Imperial College London

Discovery through process data analytics

Nina Thornhill, ABB/RAEng Professor of Process Automation Imperial College London

Nordic Process Control Award Lecture

August 22nd 2019

at the 22nd Nordic Process Control Workshop, Technical University of Denmark

Process Automation About us | Research | People | Publications | 25 years of CPM | Vacancies | News and events Welcome to the Process **Automation Group** FIND OUT MORE ABOUT US **TOP LINKS** REAL-SMART Project The ABB Control Room **ENERGY-SMARTOPS Project** Centre for Process Systems Eng ABB Jürgen Dormann Foundation Process Automation Group

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

Introduction and personal history

- The specification for the lecture
 - Reflecting on scientific expertise and contributions (in retrospect)
 - Sharing perspectives for future of the field
 - Sharing social or personal anecdotes/experiences
 - Motivating and inspiring the young generation

Introduction and personal history

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

- Control loop performance assessment
 - with BP colleagues

controller performance

- Oscillation detection
 - with Tore Hagglund
- Plant-wide oscillation detection
 - with Biao Huang and Sirish Shah

oscillation index

oscillation index

- Root cause diagnosis
 - with Margret Bauer and Eastman Chemicals

- The effects of data compression
 - with Shoukat Choudhury

- Valve stiction analysis
 - with Shoukat and Sirish

- Linking data analysis with process topology
 - with Alexander Fay (HSU) and ABB

- Industrial applications
 - Oil and gas, refining and chemicals with BP, Eastman Chemicals, ABB
 - Wide area power transmission grids with Statnett, Fingrid, and Bikash Pal of EE Eng Imperial
- Multidisciplinary disturbance detection and diagnosis
 - Electrical, mechanical, process and site utilities analysed together

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

ID 21128964 © Davispics | Dreamstime.com

Spectral analysis shows plant-wide disturbances

Low flow in (64) ⇒ compressor recycling (2) ⇒ pressure disturbances ⇒ amplified export flow disturbance (60) ₂₃

flow rates during a slugging incident two months later

- Data analytics
 - Data compression detection
 - High density data plot
 - Saturation detection
 - Finding disturbance clusters
 - Root cause analysis
- Modelling
 - Data-driven models
 - e.g. compressor map from data
 - Structural models
 - e.g. " a mass balance exists"

- Process insight and understanding
 - Understanding the process layout and operation
 - Generating hypotheses
 - Applying domain knowledge
 - Applying scientific training
- Manual steps
 - Finding the process configuration
 - Locating tags within the process

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

Autonomous process operation

The Autonomous Industrial Plant —
Future of Process Engineering, Operations and Maintenance
Thomas Gamer*, Mario Hoernicke*, Benjamin Kloepper*,
Reinhard Bauer*, Alf J. Isaksson**

*ABB AG, Corporate Research, Wallstadter Str 59, 68526 Ladenburg, Germany
**ABB AB, Corporate Research, SE-72178 Västerås, Sweden
(e-mail: alf.isaksson@se.abb.com)

- Autonomous process operation is for:
 - Assisting humans
 - Taking over dull or difficult work
 - Replacing humans in dangerous work
 - Reducing human errors in using advanced technology
- Examples
 - ECA 400 PID controller (level 3)
 - oscillation detection in the background
 - Airplane autopilot (level 4)
 - autonomous operation within a predefined operating envelope

"Hero Russian pilot bestowed nation's highest medal for 'miracle' cornfield landing"

August 16th 2019

Mechanisms for achieving autonomy

Work done with James Ottewill and Trond Haugen, ABB

Control	Optimization	Data science	Machine learning	Artificial intelligence
Regulation to set point	Optimal set points	Insights	Predictions	Decisions and actions

Sources:

Business insider, 2015: "Here's the real reason artificial intelligence could be a threat" www.businessinsider.com/autonomous-artificial-intelligence-is-the-real-threat-2015-9?IR=T

Artificial Intelligence, Robotics and 'Autonomous' Systems', European Group on Ethics in Science and New Technologies 2018. ec.europa.eu/research/ege/pdf/ege ai statement 2018.pdf

David Robinson

Chief Data Scientist at DataCamp, works in R and Python.

What's the difference between data science, machine learning, and artificial intelligence?

varianceexplained.org/r/ds-ml-ai/

Autonomy and Artificial Intelligence: A Threat or Savior? pub: Springer, 2017. www.springer.com/gp/book/9783319597188

- Mechanisms for achieving autonomy
 - Data science
 - produces insights
 - has a human in the loop to understanding the insight
 - Machine learning
 - produces predictions
 - has self-learning and algorithms that may not transparent
 - Artificial intelligence
 - produces actions
 - executes or recommends actions
 - Control and optimization
 - produces actions like Al
 - does not handle unexpected situations like an AI would

Data analytics

- Data compression detection
- High density data plot
- Saturation detection
- Finding disturbance clusters
- Root cause analysis
- Modelling

- Data-driven models
 - e.g. compressor map from data
- Structural models
 - e.g. " a mass balance exists"

- Process insight and understanding
 - Understanding the process layout and operation

Generating hypotheses

- Applying domain knowledge
- Applying scientific training
- Manual steps

Locating tags within the process

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

Observations for younger generations

- Supervisors in our EU PRONTO project thought these are important:
 - Reaching high, being ambitious that you can change things
 - Looking at quality of the job and organization, not the specific topic
 - Understanding the motives of people whose support you need to realize your ideas
 - Promoting yourselves (Google scholar profile, ORCID number)
 - Having a road map for research
 - Always learning (it never stops)
 - Maintaining and using your networks
 - Understanding what you are doing, not "the computer said ..."
 - You are experts, do be confident, don't be modest, but don't be arrogant

Observations for younger generations

- I don't like working alone:
 - Long distances, no map
 - Difficult, lonely, risky
- I don't like doing incremental work:
 - Takes lots of effort and energy
 - One never really goes anywhere
 - It is crowded and competitive
- I don't like bandwagons:
 - "To the man with a hammer, everything looks like a nail"

ID 107123522 © Welcomia | Dreamstime.com

https://www.bicycling.com

Observations for younger generations

- I do like
 - Finding an interesting research path
 - Solving relevant industrial problems with appropriate techniques
 - Taking others with me

- So what is interesting?
 - ML and AI as mechanisms for delivering autonomy
 - Needs process data and models

"How can data tell you on the basis of no examples when the process will explode?" (Sandro Macchietto, ESCAPE 2019)

Agenda

Imperial College London

- Introduction and personal history
- Process data analysis Thornhill's way
- Plant-wide disturbances in an oil platform
- Data analytics in autonomous operation
- Observations for younger generations

Acknowledgements

- Thank you to ...
 - All my collaborators and students
 - My funders, especially:
 - ABB Corporate Research
 - Royal Academy of Engineering
 - Royal Society and BP
 - FP7 and Horizon 2020
 - Engineering and Physical Sciences Research Council
 - My employers
 - Family and friends

Imperial College London

END

Thank you for the Nordic Process Control Award

