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Wisconsin

The Midwest of the United States.
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Downtown Madison

Downtown Madison is bounded by Lakes Mendota and Monona.
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University of Wisconsin (UW)

UWMadison’s campus sprawls across 933 rolling acres, with Madison at its
front door, and Lake Mendota in its back yard.
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Music Hall

Yes, Madison has winter!
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The model predictive control framework
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u
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Predictive control
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
u(t)

∫ T

0
|ysp − g(x , u)|2Q + |usp − u|2R dt

ẋ = f (x , u)

x(0) = x0 (given)

y = g(x , u)
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State estimation
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
x0,w(t)

∫ 0

−T
|y − g(x , u)|2R + |ẋ − f (x , u)|2Q dt

ẋ = f (x , u) + w (process noise)

y = g(x , u) + v (measurement noise)
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Industrial impact of the research

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

Two layer structure

Steady-state layer
I RTO optimizes steady-state

model
I Optimal setpoints passed to

dynamic layer

Dynamic layer
I Controller tracks the setpoints
I Linear MPC

(replaces multiloop PID)

Rawlings MPC: Past and Future 10 / 50

Large industrial success story!

Linear MPC and ethylene manufacturing

Number of MPC applications in ethylene: 800 to 1200

Credits 500 to 800 M$/yr (2007)

Achieved primarily by increased on-spec product, decreased energy use

Eastman Chemical experience with MPC

First MPC implemented in 1996

Currently 55-60 MPC applications of varying complexity

30-50 M$/year increased profit due to increased throughput (2008)

Praxair experience with MPC

Praxair currently has more than 150 MPC installations

16 M$/year increased profit (2008)
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Impact for 13 ethylene plants (Starks and Arrieta, 2007)

Hydrocarbons AC&O 17

Advanced ControlAdvanced Control
& Optimization& Optimization

We’re Doing it For the Money
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Broader industrial impact (Qin and Badgwell, 2003)

Area Aspen Honeywell Adersa PCL MDC Total
Technology Hi-Spec

Refining 1200 480 280 25 1985

Petrochemicals 450 80 - 20 550

Chemicals 100 20 3 21 144

Pulp and Paper 18 50 - - 68

Air & Gas - 10 - - 10

Utility - 10 - 4 14

Mining/Metallurgy 8 6 7 16 37

Food Processing - - 41 10 51

Polymer 17 - - - 17

Furnaces - - 42 3 45

Aerospace/Defense - - 13 - 13

Automotive - - 7 - 7

Unclassified 40 40 1045 26 450 1601

Total 1833 696 1438 125 450 4542

First App. DMC:1985 PCT:1984 IDCOM:1973 PCL: SMOC:
IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1988

OPC:1987

Largest App 603x283 225x85 - 31x12 -

Rawlings MPC: Past and Future 13 / 50

A brief look into MPC’s past

Comments before we jump in.

Let’s avoid the trap of presentism.

What we’ll find is that today’s understanding, which we use to
examine the inadequacies and errors of the past, will itself not hold up
to future scrutiny.

Nothing is as uncertain as the future . . . except the past.
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It wasn’t always so obvious that MPC would be a success

Disturbance models

–F.G. Shinskey
Feedback Controllers for the Process Industries, 1994

The DMC is capable of outperforming the PID controller on
setpoint changes but not on load changes introduced upstream
of a dominant lag.

In fact, the load always enters upstream of the dominant process
time constant and, in many cases, at the same point as the
manipulated variable.
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. . . Or why MPC would be a success

Input constraints?

–C.R. Cutler and B.L. Ramaker, 1980
Joint Automatic Control Conference

The set of equations is over-determined which prevents direct
solution, but can be solved using a least squares criterion.
The preceding description of the DMC calculations can be
expressed conveniently in the following matrix notation:

~I = −(ATA)−1AT ~E (i.e., u = Kx)
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What was new about MPC?

Input constraints

Hard input constraints were added to DMC only later (Garćıa and
Morshedi, 1986).

Required the online solution of a quadratic program rather than an
offline feedback gain.

The addition of hard input constraints makes the controller nonlinear,
which is the only feature that distinguished industrial MPC proposals
from the already available linear quadratic regulator theory.
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Other confusing side issues—model representation

Impulse and step response models

–C.E. Garcia and M. Morari, 1982,
Internal Model Control. 1. A Unifying Review and Some New Results.

The use of an impulse response model is advantageous because a
structural model identification is not required and the
nonminimal representation adds robustness to the scheme.
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Convolution models and constraints

IDCOM

–Mehra, Rouhani, Eterno, Richalet, and Raul, 1982,
Model Algorithmic Control (MAC); Review and Recent Developments.

One of the most useful properties of MAC is its robustness,
which appears at least partially to result from the use of impulse
response model for plant representation.

The exact satisfaction of control and state constraints is
absolutely essential in many applications. Such constraints are
handled much more easily in IDCOM, thanks to the impulse
response representation of the system.
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Checking in again a few years later

Convolution models and robustness

–C.E. Garcia, D.M. Prett and M. Morari, 1989,
Model Predictive Control: Theory and Practice—a Survey.

MPC is not inherently more or less robust than classic feedback
as has been falsely claimed (Mehra et al. 1982). Also the large
number of parameters in a step response model . . . does not add
any robustness. By that argument one could include some
parameters in the model which have no effect on the
input-output description at all and obtain even more robustness.
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Turning to the future

Are all the problems solved?

How do we best decompose large-scale systems into manageable
problems?

How do we optimize dynamic economic operation?
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Electrical power distribution
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Chemical plant integration

Material flow

Energy flow
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MPC at the large scale

Decentralized Control

Most large-scale systems consist of networks of
interconnected/interacting subsystems

I Chemical plants, electrical power grids, water distribution networks, . . .

Traditional approach: Decentralized control
I Wealth of literature from the early 1970’s on improved decentralized

control a

I Well known that poor performance may result if the interconnections
are not negligible

a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)
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MPC at the large scale

Centralized Control

Steady increase in available computing power has provided the
opportunity for centralized control

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers
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Nomenclature: consider two interacting units

Objective functions V1(u1, u2), V2(u1, u2)

and V (u1, u2) = w1V1(u1, u2) + w2V2(u1, u2)

decision variables for units u1 ∈ Ω1, u2 ∈ Ω2

Decentralized Control min
u1∈Ω1

Ṽ1(u1) min
u2∈Ω2

Ṽ2(u2)

Noncooperative Control min
u1∈Ω1

V1(u1, u2) min
u2∈Ω2

V2(u1, u2)

(Nash equilibrium)

Cooperative Control min
u1∈Ω1

V (u1, u2) min
u2∈Ω2

V (u1, u2)

(Pareto optimal)

Centralized Control min
u1,u2∈Ω1×Ω2

V (u1, u2)

(Pareto optimal)
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Noninteracting systems

-2
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a
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Weakly interacting systems
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p
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Moderately interacting systems
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Strongly interacting (conflicting) systems
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Strongly interacting (conflicting) systems
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Geometry of cooperative vs. noncooperative MPC
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Two reactors with separation and recycle

F0, xA0

Q

Fpurge

D, xAd, xBd

Hr Hm

B→ C
A→ BA→ B

B→ C

Hb

F1, xA1

Fm, xAm, xBm

Fb, xAb, xBb,T

Fr, xAr, xBr

MPC3

MPC1 MPC2
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Two reactors with separation and recycle
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Two reactors with separation and recycle

Performance comparison

Cost (×10−2) Performance loss

Centralized MPC 1.75 0
Decentralized MPC ∞ ∞
Noncooperative MPC ∞ ∞
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%
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Traditional hierarchical MPC

Coordinator

MPCMPC MPC

1s 1s5s 3s 0.5s

Setpoints

2min1min

1hr

Data

Plantwide coordinator

Coordinator

MPC MPC

Multiple dynamical time scales in plant

Data and setpoints are exchanged on slower time scale

Optimization performed at each layer
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Cooperative MPC data exchange

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storageData storage

Read

Write

5s

MPC MPC

All data exchanged plantwide

Slowest MPC defines rate of data exchange
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Cooperative hierarchical MPC

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storage

1min

Read

Write
2min

1hr

Plantwide data storage

Data storage

MPC MPC

Optimization at MPC layer only

Only subset of data exchanged plantwide

Data exchanged at slower time scale
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Optimizing economics: Current industrial practice

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

Two layer structure

Drawbacks
I Inconsistent models
I Re-identify linear model as

setpoint changes
I Time scale separation may not

hold
I Economics unavailable in

dynamic layer
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Motivating the idea
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Economics controller

min
u(t)

∫ T

0
L(x , u)dt subject to:

ẋ = f (x , u)
y = g(x , u)

Target tracking (standard)

L(x , u) = |ysp − g(x , u)|2Q + |usp − u|2R

Economic optimization (new)
L is the negative of economic profit function

L(x , u) = −P(x , u)
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Strong duality and asymptotic stability

Strong Duality

If there exists a λ such that the the following problems have the same
solution

min
x ,u

L(x , u) min
x ,u

L(x , u)− λ(f (x , u))

f (x , u) = 0 h(x , u) ≤ 0

h(x , u) ≤ 0

Asymptotic stability of the closed-loop economics controller with a
strictly convex cost and linear dynamics (Rawlings et al., 2008)

Asymptotic stability of the closed-loop economics controller with
strong duality in the steady-state problem (Diehl et al., 2011)
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Example

xk+1 =

[
0.857 0.884
−0.0147 −0.0151

]
xk +

[
8.565

0.88418

]
uk

Input constraint: −1 ≤ u ≤ 1

Economics

Leco = α′x + β′u

α =
[
−3 −2

]′
β = −2

Tracking

Ltarg = |x − x∗|2Q+|u − u∗|2R
Q = 2I2 R = 2

x∗ =
[
60 0

]′
u∗ = 1
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x2x2
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targ-MPC
60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

x2x2x2

targ-MPC eco-MPC

x2

targ-MPC eco-MPC
60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

Rawlings MPC: Past and Future 44 / 50



55

60

65

70

75

80

85

90

0 2 4 6 8 10 12 14

S
ta
te

targ-MPC
eco-MPC

-2

0

2

4

6

8

10

0 2 4 6 8 10 12 14

S
ta
te

targ-MPC
eco-MPC

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14

In
pu
t

Time

targ-MPC
eco-MPC

Rawlings MPC: Past and Future 45 / 50

Conclusions

Optimal dynamic operation of chemical processes has undergone a
total transformation in the last 20 years. Both in theory and in
practice.

The currently available theory splits the problem into state estimation
and regulation. Both are posed and solved as online optimization
problems. Basic properties have been established. Lyapunov functions
are the dominant theoretical tool for analysis and design.

Industrial implementations and vendor software are basically keeping
pace with the best available theory and algorithms. That is a
surprising and noteworthy outcome!
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Future directions — Current research in MPC

Distributed versions of MPC
I Controlling large-scale systems composed of many small-scale MPCs
I How to structure the small-scale MPCs so they cooperate on plantwide

objectives

Optimizing economics with MPC
I The optimal economic point is not necessarily a steady state
I Allows removal of the steady-state economic optimization layer
I Dynamic economic optimization subject to settling at the optimal

steady state
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New MPC graduate textbook

576 page text

214 exercises

335 page solution manual

3 appendices on web (133
pages)

www.nobhillpublishing.com
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