Part 1

e Basis, notation, PID control, feedback vs. feedforward

* Introduction to advanced regulatory control (ARC)
 The three main inventions of process control



NOTATION and BLOCK DIAGRAMS
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Figure 3: Block diagram of common “one degree-of-freedom” negative feedback control system.
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PID control
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K. = controller gain
77 = integral time [s, min]

Tp = derivative time [s, min]

 «You need a PhD to tune a PID»
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Internal Model Control. 4. PID Controller Design

Daniel E. Rivera, Manfred Morarl,* and Sigurd Skogestad
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For a large number of single input-single output (SISO) models typically used in the process industries, the Internal
Model Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
closed-loop bandwidth. On-line adjustments are therefore much simpler than for general PID controllers. As a
speclal case, PI- and PID-tuning rules for systems modeled by a first-order lag with dead time are derived
analytically. The superiority of these rules in terms of both closed-loop performance and robustness is demonstrated.



Probably the best simple PID tuning rules in the world
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Abstract

The aim of this paper is to present analytic tuning rules which are as simple as possible and
still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules
of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance.
The integral term has been modified to improve disturbance rejection for integrating processes.
Furthermore, rather than deriving separate rules for each transfer function model, we start by
approximating the process by a first-order plus delay processes (using the “half method” ), and
then use a single tuning rule. This is much simpler and appears to give controller tunings with
comparable performance. All the tunings are derived analytically and are thus very suitable for
teaching.

1 Introduction

Hundreds, if not thousands, of papers have been written on tuning of PID controllers, and one must
question the need for another one. The first justification is that PID controller is by far the most
widely used control algorithm in the process industry, and that improvements in tuning of PID
controllers will have a significant practical impact. The second justification is that the simple rules
and insights presented in this paper may contribute to a significantly improved understanding into
how the controller should be tuned.

arlsber

Probably the best beer in the world.
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Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple and still result in good closed-loop behavior.
The starting point has been the IMC-PID tuning rules that have achieved widespread industrial acceptance. The rule for the integral
term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for
each transfer function model, there is a just a single tuning rule for a first-order or second-order time delay model. Simple analytic rules
for model reduction are presented to obtain a model in this form, including the “half rule” for obtaining the effective time delay.

© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the proportional-integral-derivative (PID)
controller has only three parameters, it is not easy,
without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will
usually show that a large number of the PID controllers
are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this
material, where there are several objectives:

1. The tuning rules should be well motivated, and
preferably model-based and analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of
processes.

Step 2. Derive model-based controller settings. Pl-set-
tings result if we start from a first-order model, whereas
PID-settings result from a second-order model.

There has been previous work along these lines,
including the classical paper by Ziegler amd Nichols [1],
the IMC PID-tuning paper by Rivera et al. [2], and the
closely related direct synthesis tuning rules in the book
by Smith and Corripio [3]. The Ziegler—Nichols settings
result in a very good disturbance response for integrat-
ing processes, but are otherwise known to result in
rather aggressive settings [4,5], and also give poor per-
formance for processes with a dominant delay. On the
other hand, the analytically derived IMC-settings in [2]
are known to result in a poor disturbance response for
integrating processes (e.g., [6,7])., but are robust and



SIMC PID tuning rule ,._. 1 y
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Figure 7: Recommended PID-controller implementation with anti-windup using tracking of
the actual controller output (), and without D-action on the setpoint. d.‘isttt}m & Héigglundl

1988).

= integral = % in Laplace domain

d_dz = derivative = s in Laplace domain

K. = controller gain

77 = integral time [s, min]

Tp = derivative time [s, min]

71 = tracking time constant for anti-windup [s, min]
+ T = filter time constant (on measurementy)

1 1
e @+ g Only one tuning parameter:

_ _ Closed-loop time constant:
T = min (7, 4(T)+ 6))

>0
D=1 (gives Gain Margin>3)

K. =

. . T
Filter time constant, 7p < 3"'

Note: For integrating processes (with large time constant t,):
* Both K, and t,depend on T,
«  Example: Level control (often poorly tuned), K.t; = 4/k’



Motivation for better control: Squeeze and shift rule
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Figure & Sgueeze and shift rule: Squeeze the variance by improving control and shift the
setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet!

ot al| 1975).



Feedforward control: Measure disturbance (d)
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Block diagram of feedforward control

c = Feedback controller
Cry = Feedforward controller.

Ideal, inverts process g: ¢rg = 9194 9am

Usually: Add feedforward when feedback alone is not good enough,
for example, because of measurement delay in g,



What is best? Feedback or feedforward?



Example: Feedback vs. feedforward for setpoint control of uncertain process

Process

MV= u__[ C |1 v
J

> [ Process ]_y'

e
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>
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y =G(s) u essmscssasssssssssanss ;
Figure A.42: Block diagram of feedforward control system with linear combination of feedfor-
) k . ward from measured disturbance (d) and setpoint (ys) (E14).
G(s) = . k=3 7=6 (B2 _ :
Ts+1 Feedforward solution. We use feedforward from the setpoint
(Fig. A.42):
| 1 u=Crg,(s)y;
Desired response : y = S 1T - IPERLL where we choose
_ 1 75+ 1 1os+1
Cp,(s5) = G(s) ' = — = - (B.3)
() r.s+1 (s) kr.s+1 34s+1
The output response becomes as desired,
1
y= Vs (B.4)




Example: Feedback vs. feedforward for setpoint control of uncertain process
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Figure 3: Block diagram of common “one degree-of-freedom” negative feedback control system.

G{S) = . k=3, 7=6 (B.2) Feedback solution. We use a one degree-of-freedom feedback con-
75+ 1 troller (Fig. 3) acting on the error signal e = y, —
u=C(s)y; =)
1 1 We choose a PI-controller with K. = 0.5 and r; = r = 6 (using the SIMC
Desired response : y = = PI-rule with [r, = 4, see Appendix C.2):
: Y rsril T s ’
C(s) =K, (1 4 L) —052+! (B.5)
T[S bs

Note that we have selected r; = v = 6, which implies that the zero
dynamics in the PI-controller C, cancel the pole dynamics of the process
G. The closed-loop response becomes as desired:

I I
= - : B.6
Y s+ 1 T s (B.6)

Proof. y = T(s)y, where T = L/(1+L)yand L = GC = kK_/(1y5) =

025/
0.25/s.S0T = 1+0.25/s 45+|




Thus, we have two fundamentally different solutions that give the
same nominal }respnnse, both in terms of the process input u(r) (not
shown) and the process output y(#) (black solid curve in Fig. B.43).

* But what happens if the process changes?

* Consider a gain change so that the model is wrong
* Process gain from k=3 to k’'=4.5
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Figure B.43: Setpoint response for process (B.2) demonstrating the advantage of feedback
control for handling model error.

Gain error (feedback and feedforward): From k=3 to k'=4.5
Time delay (feedback): From 8 = 0to 6 = 1.5



Introduction to

Advanced regulatory control
(ARC)

Uses Flowsheets

“Control” is to make active use of the inputs u to counteract distur-
bances d such that the outputs y stay close to their desired setpoints

Ys-



The three main inventions of process control
(became widely used in the process industry in the 1930s)

PID control, and in particular integral action (“bias reset)
Cascade control

Ratio control (special case of feedforward which needs no explicit model)

The last two are used if standard feedback is not good enough,
typically because of delay in measurement of y.

« Cascade: Use extra output measurement (y,)

« Ratio/feedforward: Use disturbance measurement (d)



Feedback control

Flowsheet (P&ID) of feedback control
Example: Level control with given outflow)

Inflow (u)
N l - i H,
1 v
| ol_-l@ Solid lines: mass flow (streams) ———
E ; Dashed lines: signals (control) ------
DU R
Outflow (d)

CLASSIFICATION OF VARIABLES FOR CONTROL (MV, CV, DV):

INPUT (u, MV): INFLOW
OUTPUT (y, CV): LEVEL
DISTURBANCE (d, DV): OUTFLOW

MV = manipulated vartiable (input u)
CV = controlled variable (output y)
DV = disturbance variable (d)



Feedback control

Level control when inflow Is given
(alternative Iinput/output-pairing)

Inflow (d) ! H
| ! S
l H@
P—
Outflow (u)

CLASSIFICATION OF VARIABLES FOR CONTROL (MV, CV, DV):

INPUT (u, MV): OUTFLOW (Input for control!)
OUTPUT (y, CV): LEVEL
DISTURBANCE (d, DV): INFLOW



u — Y,
—» Process

Invention 2. Cascade control —,

yl=primary output (given setpoint)
y2=secondary output (adjustable setpoint)

Idea: make use of extra “local” output measurement (y,)
Implementation: Controller (“master”) gives setpoint to another controller (“slave”)

* Without cascade: “Master” controller directly adjusts u to control primary outputy,)
With cascade: Local “slave” controller (fast) uses u to control “extra”/fast measurement (y,). *
“Master” (slow) controller adjusts setpoint y,..

Example: Flow controller on valve (very common!)
y, = level Hin tank
u = valve position (z)
y, = flowrate q through valve

WITHOUT CASCADE WITH CASCADE
flow in ! flow in !
| o hs ' H,
e
: MV=z . MV=y,=q,
— E valve position @ Yo=(
: X . S U=7 i measured
] i flow
flow out flow out |

*Comment: Another approach that uses extra measurements to improve control is «Full state feedback».



Block diagram of cascade control

dg d]
master slave l \
1 MV, = w, MVs=u "
=R ——X)— 2 6 —— G
S
| cvz = u]
OV, = _y‘ 2 = W

y=y,=H (measured level)

flow in !
ﬂ ' Hg u=z (valve position)
1~ w =y, =g (measured outflow)
C,=LC  (P-controller)
- MV=y,.=0. C,=FC (l-controller)

: d, = downstream pressure
N | d _

+——> = inflow
flow out | 2

l V,=q G, =k'/s (levelis integrating)
\ @ """"""" l G, = valve model (nonlinear, static)




Cascade control

What are the benefits of adding a flow controller
(slave=inner cascade)?

qS w
¥,
(Fy
erememmnmm e I/p
Extra measurement y,= q —~— CI
PV (X z .
P[> | > >
U712 cY

Flow rate: ¢ = C, f(2)4/ % [m? /s]

1. Fastlocal control: Eliminates effect of disturbances in p, and p,
(FC reacts faster than outer level loop)

‘ 2. Counteracts nonlinearity in valve, f(z) 1
. With fast flow control we can assume q = g, f(z)

0

Ny

(valve opening)



Cascade control

Time scale separation is needed for cascade
control to work well

* Inner loop (slave) should be at least 4 times* faster than the outer
loop (master)

* But normally recommend 10 times faster
* tauc_master > 10 tauc_slave

* Otherwise, the slave and master loops may start interacting

* The fast slave loop is able to correct for local disturbances, but the outer loop
does not «know» this and if it’s too fast it may start «fighting» with the slave
loop.

* This may also result in stability problems

* Shinskey (Controlling multivariable processes, ISA, 1981, p.12)



Time-scale separation

Response of linear first-order system (with time constant T)

Standard form*: T% = —y + ku,.

Initially at rest (steady state):  y(0) = yg. u G(s) = y
’ 7541

Make step in u at ¢ = O: Au

Block diagram with transfer function
for first-order process

Solution: y(t) =wo+ (1 —e7/7) kA

Ay(t=00)
P Initial slope crosses final value at t = T (time constant) ,
y () 4 I —— tfr  1—e 7 Value Comment
/i s, 98%  99%
! e ° 0 1-€'= 0
/o~ B6% 0.1 1—e0l= 0,005
e 05 1-e 9= 0303
P —1 _ w0y e b O A F : -
/7 N gaey 1 1—e~t= 0632 63% of change is reached after time £ = 1
/< | 63% of change i } . i _ 3::6(5}
7Tyt B S : —e ¥ = 0.95
/ yl{ ) Ay(t OO) kAu | 1—e*= 0.982 98% of change is reached after time ¢ = 4r
/‘ : 5o l—e = 0.003
v 4 ! | ! . ! \ x l-e™= 1
0] T 2t 3t 4t 5t time

Convergence rate (of inner loop):

* 63% after 1t

* 98% after 4t (recommended lower limit)
* To be safe (process changes): 10t




Invention 3. Ratio control

Example: Process with two feeds d=qg, and u=q,, where ratio should be constant.

Use multiplication block (x):

- (u/d)s=(0,/01)s

1 (desired flow ratio)

d=q, _ _--LU=0p
(measured (MV: manipulated variable)

flow
disturbance)



Jsually: Combine ratio (feedforward) with
feedback

* Adjust (g,/q,). based on feedback from process, for
example, composition controller.
 Maybe be viewed a special case of cascade control

« Example mixing process (cake baking): Use recipe initially (ratio
control = feedforward), but adjust ratio if result is not as desired
(feedback)



EXAMPLE: RATIO CONTROL FOR MIXING PROCESS

Rs: (qzlql)s
dim Uos

>
q; [M3/s]
C, [mol/m3] qzm‘ =0
Concentrate " l h W;ter
_._._._._._.Eig ................. }H__
Ch C -
. q[mals]
c N/ C[mol/m3]

S >
Diluted product

Later: Will see that this is a special case of input transformation:
Transformed input (as seen from feedback controller CC) is v = (q,/q,).



he three main inventions of process control can

only indirectly and with effort be implemented
with MPC

1. Integral action with MPC: Need to add artificial integrating disturbance

In estimator
* ARC:Just add an integrator in the controller (use PID)

2. Cascade control with MPC: Need model for how u and d affect y, and y,.
* ARC: Just need to know that control of y, indirectly improves control of y,

3. Ratio control with MPC: Need model for how u and d affect property y
* ARC: Just need the insight that it is good for control of y to keep the ratio R=u/d constant

Because of this, MPC should be on top of a regulatory control layer with the setpoints for y, and R as MVs.
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