a “built in” max selector.

* No selector required, because MV=z has a «built-in» max-selector at z=0.
* Generally: «Simple» MV-CV switching (with no selector) can be used if we satisfy the input saturation
rule: «Pair a MV that may saturate with a CV that can be given up (when the MV saturates at z=0)”
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QUIZ Compressor control

SOLUTION

MAX Zmin=0

A 4

Po F, p F
cw

Suggest a solution which achieves

* p<p,.~=37bar (maxdelivery pressure)

* P,>p,.,=30bar (min. suction pressure)

* F<F,,=19t/h (max. production rate)

* F,>F,.,=10t/h (min. through compressor
to avoid surge)

All these 4 constraints are satisfied by a large z
-> MAX-selector




Inventory control

* Very important decison for plantwide control:
— Location of TPM

e TPM = Throughput manipulator

= Gas Pedal = Variable used for setting the throughput/production rate (for the entire process).

* Radiating rule: Inventory control should be “radiating” around a given flow (TPM).




Inventory
control for
units in series

Radiating rule:

Inventory control should be
“radiating” around a given
flow (TPM).

(c) Radiating
(shown for TP

ontrol in direction of flow (for given feed flow, TPM = Fy)
lSI" Sp
z3 = 1 (bottleneck)
—
inventory control for TPM in the middle of the process
i

M = Fi) —
“Long loop”

-

z3 = 1 (bottleneck)
D_[%—

TPM

Follows radiation rule

Does NOT follow
radiation rule




Rules for inventory control

Rules for inventory control

Rule 1. Cannot control (set the flowrate) the same flow twice
Rule 2. Follow the radiation rule whenever possible

Rule 3. (which should never been broken): No inventory loop
should cross the location of the TPM

Rule 4. Controlling inlet or outlet pressure indirectly sets the
flow (indirectly makes it a TPM)

Rule 2. Controlling outlet pressure sets flow




QUIZ. Are these structures workable (consistent)? Yes or No? Mot what happens o e |

I mass holdup inside the |
FC, red box? Is it self-
| regulated? |




Example: Level control

I:1
Fos ﬁ@
F, [m3/s] ; Fom

V'N

TPM

F, [m3/s]

<~

What should we do if bottleneck at F1 (fully open valve, z1=1)?

® NTNU




Example: Level control. Complex MV-CV switching

“Bidirectional inventory control” (Shinskey, 1981)

switching

Fo [m3/s]

V'N

Disturbance

F, [m3/s]

<~

Three alternsatives for MV-MV switching
1. SRC (problem since F varies)

2. Two controllers

3. VPC (“Long loop” for F1)

® NTNU



Bidirectional inventory control

Alt. 3 MV-MV switching: VPC

Fos —(\IN “
gP:C z,,=0.9
Fo [m3/s] must be lower than 1=fully open, back-off)
A
20 ;
Disturbance N/ F1 [M3/s]

A\ g
21

VPC: “reduce inflow (F,) if outflow valve (z,) approaches fully open”

® NTNU

120




Bidirectional inventory control

Alt. 2 MV-MV switching: Two controllers (recommended)

SP-H SP-L
=90% =10%

I:o, F’ z
ZS(MINJ—2 LC '
F, [m3/s] Fim
7N
Disturbance ] N If1 [m3/s]
> >

SP-L = low level setpoint
SP-H = high level setpoint

Extra benefit: Use of two setpoints is good for using buffer
dynamically!!

121
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Inventory
control for

units in series <

trol in direction of flow (for given feed fow, TPM = Fy)

lsp sp

(b) Inventory contr

Radiating rule:

Inventory control should be

“radiating” around a given I
flow (TPM). R

(e} Radiati
(shown for TPM = Fy)

Need to reconfigure inventory loops if TPM moves

z3 = 1 (bottleneck)

Fy

Follows radiation rule

®NINU




Generalization of bidirectional inventory control

Reconfigures TPM automatically with optimal buffer management!!

Fos SP-H SP-L Fig SP-H SP-L Fag SP-H SP-L Fiy

Maximize min _@9 @—* min —@:) 6@— min *—@ @— min
_— '

throughput: O

f =co

S = [ L= R B -

FU F]_ Fz F.j
Unit 1 Unit 2 Unit 3

LI UU. DIUIICULIVIGL THIVELIIULY LCULIU UL SULICIHIC 1UL duluiaue 1euUiigund

et al. (2022).
SP-H and SP-L are high and low inventory setpoints, with typical values 90% and 10%.

Strictly speaking, with setpoints on (maximum) flows (F; ), the four valves should have slave flow controllers (not shown). However, one may instead have setpoints on valve
positions (replace F,, by z,,), and then flow controllers are not needed.

LUULL UL WUURPS (101 GOLUL UG T WL UIC TaUIauUil 1UIC) il HIGATIIAILE, UL UUEIPUL. OLLLISRCY (L FU L) suuca

‘f“,g,

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981, Ch.3

Cristina Zotica, Krister Forsman, Sigurd Skogestad ,»Bidirectional inventory control with optimal use of
intéfmediate storage», Computers and chemical engineering, 2022

Fig. 3-7. Production rate can be set at either end of the process or constrained at any
hout loss of inventory control.




Unit 1 Unit 2 Unit 3













Unit 1 Unit 2 Unit 3
open
LL1]
100 _
— L5}
80T 80 E
& 60 f ) e - “=
E 40 g
B 407 [ =
3 # 2 0.5 . .
2{} —— _I'l 3 . —[‘ —[',;
20t 0 2 o 0 E
0t — — e
0 ‘ i : . . 0 L " .
0 )| 40 &l &0 0 20 40 60 &0 0 20 40 60 a0
Time [min] Time [min] Time [min]
(a) Levels (b) Valve positions (c) Flows

Figure 12: Simulation of a 19 min temporary bottleneck in flow F) for the control structures
in Fig. 3d with the TPM downstream of the bottleneck.




l ] F1=1 e F2:1 S F3=1
Unit 1 Unit 2 Unit 3

Challenge: Can MPC be made to do his? Optimally reconfigure loops and find optimal buffer?
* Yes, possible with standard setpoint-based MPC if we use

* Trick: All flow setpoints = infinity (unachievable setpoint)
 What about Economic MPC? Cannot do it easily; may try scenario-MPC




Don’t need bidirectional control on all units

H@L H/I'C\L H@L H@L

MIN

«Long loop» can be OK in some cases

H L
© —
MIN MIN MIN

MIN MIN MIN

small holdup small holdup




Important insight

* Many problems: Optimal steady-state solution always at constraints
* |In this case optimization layer may not be needed

— if we can identify the active constraints and control them using selectors
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Control of chemical processes with recycle




Process 1

—[><]—> A (unreacted)

: ‘g F5
\
. cooling gas
liquid gas
lieed D<} { : N_m {><} liquid |--
F1 iqui @

F2 F3

D(} » B (product)

Exothermic reaction




Process 2

F6 r—'j . cooling F5
liquid /
{><} \VA\, N A (recycle unreacted)
(W) % OER
gas

cooling | gas

liquid
A (feed) {><} 4 ,i {><} -
F1 F2 F3 liquid |- —>@

N » B (product)
F4

Comment: Valve F5 may not be necessary. Could use valve on cooling instead




Process 3

coolin
Fo | I liquid 5 k>

{><} \VA\/ N A1+A2 (recycle unreacted)
O () 1
liquid 2 cooling gas
e B i S
F2 F3 liquid ——»@

F1

Al (feed) {)(} >
FO N » B (product)

F4




Process 4

W
F6 (_'j‘ liquid

cooling

X

X
O,

liquid
A +l (feed.)_[><} h 4 ,l
F1

F2

gas

\‘f\v!

cooling

X

F3

gas

liquid

A +l (purge)

QRS

_ _.@

X

F4

» B (product)



Process 1

Control
—[><]—> A (unreacted)

: ‘g F5
\
I ling gas
liquid { gas €00
F1 liquid |- —>@

F2 F3

TPM

D(} » B (product)

Exothermic reaction




Process 1

Control
_,qu_’ A (unreacted)
@ [ F5
O
liquid cooling gas
A (feed)

F1
TPM

D‘(} » B (product)

Exothermic reaction




Process 2

Control

F6 . cooling F5
| I liquid /
{><} \VA\, N A (recycle unreacted)
(W) % QRN
gas

cooling gas

liquid
A (feed) {><} 4 ,i {><} -
F1 F2 F3 liquid |- —>@

TPM

N » B (product)
F4




Process 2

Control

e
(_'j‘ liquid

cooling F5

A (feed) {><}

F1

TPM

liquid
‘ E

W —IX

MY

cooling

\

D<}

gas

A (recycle unreacted)

liquid

{)‘(} » B (product)




Process 3

Control

F6 m liquid cooling F5
{><} \VA\/ N A1+A2 (recycle unreacted)
O () 1

liquid cooling gas
A1+A2 -> I
oo™ oo R W
F2 F3 liquid ——»@

F1

Al (feed) {)(} >
FO N » B (product)

TPM »




Process 3

Control

coolin
F6 [ ), liquid g B

{><} \VA\/ N A1+A2 (recycle unreacted)
W —® OB

liquid cooling gas
A2 (feed) D<} } 'i gas {><}
- BS_,’, F1 F2 F3 IIQUId - —>@
\——/
Al (feed) {)(} >

FO N » B (product)
TPM “

The ratio control can be done in different ways.
It requires two flow measurements (FO, F1)
One of the flows is the TPM




Process 3

Control

F6 // m liquid cooling ES
| ‘ \VA\II N A1+A2 (recycle unreacted)

\\\ f—_\
iqui o cooling | gas
liquid AN AN
A2 (feed) D<} } ‘ A1+A2 -> [ %
; ] F2 = liquid --»@
I
I
]
F4

- _>” F1 F3
—
Al (feed) {)(} >

FO
TPM

» B (product)

Will this work?

No, it’s not possible to feed exactly the same amount of A1 and A2 without feedback correction




Process 3

Control

F6_-~ | I liquid

cooling F5

ON

~
~
~
~

gas

WX
f__\

cooling

A2 (fee/d) D<}
R >” F1
Al (feed} {)(} >

FO
TPM

€= = — = = = = =

}quuidE

\\
J Al1+A2 ->
F2

With composition control of Al (or A2).
This works!

{X]

F3

gas

liquid

A1+A2 (recycle unreacted)

» B (product)

_ _.®
]
I
X]
F4




Process 4

Control

=GRS
gas \

cooling gas

liquid
A +l (feed.)_[><} h 4 {><}
F1 F2 F3 liquid “’@

TPM

D(} » B (product)
F4




Process 4

Control F7 %\ composition control of |
cooling =

FQ;‘ liquid \VA\/ i _@ A+l (purge)
@ _> F5

cooling gas
I|QU|d gas S o
A +] (feed.)_[><} 4 D(}
liquid ——»@

F1

TPM |

{)‘(} » B (product)




Process 4

BIDIECTIONAL @ F7 %\ composition control of |
Inventory Control? m liquid COO'“";& i _@ A +1 (purge)

Fo)-.. bg 2"
liquid gas - cooling | gas
A +l (feed.)_[><} ) 4 {)(}
liquid ——>®

F1
TPM !

D‘(} » B (product)




Process 4 26

“.H
BIDIECTIONAL =~ s VA composition control of |
\\
N
\

()
Inventory Control Cooler 2 ) A +1 (purge)
X —W @
2., | | N LY F5
le I-l, \L M L 235* \‘ H/
TTIMIN |- FIMIN J«= A\ )-5- - “~

l liquid '
; .;\J:l
iquid |- -
F3 Cooler1l |® 24,

A +l (feed.)_[)'q h 4 ;
F1
TPM 7 -
(when z1=z15s) MJN “
>< » B (product)
F4

This LC is two controllers which both control level.
The one with outflow F2 as the MV has a Low level setpoint
The one with inflow F1 as the MV has a High level setpoint

T

f
{

3 H-setpoints go to this MIN-selector:

Reduce F3 if

1. too high pressure (cooler 2 max),

2. too much gas (high level) (F6 limiting)
3. too much liquid (high level) (F4 limiting)




Optimal operation and control objectives:
What should we control?

Scheduling
(weeks)

Site-wide optimization

(day)

y \ |
|
Local optimization|

(hour)

-------------- ’”| CV, (economics)

SUPETVISOry
control

(minutes)

Control '
layer :

CV, (stabilization)




Skogestad procedure for control structure design:

Scheduling
|.  Top Down (analysis) (weeks)

e Step S1: Define operational objective (cost) and constraints S
1Le-Wide Opumization

» Step S2: Identify degrees of freedom and optimize operation for (day)
disturbances

r N\
e Step S3: Implementation of optimal operation a—
— What to control? (CV1) (self-optimizing control) bocal ?ﬁﬁzatm
e Step S4: Where set the production rate (TPM)? (Inventory fracanenenens ool _
control) g 7 . CV, (economics)
E DUPErviso :
Il. Bottom Up (design) g control
' minutes
° . . p) Control i
Step S5: Regula'fory control: What more to control (CV2): s | "y (stabilization‘
e Step S6: Supervisory control 5 Y i 2 J
: guiatory |
e Step S7: Real-time optimization 5 {fmr%

TPM = Throughput manipulator




Step S1. Define optimal operation (economics)

 What are the ultimate goals of the operation?
e Typical cost function™:

J = cost feed + cost energy — value products

*No need to include fixed costs (capital costs, operators, maintainance) at “our” time scale (hours)

Note: J=-P where P= Operational profit




Example Step 1: distillation column

* Distillation at steady state with given p and F: N=2 DOFs, e.g. Land V (u)

* Cost to be minimized (economics) . _
cost energy (heating + cooling)

J=-PwhereP=pDD+pBB—pFF—pV\/

~ X
value products cost feed F, zp

* Constraints Vol
Purity D: For example, Xp ;nourity S Max :%(5'%1 @
Purity B: For example, Xg imourity S Max B.z
Flow constraints: min £ D, B, L etc. £ max
Column capacity (flooding): V<V, etc.

Pressure: 1) pgiven(d) 2)pfree (u): Prin < P < Prax
Feed: 1) Fgiven(d) 2)Ffree(u):F<F

max

*  Optimal operation: Minimize J with respect to steady-state DOFs (u)




Steps S2/S3. Distillation: expected active constraints

 Both products (D, B) generally have purity specs
e Valuable product: Purity spec. always active

— Reason: Amount of valuable product (D or B) should
always be maximized

* Avoid product “give-away” (“Sell water as methanol”)
* Also saves energy

Control implications:

1. ALWAYS Control valuable product at spec. (active
constraint)

2. May overpurify (not control) cheap product

—  And then maybe V=Vmax is active constraint to get max.
overpurification

methanol
+ water

F,zp

v

=

f.l..i.‘“
valuable

product

methanol

+ max. 0.5%
water

cheap product
(byproduct)
water

+ max. 2%
methanol




A|ChE Al: Benzene
A2: Ethylene
B: Ethylbenzene (product)
C: Diethylbenzene (undersired)

Example bidirectional inventory control

Economic Plantwide Control of the Ethyl Benzene Process

Rahul Jagtap, Ashok S Pathak, and Nitin Kaistha Al1+A2 —B
Dept. of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016,Uttar Pradesh, India
B+A2->C
DOI 10.1002/aic.13964 C+Al- 2B

Published online December 10, 2012 in Wiley Online Library (wileyonlinelibrary.com).

"""" »[LS|+ - ‘4— U, MAx

Al, A2 (recycle)

Al(feed) :
LS F i\/IIN |
i Al+A2 —-B
! B+A2->C
A2(feed) —= .
Finally give up: i TPM i
: — ()
: Y
: I UTMAX -A
: : ’)MAX

= C (recycle)

Figure 7. CS2 with overrides for handling equipment capacity constraints.




Conclusion Advanced process control (APC)

e C(Classical APC, aka «Advanced regulatory control» (ARC) or «Advanced PID»:
— Works very well in many cases
— Optimization by feedback (active constraint switching)

— Need to pair input and output.
* Advantage: The engineer can specify directly the solution
* Problem: Unique pairing may not be possible for complex cases

— Need model only for parts of the process (for tuning)
— Challenge: Need better teaching and design methods

e MPC may be better (and simpler) for more complex multivariable cases
— But MPC may not work on all problems (Bidirectional inventorycontrol)
— Main challenge: Need dynamic model for whole process
— Other challenge: Tuning may be difficult
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Review article 0 )
Advanced control using decomposition and simple elements =

Sigurd Skogestad
Department of Chemical Engineering. Norwegian University of Science and Technology (NTNU), Trondheim, Norway

ARTICLE INFO ABSTRACT
Keywords: The paper explores the standard advanced control elements commonly used in industry for designing advanced
Control structure design control systems. These elements include cascade, ratio, feedforward, decoupling, selectors, split range, and

Feedforward control
Cascade control
PID control
Selective control

more, collectively referred to as “advanced regulatory control” (ARC). Numerous examples are provided, with
a particular focus on process control. The paper emphasizes the shortcomings of model-based optimization
methods, such as model predictive control (MPC), and challenges the view that MPC can solve all control

Override control problems, while ARC solutions are outdated, ad-hoc and difficult to understand. On the contrary, decomposing
Time scale separation the control systems into simple ARC elements is very powerful and allows for designing control systems for
Decentralized control complex processes with only limited information. With the knowledge of the control elements presented in
Distributed control the paper, readers should be able to understand most industrial ARC solutions and propose alternatives and
Horizontal decomposition improvements. Furthermore, the paper calls for the academic community to enhance the teaching of ARC
Hierarchical decomposition methods and prioritize research efforts in developing theory and improving design method.

Layered decomposition
Vertical decomposition

Network architectures
Contents
1. Introduction ..., 3
1.1.  List of advanced control elements.. 4
1.2.  The industrial and academic control worlds.......... 4
1.3.  Previous work on Advanced regulatory control 5
1.4.  Motivation for studying advanced regulatory control... 6
1.5.  Notation 6
2. Decomposition of the control system ......... e B
2.1.  What is control?.........ccoooe 6
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Nonlinear feedforward, decoupling and linearization

* Transformed inputs: Extremely simple and effective way of achieving
feedforward, decoupling and linearization




Example decoupling: Mixing of hot (u,) and cold (u,)
water

<] * Want to control
u, T y, = Temperature T
F y, = total flow F
D> * Inputs, u=flowrates
U * May use two SISO Pl-controllers
TC
FC
V,=sum * Insight: Get decoupled response with

transformed inputs
v,=ratio TC sets flow ratio, v, = u,/u,
FC sets flow sum, v, = u, + u,

* Decoupler: Need «static calculation block» to
solve for inputs

up=vy v,/ (1+v,)

u, = Vz/ (1 +V1)




Two SISO
controllers

TC

vjlzratlo

Process

FC

\ 4

V,=sum

\ 4

flowrate

Pairings:
e T-v,
* F-v,

No interactions for setpoint change

Note:
In practice u=valve position (z)
So must add two flow controllers
* These generate inverse by feedback




In practice must add two slave flow controllers

Two SISO Nonlinear Decoupler Uy
controllers
v,=ratio u
TC o Uy =vy v, / (1+vy) — 1
o Uz2=V,/ (1+vy) F
FC v=sum
)
v = transformed inputs
u = flowrates
z = valve positions
v,(vy = T,)

Decoupler with feedforward: an = Ty, — T,

dc = V2 — (qj




Feedforward (and decoupling) control

Feedforward control relies on model
e as opposed to feedback which relies mostly on data

e Feedback control: Linear model is often OK

* Feedforward control: Much less likely that linear model is OK because of process
changes and disturbances

 Here: Nonlinear feedforward control using Input transformations based on static
process model




Input transformations




General approach: Combined Nonlinear decoupling,
feedforward and linearization using Transformed Inputs *

e Generalization: Introduce transformed input v and use Nonlinear calculation block

f d
+ v |
v Calc. block — W
Js 2 » Controller » =f(vd,w) 2| Process —
_ (static)
y
Genaral Method*:
Steady-state model: y = f(u,d,w)
Select transformed input: v =f(u,d,w) («right-hand side» of model)

Calculation block: Invert for given V. u= f_l(V,d,W) (may be replaced by slave v-controller)

w=dependent variable (flow, temperature), but treated as measured disturbance
w-variables may be used to simplify model

Transformed system becomes: y=I v («decoupled, linear, indepedent of d»)
Note: To simplify often use only «parts» of f(u,d,w) as v (because of unknown parameters etc.)

181 *Zotica, Alsop and Skogestad. 2020 IFAC World Congress @ NTN U




Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water .

1 1
1 I 1
T vd o
. 1 1
Th, qn ys V! Calculation u 1 y
1
B 2y | Controller |=——=>  block » Process [ >
® I'.q _ ! (static) !
1
T.. q, y  commmmmmmmomoTommmmmmmmm :

Figure 1: Mixer system i
= ( I )
Steady-state model written as y=f(u,d): e

— InThtqcTc T,
o gh+qc d_ = ( T )
qd=4c + dh .
Select transformed inputs as right hand side, v =f o ( T)
= TITE (1) Generalized ratio Y q

qgh+qc
V=4, + dh (2)

Model from v to y (red box) is then decoupled and with perfect disturbance rejection:
T=v,
q=W2

* Can then use two single-loop PI controllers for T and q!

* These controllers are needed to correct for model errors and unmeasured disturbances
* Note that v; used to control T is a generalized ratio, but it includes also feedforward
from Tc and Th.
Implementation (calculation block) : Solve (1) and (2) with respect to u=(qc gh):
v,(v; = T,)

- b ® NTNU




Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process)
New system: T=v, and q=v,

Outer loop: Two I-controllers with 7o = 1's

1. T,: 60->70°C  att=50s
2. T 30->20°C att=100s
3. T} 40->42 °C att=150s
4.q% 1->1.1 L/s att=200s
44 : 1.2 : :
=) —_, ] ¥ 5 74
42 | 1.1
g 40 H g
g =
g 38 | | | | £ 0.9 | | | |
0 50 100 150 200 250 50 100 150 200 250
Time, [s] Time, [s]
0.6 : 0.8 : : :
=q q
— h _,_ —_—
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Alternative B: Calculation block solved by feedback (using fast slave controller C))

d
_1 y
u=g "(v,w,y,d) \ y
y* e v Inverse input U Process
—_— Controller C P . w
transformation (nonlinear)
(static) J

t

(a) Alternative A. Model-based implementation of transformed input v = g(u,w,y,d).
The physical input u = g~ ' (v, w, y, d) is generated by a static (algebraic) calculation block
which inverts the transformed input model equations. The model-based implementation
generates the exact inverse for the case with no model error.

Example: Power control

d 5.4.2. Transformed input vy, based on parts of static model and

measured state w =T,
. v g(u, w, iy, d.} ] The second transformed variable, vo,w, follows by using the
i Input transformation measured state w = T, to replace the heat transfer Eq. (68c) for

. Q. We use (68a) to find
(static)
T, =T+ d
F]Cp]
and then we substitute Q using (68b) to get

—
| w
Ve Controller C, ] u Process y y=Ti =T+ FZC”Z(TS _1) 1)
(fast) J (nonlinear) Ficp
fo,w(u,w,d)

From (71) the corresponding ideal static transformed input be-

comes
(b) Alternative B. Feedback implementation of transformed input v = g(u, w,y,d) using foulttwod) =T+ cmpz(TU ) 72)
. . . . . Vo.w = fow(U, w,d) = —_— -
cascade control with a slave v-controller. The computed value of v is driven to its setpoint O 0 VTR 2
vs by the inner (slave) feedback controller C,, which generates the physical input w. This which depends on w = T, but not on the UA-value.

implementation generates an approximate inverse.




New control structure: Power control

K. Forsman, 2024-10-16, No. 72

Power controller
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Also: Transformed outputs z

Y

o .
E?z_ l(Th'?bH Erd]]L Process w
| (hv w, )

z

(a) General implementation of transformed output z

* No fundamental advantage, but can simplify input transformation
* For example, y=T, z=H (enthalpy)




More on transformed inputs

Journal of Process Control 122 (2023) 113-133
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MPC and RTO




What about MPC?

* Firstindustrial use in the 1970s

e Became common in the refining and petrochemical industry in the 1980s

e Inthe 1990s a bright future was predicted for MPC in all process industries (chemical, thermal power, ...)
* 30 years later: We know that this did not happen

*  Why? First, the performance benefits of MPC compared to ARC are often minor (if any)

* Inaddition, MPC has some limitations

Expensive to obtain model

Does not easily handle integral action, cascade and ratio control

Normally, cannot be used at startup (so need ARC anyway)

Can be difficult to tune. Difficult to incorporate fast control tasks (because of centralized approach)
Computations can be slow

6. Robustness (e.g., gain margin) handled indirectly

* Advantages of MPC
1. Very good for interactive multivariable dynamic processes
Coordinates feedforward and feedback
Coordinates use of many inputs
Makes use of information about future disturbances, setpoints and prices (predictive capabilities of MPC)
Can handle nonlinear dynamic processes (nonlinear MPC)

. What about constraints
— Not really a major advantage with MPC; can be handled well also with ARC

LnhwN e

e wN




7.6.7. Summary of MPC shortcomings
Some shortcomings of MPC are listed below, in the expected order
of importance as seen from the user’s point of view:

1. MPC requires a “full” dynamic model involving all variables to
be used by the controller. Obtaining and maintaining such a
model is costly.

2. MPC can handle only indirectly and with significant effort from
the control engineer (designer), the three main inventions of pro-
cess control; namely integral control, ratio control and cascade
control (see above).

3. Since a dynamic model is usually not available at the startup of
a new process plant, we need initially a simpler control system,
typically based on advanced regulatory control elements. MPC
will then only be considered if the performance of this initial
control system is not satisfactory.

4. It is often difficult to tune MPC (e.g., by choosing weights or
sometimes adjusting the model) to give the engineer the desired
response. In particular, since the control of all variables is opti-
mized simultaneously, it may be difficult to obtain a solution
that combines fast and slow control in the desired way. For
example, it may be difficult to tune MPC to have fast feedforward
control for disturbances because it may affect negatively the
robustness of the feedback part (Pawlowski et al., 2012).

5. The solution of the online optimization problem is complex and
time-consuming for large problems.

6. Robustness to model uncertainty is handled in an ad hoc manner,
for example, through the use of the input weight R. On the other
hand, with the SIMC PID rules, there is a direct relationship
between the tuning parameter r, and robustness margins, such

as the gain, phase and delay margin Grimholt and Skogestad

(2012), e.g., see (C.13) for the gain margin.

7.6.8. Summary of MPC advantages

The above limitations of MPC, for example, with respect to integral
action, cascade control and ratio control, do not imply that MPC will
not be an effective solution in many cases. On the contrary, MPC should
definitely be in the toolbox of the control engineer. First, standard ratio
and cascade control elements can be put into the fast regulatory layer
and the setpoints to these elements become the MVs for MPC. More
importantly, MPC is usually better (both in terms of performance and
simplicity) than advanced regulatory control (ARC) for:

1. Multivariable processes with (strong) dynamic interactions.

2. Pure feedforward control and coordination of feedforward and
feedback control.

3. Cases where we want to dynamically coordinate the use of many
inputs (MVs) to control one CV.

4. Cases where future information is available, for example, about
future disturbances, setpoint changes, constraints or prices.

5. Nonlinear dynamic processes (nonlinear MPC).

The handling of constraints is often claimed to be a special advantage of
MPC, but it can it most cases also be handled well by ARC (using selec-
tors, split-range control solutions, anti-windup, etc.). Actually, for the
Tennessee Eastman Challenge Process, Ricker (1996) found that ARC
(using decentralized PID control) was better than MPC. Ricker (1996)
writes in the abstract: “There appears to be little, if any, advantage to
the use of NMPC (nonlinear MPC) in this application. In particular, the
decentralized strategy does a better job of handling constraints — an
area in which NMPC is reputed to excel”. In the discussion section he
adds: “The reason is that the TE problem has too many competing goals
and special cases to be dealt with in a conventional MPC formulation”.
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Optimal operation and constraints switching

 We have presented effective decentralized approaches for constraint switching
(MV-MV, CV-CV, MV-CV).
— Optimal in many cases, but not in general

— For example, may not be able to cover cases with more than one unconstrained region = More
than one self-optimizing variable

* An alternative is model-based RTO, usually based on static model




Economic real-time optimization(RTO)
Alternative RTO approaches:

Model-based

. Separate RTO layer (online dynamic or steady-state optimization)
Il.  Feedback-optimizing control (put optimization into control layer)

* Alt.1. (Most general): Based on dual decomposition (iterate on Lagrange multipliers A)
« Alt.2 (Tighter constraint control): Region-based with reduced gradient

Data-based
l1l.  Hill-climbing methods = Extremum-seeking control (model free. But need to measure cost J)

Computers and Chemical Engineering 161 (2022) 107723
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Real-Time optimization as a feedback control problem - A review

Dinesh Krishnamoorthy®"* Sigurd Skogestad”
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|. Conventional (commercial) steady-state RTO

Fairly common in refining and
petrochemical industy.

Two-step approach:

Step 1. “Data reconciliation”:

—  Steady-state detection

—  Update estimate of d: model parameters,
disturbances (feed), constraints

Step 2. Re-optimize to find new optimal
steady state

@ NTNU
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Static RTO
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Yy estlmator
Setpoint (Static)
control T
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Steady-state wait time

* Transient measurements cannot be used = system must “settle”
e Large chunks of data discarded

e Steady state detection issues
— Erroneously accept transient data
— Non-stationary drifts

0il Rate




How to avoid steady state wait time?

1. Dynamic RTO = EMPC

Dynamic d,z,0
<
RTO
sp Parameter
u estimator
Setpoint (Dynamic )

control |
l u

Process




How to avoid steady state wait time?

2. Hybrid RTO
Static |, %% 7
RTO
l sp Parameter
u estimator
Setpoint (Dynamic)

control |
l u

Process




RTO problem

Steady-state RTO (used in Hybrid RTO): Dynamic RTO = (Economic) nonlinear MPC :
min J (x, d, u) (Y
XU x(rtr)l’lur%t) j;o ](x(t), d(t),u(t)) dt
S.t.:
0=F(x,d,u) s.t.:
0=nh(x,d,u) x(t) = F(x(t),d(t),u(t))
g(x,d,u) <0 0 = h(x(t),d(t), u(t))
g(x(@®),d®),u®)) <0
x(tg) = X

Now we calculate not only an optimal
point, but an optimal trajectory!’

BUT Much more complex that static RTO,
and may not give much economic benefit

@ NTNU



Feedback RTO

Il. Feedback RTO (unconstrained case)

J
«Solving RTO-problem using Pl control»

Unconstrained optimization.

Necessary condition of optimality (NCO):

— Gradient of cost function =0

A

JUX />O
Ju=0

] _

_Iu___vu] 0




Feedback RTO

© NTNU
lIA. Feedback RTO (unconstrained case)

Gradient estimator

F ________________ ﬁa’% aJﬁd_ | _I
| parameter
| [A B] estimation I Linearize the dynamic model
! Gradient | O D)| Linearize | % d [% = f(x,u,d)| | L
) ) <€4— model frome—— _ h <+ | J =g(x.u) J = Cx+ Du
i Estimation y = h(x,u)
utod I A— ﬁ B ﬁ
I = e e —Kalr—'nan—Fllt—er— [ a ax X=X a 8“ x=X
Ju=-CA™'B+D c_ 9% p_ %
Ox X=X du X=X
Feedback . y y TrICk, set x = 0,to get estimate of static gradient:
Controller — ! Process meas J— (_ CA B + D) u
—» (e.g. PID) nY A g
J.? =0 N
ta

Note: This is one simple way of doing the gradient estimation, but needfs dynamic model (Kalman Filter)

© NTNU




Here is another Static gradient estimation:

Based on self-optimizing control. Very simple and works well!

Computers and Chemical Engineering 189 (2024) 108815

Contents lists available at ScienceDirect
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Optimal measurement-based cost gradient estimate for feedback real-time
optimization
Lucas Ferreira Bernardino, Sigurd Skogestad

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

ARTICLE INFO ABSTRACT

Keywords: This work presents a simple and efficient way of estimating the steady-state cost gradient J, based on available
Self-optimizing control uncertain measurements y. The main motivation is to control J, to zero in order to minimize the economic
Optimal operation cost J. For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is
Controlled variable design simply J, = H(y, — )*) where H is a constant matrix, y, is the vector of measurements and y* is their
Gradient estimation

nominally unconstrained optimal value. The derivation of the optimal H-matrix is based on existing methods
for self-optimizing control and therefore the result is exact for a convex quadratic economic cost J with
linear constraints and measurements. The optimality holds locally in other cases. For the constrained case,
the unconstrained gradient estimate J, should be multiplied by the nullspace of the active constraints and the
resulting “reduced gradient” controlled to zero.

u

d

K 1 G

-

J u— H (_Ym - J"T*)

From «exact local method» of self-optimizing control:

o ey —1 o~
H =71,.|1GT(FF") &*| &T(FFT

where F = [FW; Wy]and F = d;—

opi

y v
— =G, -G

Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024
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With constraints

Constrained optimization problem
: v.d
n{}n ] (w,y, )
s.t. g(ay.d) <0

Solution: Turn into unconstrained optimization problem using Lagrange multipliers

Cluy.dA)=)(ny.d+ 1 gy

ming, L

u = primal variables = inputs

A > 0 = dual variables = Lagrange multipliers = shadow prices
Necessary conditions of optimality (KKT-conditions)

V,L=0, i>0, g-A=0 Lu:Ju+)\T9u:O

(complementary condition)

®NTNU



Feedback RTO with constyraints

A. Primal-dual control based on KKT conditions: Feedback solution that
automatically tracks active constraints by adjusting Lagrange multipliers (= shadow prices = dual
variables) A

g (measured constraint) KKT Lu — Ju _|_ ATgu — 0

sp=0 —»| Constraint control

(n. slower Pl/I-controllers)
Inequality constraints: A = 0
0 — " MAX
\ | Dualvariables Primal-dual feedback control.
* Makes use of «dual decomposition» of
Unconstrained KKT conditions
SP=0 optimization ) Ju Gradient » Selector on dual variables A
(n, PID-controllers) Ju estimation * Problem: Constraint control using dual
L,=J,+ )\Tgu =0 Y variables is on slow time scale (upper
layer)
u| Primal variablesu e Can be fixed using override at bottom of
hiearchy (Dirza)
d y * Problem 2: Single-loop PID control in lower
layer (L,=0) may not be possible for coupled

g (measured constraint) processes so may need to use Solver.

* D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Co..c.vi o ycvew) 1o oo,
* R.Dirza and S. Skogestad . Primal—-dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.




Feedback RTO

Alternative: Dual composition with optimization/solver for
computing u (primal variables)

. d traint
* May need to add filter to avoid instability SP=0 | Constraint control g (measured constraint)

(n. slower PI/I-controllers)

A

0 —1 MAX
)\ Dual variables

Unconstrained
SP=0 — optimization < Gradient

(Alt. Use solver herever) Ju estimator
Ly=J,+Xg, =0 F

Ul Pprimal variables
Filter

Lm» y
g (measured constraint)
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Alternative: Direct control of constraints

KKT: L, =J,+ Mg, =0
Introduce N: NTg, =0

Control
1. Active constraints g, = 0.
2. Reduced gradient N,J, =0

* for the remaining inbconstrained degrees of freedom
* «self-optimizing variables»

Seems easy. But how do we handle changes in constraints?
* Because g, and N ,varies

* Originally, | thought we need a new control structure (with pairings) in each region

I * Jaschke and Skogestad, «Optimal controlled variables for” polynomial systems». S., J. Process Control, 2012

¢ D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019 @ Nfl |-\ | l I




Feedback RTO with constraints

B. Region-based feedback solution with «direct» constraint control

A

sp=0 —| Constraint controllers

T
g (constraints paired with ul) KKT: LU — Ju -+ A gy — 0
(fast PID-controllers)

— SPro Introduce N: NT'g, =0
MAX/ u1o PID ;JUI NT -

&
<

A

MIN )
| Ju
 Selector on primal
variables (inputs) Gradient
estimation
ul u2 1‘
* Selector on primal variables (inputs)

y e Similar to selectors in ARC
* Limitation: need to pair each constraint with
an input u, may not work if many constraints

g (measured constraint)

* Jaschke and Skogestad, «Optimal controlled variables for” polynomial systems». S., J. Process Control, 2012
¢ D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019 B |—\ | T |_\ | l I
¢ L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal steady-state operation with active constraints, J. Proc. Control, 2024




Feedback RTO with constraints

Assume: Have at least as many inputs as constraints

Can them have fixed pairings between constraints and unconstrained CVs!

(with N is fixed)

Journal of Process Control 137 (2024) 103194
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Decentralized control using selectors for optimal steady-state operation with %=
changing active constraints

Lucas Ferreira Bernardino, Sigurd Skogestad -

Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Scelands vei 4, Kjemiblokk 5,
101B, Trondheim, 7491, Trondelag, Norway

ARTICLE INFO ABSTRACT

Keywords: We study the optimal steady-state operation of processes where the active constraints change. The aim of this
Oprimal operation work is to eliminate or reduce the need for a real-time optimization layer, moving the optimization into the
Decentralized control

control layer by switching between appropriately selected controlled variables (CVs) in a simple way. The
challenge is that the best CVs, or more precisely the reduced cost gradients associated with the unconstrained
degrees of freedom, change with the active constraints. This work proposes a framework based on decentralized

Selectors

control that operates optimally in all active constraint regions, with region switching mediated by selectors.
A key point is that the nullspace associated with the unconstrained cost gradient needs to be selected in
accordance with the constraint directions so that selectors can be used. A main benefit is that the number
of SISO controllers that need to be designed is only equal to the number of process inputs plus constraints.
The main assumptions are that the unconstrained cost gradient is available online and that the number of
constraints does not exceed the number of process inputs. The optimality and ease of implementation are
illustrated in a simulated toy example with linear constraints and a quadratic cost function. In addition, the
proposed framework is successfully applied to the nonlinear Williams-Otto reactor case study.

L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal
steady-state operation with active constraints, J. Proc. Control, 2024
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Journal of Process Contral 137 (2024) 103194

SP=0

C V[]g

=
~

K

iy
select ——

SP=10

g
K.l\

I

SP=10

£
Uy,

select ———

n

cv[l

s g
rl_l_.

SP

]
=
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The “select” blocks are wsually max or min selectors (see Theorem 2).



Feedback RTO WITH CONSTRAINTS

C. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposgd: With changing cost (switched CVs)

~

~ | -
Gy~ T
\\\ ,’ J_-*‘-—I—————:\—. ——————————————————
" Real.tinte” d ) S d
N opGimization, Estimator ! ALIlVB. set c
.- S | detection
WP !
cv Region-based | alcve
| MPC : A
Supervisory | Raug ) I Yaug
ay ! cv estimator ! CVa estimator
! I
5 e R R SRR
u
U IR
| I
| Regulatory ! y | !
! control | | Regulatory ! v
! 1 ! control !
l | | |
d l ' |
—  Process ; PR !
I

1 — Process

Figure 1: Typical hierarchical control structure with standard setpoint-tracking
MPC in the supervisory layer. The cost function for the RTO layer is J¢“ and
the cost function for the MPC layer is JM"C. With no RTO layer (and thus con-
stant setpoints CV*?), this structure is not economically optimal when there are
changes in the active constraints. For smaller applications, the state estimator
may be used also as the RTO estimator.

Figure 2: Proposed region-based MPC structure with active set detection and
change in controlled variables. The possible updates from an upper RTO layer
(y*, Jy etc.) are not considered in the present work. Even with no RTO layer
(and thus with constant setpoints CV3/, see (I4) and (13), in cach active con-
straint region), this structure is potentially economically optimal when there are
changes in the active constraints.

Jure ZN] ICVi = CVIig + llAuyl S CVa=| | =nih y (19
- k= U ‘ s 'S 7110
- 0 R THPC = 3 ICVa = CVRIR, + A, A AT
k=1 Hy = IJuu Judlle Gi;lF

W = 1u|e" () @] o7 (FET)

* Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024




Model-free optimization:

Extremum Seeking Control (ESC) based on measuring cost J
ml}n J(u,d)

Why ESC?
* Expensive to obtain model (for J): Use data-based ESC instead of model-based RTO
 May also be used on top of RTO

* «Adapt» setpoint for J, (to a nonzero bias value) to correct for model error

* Aka «modifier adaptation»

Main problems with ESC:
e Cost function J often not measured
* For chemical process J=p:F — p,P — p,Q
 need model (!) to estimate flows F, P and utility Q
* Very slow. Typically 100 times slower than process dynamics

®NiINU



Data-based optimization: “Hill-climbing” / “Extremum seeking control”
Drive gradient J =dJ/du to zero.

A]
J,=0 at top of hill
\ A =0
e Cos
changes

A |

u
Au Au
_—




®NTNU
Equivalent: Minimize cost J (go to bottom of valley)

A
J

Ugpt " * Optimal setpoint: J =0
’ * If Hessian J , is constant:
* J,as afunction of u is a straight line
with slope J ,
* Nice properties for feedback control of J,
* No dynamics: Pure I-controller optimal

@ NITNU
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Classical Extremum seeking control using sinusoids

y Process ]
I-controller Gradient Estimation
U, K, ]u wq % @ N S .
—_ ot
S S+ wy s+ wy,
A
Averaging Remove biasinJ
i |
4 One side of optimum: Same phase
Other side: opposite phase
a sin wt

Multiplication trick: Draper & Li (1951) « Simple to implement (don’t need computer), but

) Q » Prohibitively slow convergence for systems with slow dynamics




: : : . @NTNU
More common today: Estimate Steady-state gradient using discrete

perturbations (steps)

Usually only one input. Simplest: step change in u:
fA] — Hill climbing control (Shinskey, 1967)
v — Evolutionary operation (EVOP) (1960’s)
— NCO tracking (Francois & Bonvin, 2007)

— “Peturb and observe” = Maximum power point
tracking (MPPT) (2010’s).

AN
J Au More advanced variants which may also be
v applied to multivariable systems
— Least squares estimation
AJ — Fast Fourier transform (Dinesh Krishnamoorthy)
Ju = A To avoid waiting for steady state

— Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state ->samling (step) time > 3-10 time process time constant

@ NINU



Least square Extremum seeking control

@ NTNU

Extremum seeking controller |

\l\

LSE: Fit a linear mode|

J=J"1+m

Using least squares fit

|
|
| J Gradient
: I-control @——— estimator fj
I (LSE) Buffer<
|
|
u Controlled| ¥
J «
> ZOH—» ', (y) -

Note: Assumes no dynamics -> samling time > 3-10 time process constant

Y=k Jiets - Jeenaa ]t

f = arg min [|Y - o7 |2

to which the analytical solution is given by

éi:[(DT(D]—l(DTY 213



®NTNU
Summary extremum seeking control

|dea: Estimate the cost gradient J, from data and drive it to zero

Ju <0 Ju>0
e  Common to all methods:
— Need measurement of cost J
Ju=0
— Must wait for steady state (except ARX method which fails frequently) >

— Must assume no «fast» disturbances (while optimizing)

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Drive J, to zero (may use I-controller)

2. Lower estimation layer: Estimate the local gradient J, using data
* Must wait for the process to reach steady state

— Need time scale separation between layers.
* At best this means that the optimization needs to be 10 times slower than the process.
* Often it needs to be 100 times slower.

— Useful for fast processes with settling time a few seconds

— Not useful for many chemical processes where time constant typically are several minutes
* 10 minutes * 100 = 1000 minutes = 16 hours
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ARC: Research tasks

8.1. A list of specific research tasks

Here is a list of some research topics, which are important but have
received limited (or no) academic attention:

1.

o

Vertical decomposition including time scale separation in hi-
erarchically decomposed systems (considering performance and
robustness)

Horizontal decomposition including decentralized control and
input/output pairing

Selection of variables that link the different layers in the control
hierarchy, for example, self-optimizing variables (CV1 in Fig. 4)
and stabilizing variables (CV2).

Selection of intermediate controlled variables (w) in a cascade
control system.’

. Tuning of cascade control systems (Figs. 9 and 10)

Structure of selector logic

. Tuning of anti-windup schemes (e.g., optimal choice of tracking

time constant, z;-) for input saturation, selectors, cascade control
and decoupling.

How to make decomposed control systems based on simple
elements easily understandable to operators and engineers

. Default tuning of PID controllers (including scaling of variables)

based on limited information

. Comparison of selector on input or setpoint (cascade)

8.2. The harder problem: Control structure synthesis

The above list of research topics deals mainly with the individual
elements. A much harder research issue is the synthesis of an overal
decomposed control structure, that is, the interconnection of the simple
control elements for a particular application. This area definitely needs
some academic efforts.

One worthwhile approach is case studies. That is, to propose “good”
(= effective and simple) control strategies for specific applications, for
example, for a cooling cycle, a distillation column, or an integrated
plant with recycle. It is here suggested to design also a centralized
controller (e.g., MPC) and use this as a benchmark to quantify the per-
formance loss (or maybe the benefit in some cases) of the decomposed
ARC solution. A related issue, is to suggest new smart approaches to
solve specific problems, as mentioned in item 11 in the list above.

A second approach is mathematical optimization: Given a process
model, how to optimally combine the control elements E1-E18 to meet
the design specifications. However, even for small systems, this is a
very difficult combinatorial problem, which easily becomes prohibitive
in terms of computing power. It requires both deciding on the control
structure as well as tuning the individual PID controllers.

As a third approach, [machine learning Jmay prove to be useful.
Machine learning has one of its main strength in pattern recognition,
in a similar way to how the human brain works. I have observed
over the years that some students, with only two weeks of example-
based teaching, are able to suggest good process control solutions with
feedback, cascade, and feedforward/ratio control for realistic problems,
based on only a flowsheet and some fairly general statements about
the control objectives. This is the basis for believing that machine
learning (e.g., a tool similar to ChatGPT) may provide a good initial
control structure, which may later be improved, either manually or by
optimization. It is important that such a tool has a graphical interface,
both for presenting the problem and for proposing and improving
solutions.
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