
Probably the best tuning rule in the world

SIMC
simple

kc =
1

k

⌧

⌧c + ✓

⌧i = min{⌧, 4(⌧c + ✓)}

Kpi(s) = kc
(⌧is+ 1)

⌧is
G(s) =

ke�✓s

(⌧s+ 1)

tuning constantspeed up for
slow poles

(load disturbance)
⌧c = ✓

recommended

SIMC ruleSIMC rule (first order)

Defining the optimum
Trade-off between performance and robustness

Performance:

Robustness:

weighted IAE

Ms and Mt

K(s) ⌃
u

G(s)

du

⌃

dy

y

�1 ⌃ (n = 0)

⌃

(ys = 0)

10�2 10�1 100 101 102
10�2

10�1

100

|S|

|T |
Mub = 1.3

Frequency, !

Mub

Mub

�2 �1 1

�2

�1

1

2

Re L(j!)

Im L(j!)

both input and output disturbance

where t1 > t2, the original simc rule gives a pid controller with kc and ti as
given in (5) and td = t2. The direct extension of the isimc rule would be to
add another derivative term, (q

3 s + 1), to the numerator of the pid controller
in (2). First, this would not be a standard industrial controller and, second, it
would give even more aggressive input usage. To get a standard serial pid

controller, the following modified derivative time is recommended

isimc : td = t2 + q/3. (11)

with the controller gain and integral time as given in (5). The benefits of
using derivative action for a second-order process may be significant,
especially if t2 is large. However, we will only for t2 = 0 get the full
additional benefits of isimc as for the first-order plus delay process, and the
benefits are reduced as the value of t2 increases.

3 Quantifying the optimal controller

3.1 Performance

In this paper, we quantify performance in terms of the iae,

iae =
Z •

0

��y(t)� ys(t)
��dt. (12)

To balance the servo/regulatory trade-off we choose a weighted average of
iae for a step input disturbance du (load disturbance) and step output
disturbance dy:

J(p) = 0.5

iaedy(p)

iae

�
dy

+
iaedu(p)

iae

�
du

!
(13)

where iae

�
dy and iae

�
du are weighting factors, and p is the controller

parameters.
In this paper, we select the two weighting factors as the optimal iae values

when using pi control, for input and output disturbances, respectively (as
recommended by Boyd and Barratt (1991)). Note that two different reference
controllers are used to obtain the weighting factors (iae

�), whereas a single
controller K(p) (which may be a pi or pid controller depending on the case) is
used to find iaedy(p) and iaedu(p) when evaluating the iae objective J(p). To

6

The trade-off

Robustness

Pe
rfo

rm
an

ce

not feasible

sub-optimal

optimal

go
od

ba
d

good bad

The Models
G(s) = e�s Delay dominated

G(s) =
e�s

s+ 1
Balanced

G(s) =
e�s

8s+ 1
SIMC Special

G(s) =
e�s

s
Lag dominated

t

G(s) = e�s Delay dominated

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

G(s) =
e�s

s+ 1
Balanced

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s/(s+1)

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

G(s) =
e�s

8s+ 1
SIMC Special

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s/(8s+1)

⌧c
=

0

.5✓
⌧c

=

1

✓
⌧c

=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

G(s) =
e�s

s
Lag dominated

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s/s

⌧c
=

0

.5✓
⌧c

=

1

✓

⌧c
=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn

P
e
r
f
o
r
m
a
n
c
e
,
J

optimal pi

simc

G(s) = e�s/(s+1)

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

G(s) = e�s/(8s+1)

⌧c
=

0

.5✓
⌧c

=

1

✓
⌧c

=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

1 1.5 2 2.5 3

optimal pi

simc

G(s) = e�s/s

⌧c
=

0

.5✓
⌧c

=

1

✓

⌧c
=

1

.5✓

zn

Robustness, Mst

SIMC is Pretty Darn Good

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

optimal pi

simc

isimc-p
i

G(s) = e�s

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

G(s) = e�s Delay dominated

iSIMC-PI
⌧ ! ⌧ + ✓/3

«improved» SIMC PI rule

What about PID?

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

PI

G(s) = e�s

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

1 1.5 2 2.5 3

PI

PID

G(s) = e�s/(s+1)

Robustness, Mst

1 1.5 2 2.5 3

PI

PID

G(s) = e�s/s

Robustness, Mst

no bennefit of PID

≈ 40% Improvement

Delay Dom. Lag Dom.Balanced

0

0.5

1

1.5

2

2.5

opt.pi/pid

simc
(

i)

isimc(
pid)=

isimc-
pi

G(s) = e�s

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn-
pi

P
e
r
f
o
r
m
a
n
c
e
,
J

o

p

t.pi

o

p

t

.pid

simc(pi)

isimc(pid)

G(s) = e�s/(s+1)

⌧c
=

0

.5✓

⌧c
=

1

✓⌧c
=

1

.5✓

zn-
pi

zn-
pid

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

o

p

t

.pi

o

p

t

.pid

simc
(pi

)

isimc(pid)

G(s) = e�s/(8s+1)

⌧c
=

0

.5✓
⌧c

=

1

✓
⌧c

=

1

.5✓

zn-
pi

zn-
pid

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

1 1.5 2 2.5 3

o

p

t

.pi

o

p

t

.pid

simc
(pi

)

isimc
(pid

)

G(s) = e�s/s

⌧c
=

0

.5✓
⌧c

=

1

✓

⌧c
=

1

.5✓

zn-
pi

zn-
pid

Robustness, Mst

iSIMC
⌧d = ✓/3

(PID)

iSIMC
⌧d = ✓/3

(PID)

1 10 t
0

1
o

p

t

i

m

a

l

pi

si
mc

is
im
c�y

G(s) = e�s

0

1

2
o

p

t

.

pi
o

p

t

.

pi
d

si
mc
(

pi
)

is
im
c(
pi
d)

�y

0 30 70 t

�1

0

�u

G(s) = e�s

s

The step responses

1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

isimc

simc ↵ = 2
↵ = 3

↵ = 5
↵ = 10

⌧c
=

0.5
✓

⌧c
=

1✓
⌧c

=
1.5

✓

G(s) = e�s/(8s+1)

F (s) = 1
⌧f s+1

⌧f = ⌧d/↵

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

Measurement filtering

SMITH PREDICTOR

Pid-ctrl

BORN TO PERFORM

there is no substitute

Smith predictor vs. PID

Ksp(s)

Kpi(s) ⌃
u

Gm(s)�G�
m(s)

G(s)

du

⌃

dy

y⌃⌃

(ys = 0)

�1

SMITH PREDICTOR

PI as internal controller delay free model

0

0.5

1

1.5

2

2.5

pi
sp

G(s) = e�s

P
e
r
f
o
r
m
a
n
c
e
,
J

pi

sp
pid

G(s) = e�s/(s+1)

1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

pisp
pid

G(s) = e�s/(8s+1)

Robustness, Mst

P
e
r
f
o
r
m
a
n
c
e
,
J

1 1.2 1.4 1.6 1.8 2

pi
sp

pid

G(s) = e�s/(20s+1)

Robustness, Mst
Why SP when you can just use PID?

0

1

2

3

4

pi

sp

G(s) = e�s

D
e
l
a
y
M
a
r
g
i
n
,
d
m

pi
sp

pid

G(s) = e�s/(s+1)

1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

pi

sp

pid

G(s) = e�s/(8s+1)

Robustness, Mst

D
e
l
a
y
M
a
r
g
i
n
,
d
m

1 1.2 1.4 1.6 1.8 2

pi

sp
pid

G(s) = e�s/(20s+1)

Robustness, Mst

Delay Margin

Oi!

10�1 100 101 102
10�1

100

101

100

|L(j!)| !180 !540

L(s) = e�(1+✓e)s

0.3s+1�e�s

Frequency, !

M
ag

n
it
u
d
e

�1

1 pisp

�y

�1

1
pisp

�y

0 15 30 t

�1

1 pisp
�y

G(s) = e�s/(s+1)

GRADIENTS

minimize

p
IAE(p)

subject to |S(j!; p)|  Mub
for all !

|T (j!; p)|  Mub
for all !

SIMPLIFIED PROBLEM

Gradients
of the constraints

r|S(j!)| = 1

|S(j!)|<{S
⇤
(j!)rS(j!)} for all !

r|T (j!)| = 1

|T (j!)|<{T
⇤
(j!)rT (j!)} for all !

|S(j!; p)|  Mub
for all !

|T (j!; p)|  Mub
for all !

rS(j!) = �GS(j!) S(j!) rK(j!)

rT (j!) = r (1� S(j!)) = �rS(j!)

S =
1

1 +GK

Gradient
of the cost function

IAE =

Z
|y � ys|dt

rIAEdu(p) =

Z tf

0
sign{edu(t)}redu(t)dt.

redu = �G(s)2S(s)2rK(s) du

input disturbance

impulse response

