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A Practitioner’s Perspective
* Chemical Process Control
* Shell, BP, Exxon, DuPont, ICI PLC

* Building Climate/Energy Control (HVAC)

* Siemens, Carrier
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* ABB
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* Automotive Systems
* Ford, Daimler-Chrysler

* Aircraft Systems
* United Technologies
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Abstract—A two-phase stochastic isothermal fluidized bed reactor model with first order reaction in the dense
phase is developed to investigate the significance of the fluctuating nature of fluidized beds on reactor performance.
Several stochastic processes are employed as the overall mass transfer coefficient between phases. Analytical
moment solutions are obtained for white noise coefficients while hybrid computer simulation was used for
correlated stochastic coefficients. Results indicate that a gamma distributed coefficient is preferred over white noise
and Gaussian correlated coefficients. When compared with the deterministic model, randomness in the mass
transfer coefficient is seen to lead to a decrease in reactor performance. Deviation from the deterministic model
increases with increasing variance and decreasing fluctuation frequency of the correlated stochastic coefficients.
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Charlotte Striebel passed away on Wednesday March 12, 2014 at the

(1929-2014) age of 84. She was born on July 30, 1929 in Columbus, OH and
attended Ohio State University as an undergraduate, where she
Cond | obtained an M.A. degree in 1952. She went on to University of
Directory California Berkeley for graduate school and got her Ph.D. in 1960,
{/directory/conden working on stochastic processes. This remained the main area of her
sed-directory)

published research throughout her career. Between 1958 and 1964

fdmlmmml i 2 she worked at Lockheed Missiles and Space Company in Sunnyvale,
keys=&field role CA where she developed the initial workings of the GPS system in
hfm—‘famfiadmi wide use today. She also analyzed satellite tracking data as well as

statistics associated with Polaris missiles and the recovery of
Faculty

manned space capsules from the Gemini space program. After some
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Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

A Tractable Approximation of Chance Constrained
Stochastic MPC based on Affine Disturbance Feedback

Frauke Oldewurtel, Colin N. Jones, Manfred Morari

Abstract— This paper deals with model predictive control
of uncertain linear discrete-time systems with polytopic con-
straints on the input and chance constraints on the states.
When having polytopic constraints and bounded disturbances,
the robust problem with an open-loop prediction formulation
is known to be conservative. Recently, a tractable closed-loop
prediction formulation was introduced, which can reduce the
conservatism of the robust problem. We show that in the
presence of chance constraints and stochastic disturbances, this
closed-loop formulation can be used together with a tractable
approximation of the chance constraints to further increase
the performance while satisfying the chance constraints with
the predefined probability.
D. Bertsimas, M. Sim, “Tractable Approximations to Robust Conic
Optimization Problems”, Math. Program., ser. B 107, 2006, pp. 5-36.
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Fig. 3. Tradeoff curve for energy consumption and constraint violation.

The curve depicts the tradeoff between a low energy consumption and a high
degree of constraint satisfaction.



ldea: Get rid of “Modeling” ...
...iIn Model-Based-Design

e Kalman (1958): Design of a self-optimizing control system. Trans. ASME
* Bellman (1961): Adaptive Control Processes
e Astrom & Wittenmark (1973): On Self-Tuning Regulators. Automatica

* Landau (1974): A survey of model reference adaptive techniques,
Automatica

* Narendra & Valavani (1976): Stable adaptive observers and controllers.
Proc IEEE

e Astrom, Borisson, Ljung, Wittenmark (1977): Theory and applications of
self-tuning regulators. Automatica



ASEA Novatune introduced in 1982...




...and mostly abandoned by 1995

“Even if Novatune in many cases provides very good control, the
experience is that the effort it takes, to make it work that well, is
discouraging. It is worth the effort in some cases, but not as a general
tool. What is needed is a tool that is much easier to use. You shouldn’t
be required to set any parameters, except to state what kind of result
you desire.”

Per Erik Maden (1995) Experiences with Adaptive Control since 1982. CDC Proc.



Embracing the Machine Learning and
Artificial Intelligence Contributions
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Over the next decade, the biggest generator of data is
expected to be devices which sense and control the physical

This explosion of real-time data that is emerging from the physical world requires a rapprochement of areas such as machine
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Why did Adaptive Control “fail”?
--- [t was not appropriate

Anything works Nothing works

* No specs * tight specs

Learning Control

* model simple * model complex

* general solution * specific solution




Why did Adaptive Control “fail”?
-—- tuning all the time not needed

e Astrom & Hagglund (2000). Supervision of adaptive
control algorithms

* PID Autotuner: Tune on demand only

Commercial Autotuners

» One-button autotuning

» Three settings: fast, slow,
delay dominated

» Automatic generation of gain
schedules

Thanks: Karl Astrom

» Adaptation of feedback gains
» Adaptation of feedforward

gain
» Many versions

Single loop controllers
DCS systems

» Robust




Learning Controllers

* Model-based vs. model-free

* |f you do not have a model, how can you verify the performance of the
closed-loop control system?

* |f you do have a model, why would you use a model-free learning method?

* Policy learning based on reward function
e Curse of dimensionality
» Specification guarantees via definition of reward function



Learning Controllers

* Model-based vs. model-free

* |f you do not have a model, how can you verify the performance of the
closed-loop control system?

* |f you do have a model, why would you use a model-free learning method?

* Policy learning based on reward function
e Curse of dimensionality
» Specification guarantees via definition of reward function



Design # Optimization
Design = Constraint Satisfaction

Propositional Logic Control Specifications for Refrigeration Cycle
Manipulated Inputs Ui min < Ui € Uj max i=1,2,3
Controlled / Monitored Outputs Yi=Viset 1=1,2,3/ 2= 7 i=1,..4
Prioritized Objectives

212 Zymin , 23<Z3max |, 23<Z3max . Y37 Y3set

< Zymax | Za<Zgmax = Za4<Zgmax | Y27 Y2,set

Y1= Y1 set Z4 2 Zamin | 22 2 22 min
Y2= Yo set Y3 = Y3 set

Specification guarantees via definition of reward function?
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DEEPMIND'S LOSSES AND THE
FUTURE OF ARTIFICIAL
INTELLIGENCE

Cm

“...In some ways, deep reinforcement learning is a
kind of turbocharged memorization; systems that
use it are capable of awesome feats, but they have
only a shallow understanding of what they are
doing. As a consequence, current systems lack
flexibility, and thus are unable to compensate if the
world changes, sometimes even in tiny ways.”



Energy-Based Approaches
To Representation Learning

Yann LeCun
New York University
Facebook Al Research
http://yann.lecun.com

facebook
ificial Intelligence Research




Y. LeCun

Supervised Learning works but requires many labeled samples

» Training a machine by showing examples instead of programming it
» When the output is wrong, tweak the parameters of the machine

» Works well for:
» Speech—words

» Image—categoriesy
» Portrait— name

» Photo—caption
» Text—topic




Reinforcement Learning: works great for games and simulations.

DON

» 57 Atari games: takes 83 hours = AT
equivalent real-time (18 million g | = pememonsieon S
frames) to reach a performance that | o
humans reach in 15 minutes of play. : _,/,}g\x,«gx\}u»/\,'\;,"\wf',”?‘f;;}f«i*/‘m‘\%‘

» [Hessel ArXiv:1710.02298]

» EIf OpenGo v2: 20 million self-play G
games. (2000 GPU for 14 days) = T
» [Tian arXiv:1902.04522] el | i e
» StarCraft: AlphaStar 200 years of
equivalent real-time play
» [Vinyals blog post 2019]

» OpenAl single-handed Rubik’s cube
» 10,000 years of simulation

Median human-normalized sco
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Y. LeCun

But RL Requires too many trials in the real world

» Pure RL requires too many
trials to learn anything

P it's OK ina game
» it’'s not OK in the real world

» RL works in simple virtual
world that you can run faster
than real-time on many
machines in parallel.

nNJaorRNSsS

» Anything you do in the real world can Kill you

P You can’t run the real world faster than real time




Some Research Directions

 MPC Approximation via Neural Networks
* Robustness Analysis of Learning Enabled Components

e Gaussian-Process based Model Predictive Control



Example: Oscillating Masses

18 oscillating masses [1]

State dim: 36 F iy 1
Action dim: 9 - up=—J
Horizon: 50 6 mass version

Training Set Size 2,500,000

Testing Set Size 250,000

# Training Epochs 200 Epochs (~40 hour)

Neural Network Depth 7 layers

Neural Network Hidden Width 128-512

# Neural Network Parameters 1,668,554

[1] Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Optimization. IEEE Transactions on Control Systems Technology. Vol 18, No. 2, 2010.



DARPA Project: Assured Autonomy
Unmanned Underwater Vehicle (UUV)

e Sonar data
* NN to locate pipeline on sea floor
e Steering control loop

Linear System

TR

Neural

Network

. . General Interconnection of Linear System and
Kothare, Morari, Automatica (1999) Quadratically-Constrained Nonlinearity



