
Part 2. Decomposition

• Hierarchical decomposition. Control layers.

• Design of overall control system for economic process control

• CV selection



Optimal operation and control of process

• Given process plant 

• Want to Maximize profit P => Minimize economic cost J$=-P [$/s]

• J$ = cost feed + cost energy – value products 
• Excluding fixed costs (capital costs, personell costs, etc)

• Subject to satisfying constraints on
• Products (quality)
• Inputs (max, min)
• States = Internal process variables (pressures, levels, etc)

• Safety
• Environment

• Equipment degradation

• Degrees of freedom = manipulated variables (MVs) = inputs u



In theory: Centralized controller is always optimal  (e.g., EMPC) 

Objectives

Present state

Model of system

Approach:
•Model of overall system

•Estimate present state

•Optimize all degrees of freedom

Process control: 

• Excellent candidate for centralized control

Problems: 
• Model not available

• Objectives = ? 

• Optimization complex

• Not robust (difficult to handle uncertainty) 

• Slow response time

(Physical) Degrees of freedom, u= valve positions

CENTRALIZED

OPTIMIZER



Two fundamental ways of decomposing the
controller
• Vertical (hierarchical; 

cascade)

• Based on time scale 
separation

• Decision: Selection of CVs 
that connect layers

• Horizontal 
(decentralized)

• Usually based on 
distance

• Decision: Pairing of MVs 
and CVs within layers

CV1

CV2

CV = controlled variable
MV = manipulated variable



Practical operation: Hierarchical (cascade) structure

based on time scale separation

Manager

Process engineer

Operator/RTO

Operator/Advanced regulatory control (ARC)/MPC

PID-control
May include some

ratio/feedforward and cascade control

u = valves

NOTE: Control system is
decomposed both
- Hierarhically (in time)
- Horizontally (in space)

Status industry:
• RTO is rarely used.
• MPC is used in the

petrochemical and refining
industry, but in general it is 
much less common than was
expected when MPC «took
off» around 1990

• ARC is common
• Manual control still common…

Preferred Paradigm



What is the difference between optimization and control?

u = valves

My definition:

Optimization:
• Minimizes economic cost

Control:
• Follow setpoints ys

CV1s

CV2s



Objectives of layers

Manager

Process engineer

Operator/RTO

Advanced regulatory control/MPC

PID-control

u = valves

Optimization layer:
• Min. operation cost  (economics. [$/s]) 

by changing CV1s

Supervisory control layer:
• Follow set points for CV1 from economic optimization layer 
• Switch between active constraints (change CV1)
• Look after regulatory layer (avoid that MVs saturate, etc.)

Regulatory control layer:
• Stabilize + avoid drift (CV2)

Command/setpoint, CV1s

Update constraints and prices…

Command/setpoint, CV2s



Cost functions in layers 

Manager

Process engineer

RTO (usually steady state)

”Advanced control”/MPC

PID-control
May include some

feedforward and cascade

u = valves

RTO: Minimize  economic cost
J$ = cost feed + cost energy – value products

Setpoint control 
Jc1 = Q(y1-y1s)

2 + RΔu1
2 (MPC)

(+ look after other variables,
Avoid constraints)

PID: Stabilize + avoid drift
Jc2 = Q(y2-y2s)

2 + RΔu2

+ look at Gain margin…
(or just use SIMC-rules!)

CV1s

u1=CVs



«Advanced» control (supervisory control layer)

• This is a relative term

• Usually used for anything than comes in addition to (or in top of) basic
PID loops

• Main options
• Advanced regulatort control (ARC) using standard «advanced control elements» 

• Cascade, feedforward, selectors, etc.

• This option is preferred if it gives acceptable performance and it’s not too complicated

• Model predictive control (MPC)
• Requires more effort to implement



Use of data (feedback) in Hierarchical structure

• Use of measurements y

Use of data



Engineer: Must choose what to control (H and H2)

u = valves

PROCESS

H2

H

y1=CV1

y2=CV2

y1s

y2s

• H and H2 are usually selection
matrices

Typically: 
• y1=Hy = active constraints + «self-

optimizing» variables
• y2=H2y = drifting variables (levels, 

pressures, temperatures) 

y = all measurements
d

ny

Use of data 
(feedback)



Optimization layer: Needs model parameters and disturbances

u = valves

PROCESS

H2

H

y1=CV1

y2=CV2

y1s

y2s

y = all measurements (including u and possibly d)
d

ny

Data reconciliation (static)
Or

Estimator (e.g. Kalman filter)

d, x
^  ^

Estimates of disturbances and present state
(including model parameters, e.g. stage efficiency)

MPC

Use of data



Use of models

u = valves

RTO layer: 
• Nonlinear model of whole 

process
• usually physical and static

MPC layer:
• Multivariable dynamic 

linear model for each unit
• usually from data

PID-layer: 
• Dynamic linear model for 

each loop
• usually from data. 
• May use physical model for 

linearization, decoupling and 
feedforward 
• see: input transformation

PROCESS

H2

H

y1=CV1

y2=CV2

y1s

y2s

y = all measurements (including u and possibly d)
d

ny

Data reconciliation (static)
Or

Estimator (e.g. EKF)

Nonlinear model

MPC
d, x
^  ^



Is there a problem with model consistency
between layers?
Quote from a recent paper I reviewed

• “One of the difficulties in practical implementations of classic Real-Time Optimization (RTO) strategy 
is the integration between optimization (RTO) and control layers (MPC), mainly due to the differences 
between the models used in each layer, which may result in unreachable setpoints coming from 
optimization to the control layer. In this context, Economic Model Predictive Control (EMPC) is a 
strategy where optimization and control problems are solved simultaneously.”

• Is this likely to happen?

• No, This is a myth and no reason for choosing EMPC
• Truth:  With integral action in the control layer (MPC), the process will go to the setpoints (y1s=CV1s) 

desired by the RTO layer, irrespective of any model error in the MPC layer
• JMPC = Q(y1-y1s)

2 + RΔu1
2 

• Of course, the setpoints from the RTO layer must correspond to a feasible steady state, but the 
model in the MPC layer does not affect this

• Of course, there may be economic losses dynamically, for example, dynamic constraints may  
mean it takes some time to reach the setpoints

PROCESS

(day)

RTO

s

s



Main objectives operation

ARE THESE OBJECTIVES CONFLICTING?

IS THERE ANY LOSS IN ECONOMICS?

• Usually NOT 

– Different time scales

• Stabilization fast time scale

– Stabilization doesn’t “use up” any degrees of freedom

• Reference value (setpoint) available for layer above

• But it “uses up” part of the time window 

1. Economics: Implementation of acceptable (near-optimal) operation

2. Regulation: Stable operation around given setpoint 



Hierarchical structure: Degrees of freedom 
unchanged
• No degrees of freedom lost as setpoints  y2s replace inputs u as new 

degrees of freedom for control of y1

GCPID

y2s u
y2

y1

u=Original DOFy2s=New DOF

Cascade control:



Systematic procedure for economic process control
Start “top-down” with economics (steady state): 
• Step 1: Define operational objectives (J) and constraints
• Step 2: Optimize steady-state operation
• Step 3: Decide what to control (CVs) 

– Step 3A: Identify active constraints = primary CV1. 
– Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H) 

• Step 4: Where do we set the throughput? TPM location 

Then bottom-up design of control system (dynamics):
• Step 5: Regulatory control 

– Control variables to stop “drift” (sensitive temperatures, pressures, ....) 
– Inventory control radiating around TPM

Finally: Make link between “top-down” and “bottom up” 
• Step 6: “Advanced/supervisory control” 

• Control economic CVs: Active constraints and self-optimizing variables 
• Look after variables in regulatory layer below (e.g., avoid saturation)

• Step 7: Real-time optimization (Do we need it?)
S. Skogestad, ``Control structure design for complete chemical plants'', 

Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). 

CV1

CV2

Process

MVs

RTO



Example:  Bicycle riding
Design of control system

Note: design starts from the bottom

• Regulatory control (step 5): 
• First need to learn to stabilize the bicycle

• CV = y2 = tilt of bike
• MV = body position

• Supervisory control (step 6): 
• Then need to follow the road.

• CV = y1 = distance from right hand side
• MV=y2s 

• Usually a constant setpoint policy is OK, e.g. y1s=0.5 
m

• Optimization (step 7): 
• Which road should you follow? 
• Temporary (discrete) changes in y1s

Hierarchical decomposition



Step 1. Define optimal operation (economics)
Usually steady state

Minimize cost J = J(u,x,d)
subject to:

Model equations: f(u,x,d) = 0

Operational constraints:    g(u,x,d) < 0

– u = degrees of freedom
– x = states (internal variables)

– d = disturbances

J = cost feed + cost energy – value of products

J

uopt

Jopt

Typical cost function in process control:



(a) Identify degrees of freedom 
(b) Optimize for expected disturbances

• Need good model, usually steady-state is OK

• Optimization is time consuming! But it is offline

• Main goal: Identify ACTIVE CONSTRAINTS

• A good engineer can often guess the active
constraints

Step 2.  Optimize J

uopt

Jopt

constraint



Active constraints

• Active constraints: 
• variables that should optimally be kept at their limiting value.

• Active constraint region:
• region in the disturbance space defined by which constraints are active within it. 

Region 1
Region 2

Region 3

Disturbance 1

D
is

tu
rb

an
ce

2 Optimal operation:
Need to switch between regions 

using control system



How many active constraints regions?

• Maximum:

                   nc = number of constraints

BUT there are usually fewer in practice

• Certain constraints are always active (reduces effective nc)

•  Only nu can be active at a given time 
 nu = number of MVs (degrees of freedom)

• Certain constraints combinations are not possible
• For example, max and min on the same variable (e.g. flow)

• Certain regions are not reached by the assumed disturbance set

2nc Distillation

nc = 5

25 = 32

xB always active

2^4 = 16

-1 = 15

In practice = 8



Step 3.  Decide what to control (Economic CV1=Hy)

“Move optimization into the control 
layer by selecting the right CVs” 

(Morari et al., 1980): “We want to find a function c of the process 
variables which when held constant, leads automatically to the 
optimal adjustments of the manipulated variables, and with it, the 
optimal operating conditions.”

Economic CV1:
1. Control active constraints
2. Control Self-optimizing variables
• Look for a variable c that can be kept constant

Optimizer 

(RTO)

PROCESS

Supervisory 

controller 

(MPC)

Regulatory 

controller 

(PID) H2 H

y

ny

d

Stabilized process

Physical

inputs (valves)

Optimally constant valves

Always active constraints CV1

s CV1

CV2

s CV2



Sigurd’s rules for CV selection

1. Always control active constraints! (almost always)

2. Purity constraint on expensive product always active (no overpurification): 
(a) "Avoid product give away" (e.g., sell water as expensive product) 
(b) Save energy (costs energy to overpurify) 

Unconstrained optimum: 

3. Look for “self-optimizing” variables. They should
• Be sensitive to the MV 
• have close-to-constant optimal value

4. NEVER try to control a variable that reaches max or min at the optimum
• In particular, never try to control directly the cost J
• Assume we want to minimize J (e.g., J = V = energy) - and we make the stupid choice os 

selecting CV = V  = J 
• Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)
• and setting J > Jmin: Forces us to be nonoptimal (which may require strange operation) 



Optimization with PI-controller
max y

s.t. y ≤ ymax

u ≤ umax

Example: Drive as fast as possible to airport (u=power, y=speed, ymax = 110 km/h)

• Optimal solution has two active constraint regions: 
1. y = ymax

→ speed limit 
2. u = umax

→max power

• Note: Positive gain from MV (u) to CV (y)

• Solved with PI-controller
• ysp = ymax

• Anti-windup:  I-action is off when u=umax

s.t. = subject to
y = CV = controlled variable

ysp = ymax PI

Control active constraints



The less obvious case: Unconstrained optimum

• u = unconstrained MV

• What to control? y=CV=?

J

uopt

Jopt

2. Control self-optimizing variables



• Cost to be minimized, J=T

• One degree of freedom (u=power)

• What should we control?

Example: Optimal operation of runner



1. Optimal operation of Sprinter

• 100m. J=T
• Active constraint control:

• Maximum speed (”no thinking required”)

• CV = power (at max)

1. Control active constraints



• 40 km. J=T

• What should we control? CV=?

• Unconstrained optimum

2. Optimal operation of Marathon runner

u=power

J=T

uopt

2. Control self-optimizing variables



• Any self-optimizing variable (to control at 
constant setpoint)?

• c1 = distance to leader of race

• c2 = speed

• c3 = heart rate

• c4 = level of lactate in muscles

Marathon runner (40 km)

2. Control self-optimizing variables



Conclusion Marathon runner

CV1 = heart rate

select one measurement

• CV = heart rate is good “self-optimizing” variable

• Simple and robust implementation

• Disturbances are indirectly handled by keeping a constant heart rate

• May have infrequent adjustment of setpoint (cs)

c=heart rate

J=T

copt

2. Control self-optimizing variables



Self-optimizing control 

Self-optimizing control is when we can achieve an acceptable loss 
(between re-optimizations) with constant setpoint values for the 
controlled variables

c = controlled variable



The ideal “self-optimizing” variable is the gradient, Ju
c =  J/ u = Ju

• Keep gradient at zero for all disturbances (c = Ju=0)

Unconstrained degrees of freedom

u

cost J

Ju=0

Ju<0
Ju<0

uopt

Ju 0

Problem: Usually no measurement of gradient



H

Ideal: c = Ju

In practise, use available measurements: c = H y. Task: Select H!

Unconstrained degrees of freedom



• Combinations of measurements, c= Hy

Nullspace method for H (Alstad): 

 HF=0 where F=dyopt/dd

• Proof. Appendix B in: Jäschke and Skogestad, ”NCO  tracking  and  self-optimizing  control  in  the  context  of  real-
time  optimization”, Journal of Process Control, 1407-1416 (2011)

Unconstrained degrees of freedom

Proof: yopt = F d
            copt = H yopt = HF d 



Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y1 = hr [beat/min], y2 = v [m/s]
c = Hy, H = [h1 h2]]

F = dyopt/dd = [0.25  -0.2]’
HF = 0  -> h1 f1 + h2 f2 = 0.25 h1 – 0.2 h2 = 0
Choose h1 = 1 -> h2 = 0.25/0.2 = 1.25

Conclusion: c = hr + 1.25 v
Control c = constant -> hr increases when v decreases (OK uphill!)

Unconstrained degrees of freedom



“Minimize” in Maximum gain rule

( maximize S1 G Juu
-1/2 , G=HGy

 )

“Scaling” S1

“=0” in nullspace method (no noise)

With measurement noise

Exact local method for H

Advantages compared to nullspace method:
• Can have any number of measurements y
• Includes measurement noise



Step 4: Inventory control and TPM
(later!)



Step 5: Design of regulatory control layer

Usually single-loop PID controllers
Choice of CVs (CV2):

• CV2 = «drifting variables» 
• Levels, pressures

• Some temperatures

• CV2 may also include economic variables (CV1) that need to be controlled on a fast time scale
• Hard constraints

Choice of MVs and pairings (MV-CV):
o Main rule: “Pair close”. Want:

o Large gain

o Small delay

o Small time constant

o Avoid pairing on negative steady-state RGA-elements
o It’s possible, but then you must be sure that the loops are always working (no manual contriol or  MV-saturation)

o Generally: Avoid MVs that may saturate in regulatory layer 
o Otherwise, will need logic for re-pairing (MV-CV switching) 

o May include cascade loops (flow control!) and some feedforward, decoupling, linearization

•

ProcessMV CV



Step 6: Design of Supervisory layer

Alternative implementations:

1. Model predictive control (MPC)
2. Advanced regulatorty control (ARC)

• PID, selectors, etc.



Academia: (E)MPC

• MPC 
• General approach, but we need a dynamic model

• MPC  is usually based on experimental model 

• and implemented after some time of operation

• Not all problems are easily formulated using MPC



Alternative simpler solutions to MPC

• Would like: Feedback solutions that can be implemented without a detailed models

• Machine learning?
• Requires a lot of data
• Can only be implemented after the process has been in operation

• But we have "advanced regulatory control“ (ARC) based on simple control elements 
• Goal: Optimal operation using conventional advanced control
• PID, feedforward, decouplers, selectors, split range control etc.
• Extensively used by industry
• Problem for engineers: Lack of design methods

• Has been around since 1940’s
• But almost completely neglected by academic researchers

• Main fundamental limitation: Based on single-loop (need to choose pairing)



How design ARC system based on simple elements?

• Main topic of this workshop

Advanced regulatory control (ARC) = Classical APC = Advanced PID contol

• Industrial literature (e.g., Shinskey). 
Many nice ideas. But not systematic. Difficult to understand reasoning

• Academia:  Very little work so far

APC = Advanced process control



Step 7: Do we really need RTO?

• Often not!

• We can usually measure the constraints

• From this we can identify the active constraints
• Example: Assume it’s optimal with max. reactor temperature
• No need for complex model with energy balance to find the optimal cooling
• Just use a PI-controller 

• CV = reactor temperature (with setpoint=max)
• MV = cooling

• And for the remaining unconstrained variables
• Look for good variables to control (where optimal setpoint changes little)
• «self-optimizing» variables

RTO = real-time optimization



Systematic procedure for economic process control
Start “top-down” with economics (steady state): 
• Step 1: Define operational objectives (J) and constraints
• Step 2: Optimize steady-state operation
• Step 3: Decide what to control (CVs) 

– Step 3A: Identify active constraints = primary CV1. 
– Step 3B: Remaining unconstrained DOFs: Self-optimizing CV1 (find H) 

• Step 4: Where do we set the throughput? TPM location 

Then bottom-up design of control system(dynamics):
• Step 5: Regulatory control 

– Control variables to stop “drift” (sensitive temperatures, pressures, ....) 
– Inventory control radiating around TPM

Finally: Make link between “top-down” and “bottom up” 
• Step 6: “Advanced/supervisory control” 

• Control economic CVs: Active constraints and self-optimizing variables 
• Look after variables in regulatory layer below (e.g., avoid saturation)

• Step 7: Real-time optimization (Do we need it?)

S. Skogestad, ``Control structure design for complete chemical plants'', 

Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). 

CV1

CV2

Process

MVs

RTO
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